metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine)­platinum(II) tetra­fluorido­borate

aDepartment of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA, and bDepartment of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5070, USA
*Correspondence e-mail: bsmucker@austincollege.edu

(Received 5 October 2010; accepted 22 November 2010; online 30 November 2010)

In the title compound, [PtCl(C27H35N3)]BF4, the PtII atom is in a pseudo-square-planar coordination, which is typical of Pt–terpyridine complexes. The Pt—Cl bond distance is 2.2998 (7) Å. The Pt—N distance of the N atom on the central pyridine is 1.931 (2) Å, while the peripheral N atoms have Pt—N distances of 2.018 (2) and 2.022 (2) Å. The cations pack as dimers in a head-to-tail orientation with an inter­molecular Pt⋯Pt distance of 3.5214 (2) Å and Pt⋯N distances of 3.527 (2), 3.873 (2) and 4.532 (2) Å. In the crystal, cations and anions are linked by weak C—H⋯F hydrogen-bonding inter­actions.

Related literature

For other crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010[Batrice, R. J., Nesterov, V. N. & Smucker, B. W. (2010). Acta Cryst. E66, m1704.]); Lai et al. (1999[Lai, S.-W., Chan, M. C. W., Cheung, K.-K. & Che, C.-M. (1999). Inorg. Chem. 38, 4262-4267.]). For related terpyridine complexes with close inter­molecular Pt⋯Pt distances, see: Angle et al. (2006[Angle, C. S., DiPasquale, A. G., Rheingold, A. L. & Doerrer, L. H. (2006). Acta Cryst. C62, m340-m342.]); Bailey et al. (1995[Bailey, J. A., Hill, M. G., Marsh, R. E., Miskowski, V. M., Schaefer, W. P. & Gray, H. B. (1995). Inorg. Chem. 34, 4591-4599.]). For synthetic procedures, see: Howe-Grant & Lippard (1980[Howe-Grant, M. & Lippard, S. J. (1980). Inorg. Synth. 20, 101-105.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl(C27H35N3)]BF4

  • Mr = 718.93

  • Monoclinic, P 21 /n

  • a = 12.5921 (7) Å

  • b = 16.4998 (9) Å

  • c = 13.3262 (7) Å

  • β = 92.239 (1)°

  • V = 2766.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.22 mm−1

  • T = 100 K

  • 0.35 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.266, Tmax = 0.657

  • 24815 measured reflections

  • 6116 independent reflections

  • 5415 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.058

  • S = 1.00

  • 6116 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 1.93 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F3i 0.95 2.51 3.330 (3) 145
C2—H2A⋯F1i 0.95 2.36 3.229 (3) 151
C7—H7A⋯F2ii 0.95 2.46 3.333 (3) 154
C17—H17B⋯F4ii 0.98 2.36 3.295 (3) 159
C27—H27C⋯F3iii 0.98 2.48 3.349 (4) 147
C9—H9A⋯F4 0.95 2.39 3.250 (3) 150
C12—H12A⋯F4 0.95 2.49 3.298 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

In the structures of the [(tbtrpy)PtCl]+ (tbtrpy = 4,4',4''-tri- tert-butyl-2,2':6',2''-terpyridine) complexes with either chloride (Batrice et al., 2010), tetrafluoroborate (title complex) or perchlorate (Lai et al., 1999) counterions, the bond distances and angles around the platinum atom are all similar. The cations in these structures all pack as dimers in a head-to-tail orientation. Interestingly, the interplanar (Pt, Cl and N atoms) distance seems to be related to the size of the anion with the Cl-, BF4-, and ClO4- being 3.283, 3.390 and 3.536 Å, respectively. In addition to the size of the counterion, solvent is also noted as playing a role in the ability of these types of complexes to interact significantly with each other (Bailey et al., 1995). In the title complex, the cations and anions are linked by weak H-bonding interactions between C—H···F (Table 1).

The intermolecular distance is within a suitable distance for favorable π-π interactions. So the bulky tert-Butyl groups of the tbtrpy ligand do not appear to alter the ability of this complex to form suitable interactions between the two molecules of the dimer. The difference in color between the crystal (red) and the powder (yellow) is, likewise, attributed to this dimer interaction (Angle et al., 2006).

Related literature top

For other crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010); Lai et al. (1999). For related terpyridine complexes with close intermolecular Pt···Pt distances, see: Angle et al. (2006); Bailey et al. (1995). For synthetic procedures, see: Howe-Grant & Lippard (1980).

Experimental top

[(tbtrpy)PtCl]Cl was synthesized according to modifications on a published procedure (Howe-Grant and Lippard, 1980). This [(tbtrpy)PtCl]+ complex was reacted with various aromatic thiol ligands (SAr). One such product containing a [(tbtrpy)Pt(SAr)]Cl (0.02 mmol) complex was reacted with sodium tetrafluoroborate (0.10 mmol) in a solution of methanol and isolated through condensation and precipitation with diethyl ether (94% yield). Crystals of the title compound were grown from the vapor diffusion of cyclohexane into a dichloromethane solution containing [(tbtrpy)Pt(SAr)]BF4 and [(tbtrpy)PtCl]BF4.

Refinement top

H atoms were placed in idealized positions with C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively, and allowed to ride on their parent atoms with Uiso(H) 1.2 (aryl C) or 1.5 (methyl C) × Ueq of the parent atoms. The largest residual electron density in the final difference map was located close to the platinum atom (0.83 Å) and was most likely due to imperfect absorption corrections frequently encountered in heavy-metal atom structures.

Structure description top

In the structures of the [(tbtrpy)PtCl]+ (tbtrpy = 4,4',4''-tri- tert-butyl-2,2':6',2''-terpyridine) complexes with either chloride (Batrice et al., 2010), tetrafluoroborate (title complex) or perchlorate (Lai et al., 1999) counterions, the bond distances and angles around the platinum atom are all similar. The cations in these structures all pack as dimers in a head-to-tail orientation. Interestingly, the interplanar (Pt, Cl and N atoms) distance seems to be related to the size of the anion with the Cl-, BF4-, and ClO4- being 3.283, 3.390 and 3.536 Å, respectively. In addition to the size of the counterion, solvent is also noted as playing a role in the ability of these types of complexes to interact significantly with each other (Bailey et al., 1995). In the title complex, the cations and anions are linked by weak H-bonding interactions between C—H···F (Table 1).

The intermolecular distance is within a suitable distance for favorable π-π interactions. So the bulky tert-Butyl groups of the tbtrpy ligand do not appear to alter the ability of this complex to form suitable interactions between the two molecules of the dimer. The difference in color between the crystal (red) and the powder (yellow) is, likewise, attributed to this dimer interaction (Angle et al., 2006).

For other crystal structures of the title cation, [(tbtrpy)PtCl]+, see: Batrice et al. (2010); Lai et al. (1999). For related terpyridine complexes with close intermolecular Pt···Pt distances, see: Angle et al. (2006); Bailey et al. (1995). For synthetic procedures, see: Howe-Grant & Lippard (1980).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. View of title complex (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Mercury (Macrae et al., 2008) rendition of head-to-tail packing with Pt—Pt' distance 3.5214 (2) Å. Symmetry operation for the primed atom: 1-x, 1-y, 1-z
Chlorido(4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine)platinum(II) tetrafluoridoborate top
Crystal data top
[PtCl(C27H35N3)]BF4F(000) = 1416
Mr = 718.93Dx = 1.726 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9942 reflections
a = 12.5921 (7) Åθ = 2.2–27.1°
b = 16.4998 (9) ŵ = 5.22 mm1
c = 13.3262 (7) ÅT = 100 K
β = 92.239 (1)°Plate, red
V = 2766.6 (3) Å30.35 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6116 independent reflections
Radiation source: fine-focus sealed tube5415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.2°, θmin = 2.0°
Absorption correction: numerical
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.266, Tmax = 0.657k = 2121
24815 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
6116 reflections(Δ/σ)max = 0.004
343 parametersΔρmax = 1.93 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[PtCl(C27H35N3)]BF4V = 2766.6 (3) Å3
Mr = 718.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5921 (7) ŵ = 5.22 mm1
b = 16.4998 (9) ÅT = 100 K
c = 13.3262 (7) Å0.35 × 0.12 × 0.09 mm
β = 92.239 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6116 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2008)
5415 reflections with I > 2σ(I)
Tmin = 0.266, Tmax = 0.657Rint = 0.027
24815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.00Δρmax = 1.93 e Å3
6116 reflectionsΔρmin = 0.89 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.387307 (7)0.441874 (6)0.526749 (7)0.01521 (5)
Cl10.31903 (6)0.53400 (4)0.63655 (5)0.02397 (15)
N10.35302 (17)0.49919 (13)0.39565 (16)0.0171 (5)
N20.44357 (17)0.36376 (13)0.43485 (16)0.0152 (4)
N30.43642 (17)0.35687 (13)0.62754 (16)0.0168 (4)
C10.3043 (2)0.57117 (15)0.3825 (2)0.0199 (6)
H1A0.28450.60110.43970.024*
C20.2822 (2)0.60272 (16)0.2876 (2)0.0226 (6)
H2A0.24900.65420.28090.027*
C30.3078 (2)0.56012 (15)0.2020 (2)0.0218 (6)
C40.3612 (2)0.48624 (15)0.2170 (2)0.0192 (6)
H4A0.38240.45580.16070.023*
C50.3830 (2)0.45736 (15)0.3128 (2)0.0168 (5)
C60.4388 (2)0.37982 (15)0.3360 (2)0.0170 (5)
C70.4844 (2)0.32631 (16)0.2701 (2)0.0185 (5)
H7A0.48010.33660.19990.022*
C80.5366 (2)0.25723 (16)0.3070 (2)0.0179 (5)
C90.5381 (2)0.24221 (16)0.41048 (19)0.0167 (5)
H9A0.57190.19500.43720.020*
C100.4901 (2)0.29631 (15)0.47348 (19)0.0165 (5)
C110.4815 (2)0.29055 (16)0.5836 (2)0.0170 (5)
C120.5092 (2)0.22285 (15)0.6392 (2)0.0175 (5)
H12A0.54180.17840.60720.021*
C130.4903 (2)0.21825 (16)0.7415 (2)0.0192 (5)
C140.4492 (2)0.28732 (17)0.7852 (2)0.0213 (6)
H14A0.43770.28800.85520.026*
C150.4246 (2)0.35546 (16)0.7275 (2)0.0197 (6)
H15A0.39870.40250.75960.024*
C160.2742 (2)0.59045 (17)0.0967 (2)0.0243 (6)
C170.1605 (3)0.55930 (17)0.0725 (3)0.0314 (7)
H17A0.11270.57940.12310.047*
H17B0.16040.49990.07290.047*
H17C0.13630.57880.00600.047*
C180.3479 (3)0.55840 (19)0.0164 (3)0.0341 (8)
H18A0.42100.57540.03280.051*
H18B0.32520.58030.04940.051*
H18C0.34430.49910.01450.051*
C190.2725 (3)0.68348 (17)0.0921 (2)0.0321 (7)
H19A0.22220.70430.14020.048*
H19B0.25040.70100.02420.048*
H19C0.34370.70450.10910.048*
C200.5899 (2)0.19879 (17)0.2353 (2)0.0214 (6)
C210.6566 (2)0.13425 (17)0.2912 (2)0.0230 (6)
H21A0.71090.16070.33450.035*
H21B0.69100.09950.24260.035*
H21C0.61040.10130.33250.035*
C220.5025 (3)0.15485 (19)0.1712 (2)0.0322 (7)
H22A0.45620.12470.21540.048*
H22B0.53560.11720.12500.048*
H22C0.46030.19480.13270.048*
C230.6620 (3)0.2465 (2)0.1672 (3)0.0404 (9)
H23A0.71300.27820.20840.061*
H23B0.61870.28310.12450.061*
H23C0.70040.20880.12490.061*
C240.5084 (2)0.13826 (17)0.7973 (2)0.0232 (6)
C250.4381 (3)0.07374 (18)0.7441 (3)0.0329 (7)
H25A0.46370.06390.67670.049*
H25B0.36450.09300.73890.049*
H25C0.44130.02330.78290.049*
C260.6249 (2)0.11286 (18)0.7924 (2)0.0290 (7)
H26A0.64370.10760.72200.044*
H26B0.63540.06070.82650.044*
H26C0.67020.15400.82550.044*
C270.4771 (3)0.14391 (19)0.9062 (2)0.0365 (8)
H27A0.52140.18460.94130.055*
H27B0.48750.09110.93880.055*
H27C0.40220.15970.90870.055*
F10.78839 (14)0.21514 (10)0.65679 (12)0.0296 (4)
F20.88980 (12)0.16408 (12)0.53331 (11)0.0282 (4)
F30.76581 (14)0.26159 (10)0.49683 (14)0.0329 (4)
F40.71285 (13)0.13398 (9)0.53646 (12)0.0254 (4)
B10.7889 (3)0.19389 (19)0.5557 (2)0.0213 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01385 (7)0.01259 (6)0.01913 (7)0.00101 (4)0.00005 (4)0.00161 (4)
Cl10.0266 (4)0.0180 (3)0.0276 (4)0.0041 (3)0.0058 (3)0.0037 (3)
N10.0166 (11)0.0140 (11)0.0206 (11)0.0007 (9)0.0031 (9)0.0013 (9)
N20.0138 (11)0.0134 (10)0.0183 (11)0.0010 (8)0.0015 (9)0.0002 (8)
N30.0138 (11)0.0164 (11)0.0202 (11)0.0001 (9)0.0005 (9)0.0008 (9)
C10.0171 (14)0.0149 (13)0.0275 (15)0.0003 (10)0.0011 (11)0.0018 (11)
C20.0193 (14)0.0147 (13)0.0336 (16)0.0017 (11)0.0021 (12)0.0040 (11)
C30.0174 (14)0.0182 (14)0.0295 (16)0.0041 (10)0.0005 (12)0.0041 (11)
C40.0182 (14)0.0164 (13)0.0229 (14)0.0008 (10)0.0005 (11)0.0010 (11)
C50.0144 (13)0.0136 (12)0.0222 (14)0.0020 (10)0.0017 (11)0.0029 (10)
C60.0153 (13)0.0158 (12)0.0195 (13)0.0011 (10)0.0039 (10)0.0000 (10)
C70.0196 (14)0.0191 (13)0.0165 (12)0.0005 (11)0.0022 (10)0.0015 (11)
C80.0169 (13)0.0169 (13)0.0197 (13)0.0010 (10)0.0006 (10)0.0003 (10)
C90.0155 (13)0.0152 (12)0.0194 (13)0.0017 (10)0.0009 (10)0.0005 (10)
C100.0166 (13)0.0132 (12)0.0195 (13)0.0001 (10)0.0016 (10)0.0002 (10)
C110.0133 (13)0.0166 (12)0.0211 (13)0.0013 (10)0.0007 (10)0.0028 (10)
C120.0183 (14)0.0152 (12)0.0192 (13)0.0013 (10)0.0012 (10)0.0016 (10)
C130.0159 (13)0.0198 (13)0.0218 (14)0.0007 (11)0.0007 (11)0.0017 (11)
C140.0207 (14)0.0259 (14)0.0174 (13)0.0027 (12)0.0033 (11)0.0012 (11)
C150.0163 (13)0.0206 (13)0.0223 (14)0.0023 (11)0.0047 (11)0.0046 (11)
C160.0271 (16)0.0189 (14)0.0267 (15)0.0042 (12)0.0018 (12)0.0076 (12)
C170.0337 (19)0.0297 (17)0.0299 (17)0.0002 (13)0.0086 (14)0.0031 (13)
C180.041 (2)0.0301 (18)0.0312 (18)0.0074 (14)0.0066 (15)0.0129 (13)
C190.0403 (19)0.0228 (15)0.0330 (17)0.0005 (14)0.0016 (14)0.0083 (13)
C200.0250 (15)0.0217 (14)0.0177 (13)0.0079 (11)0.0037 (11)0.0003 (11)
C210.0238 (15)0.0229 (14)0.0222 (14)0.0061 (12)0.0002 (11)0.0040 (11)
C220.0386 (19)0.0310 (17)0.0263 (16)0.0120 (14)0.0073 (14)0.0090 (13)
C230.045 (2)0.0331 (18)0.045 (2)0.0127 (16)0.0243 (17)0.0129 (15)
C240.0305 (16)0.0184 (13)0.0210 (14)0.0036 (12)0.0043 (12)0.0011 (11)
C250.038 (2)0.0274 (16)0.0330 (18)0.0066 (14)0.0034 (15)0.0073 (13)
C260.0330 (18)0.0231 (15)0.0309 (16)0.0058 (13)0.0001 (13)0.0070 (13)
C270.056 (2)0.0277 (16)0.0263 (16)0.0092 (15)0.0129 (15)0.0065 (13)
F10.0309 (10)0.0321 (10)0.0259 (9)0.0006 (8)0.0025 (7)0.0067 (7)
F20.0232 (10)0.0361 (11)0.0255 (9)0.0054 (7)0.0044 (7)0.0007 (7)
F30.0332 (10)0.0228 (9)0.0422 (11)0.0023 (7)0.0048 (8)0.0117 (8)
F40.0261 (9)0.0195 (8)0.0305 (9)0.0023 (7)0.0012 (7)0.0009 (7)
B10.0222 (16)0.0194 (16)0.0223 (16)0.0004 (12)0.0002 (13)0.0005 (12)
Geometric parameters (Å, º) top
Pt1—N21.931 (2)C17—H17A0.9800
Pt1—N12.018 (2)C17—H17B0.9800
Pt1—N32.022 (2)C17—H17C0.9800
Pt1—Cl12.2998 (7)C18—H18A0.9800
N1—C11.345 (3)C18—H18B0.9800
N1—C51.368 (3)C18—H18C0.9800
N2—C61.343 (3)C19—H19A0.9800
N2—C101.350 (3)C19—H19B0.9800
N3—C151.346 (3)C19—H19C0.9800
N3—C111.375 (3)C20—C231.527 (4)
C1—C21.386 (4)C20—C211.531 (4)
C1—H1A0.9500C20—C221.547 (4)
C2—C31.388 (4)C21—H21A0.9800
C2—H2A0.9500C21—H21B0.9800
C3—C41.402 (4)C21—H21C0.9800
C3—C161.534 (4)C22—H22A0.9800
C4—C51.380 (4)C22—H22B0.9800
C4—H4A0.9500C22—H22C0.9800
C5—C61.486 (3)C23—H23A0.9800
C6—C71.385 (4)C23—H23B0.9800
C7—C81.396 (4)C23—H23C0.9800
C7—H7A0.9500C24—C271.522 (4)
C8—C91.401 (4)C24—C261.529 (4)
C8—C201.531 (4)C24—C251.540 (4)
C9—C101.381 (4)C25—H25A0.9800
C9—H9A0.9500C25—H25B0.9800
C10—C111.478 (4)C25—H25C0.9800
C11—C121.378 (4)C26—H26A0.9800
C12—C131.395 (4)C26—H26B0.9800
C12—H12A0.9500C26—H26C0.9800
C13—C141.389 (4)C27—H27A0.9800
C13—C241.528 (4)C27—H27B0.9800
C14—C151.390 (4)C27—H27C0.9800
C14—H14A0.9500F1—B11.392 (4)
C15—H15A0.9500F2—B11.405 (4)
C16—C191.536 (4)F3—B11.389 (3)
C16—C181.537 (4)F4—B11.393 (3)
C16—C171.543 (4)
N2—Pt1—N180.51 (9)C16—C17—H17C109.5
N2—Pt1—N381.26 (9)H17A—C17—H17C109.5
N1—Pt1—N3161.70 (9)H17B—C17—H17C109.5
N2—Pt1—Cl1179.44 (7)C16—C18—H18A109.5
N1—Pt1—Cl199.70 (6)C16—C18—H18B109.5
N3—Pt1—Cl198.51 (6)H18A—C18—H18B109.5
C1—N1—C5118.6 (2)C16—C18—H18C109.5
C1—N1—Pt1127.43 (19)H18A—C18—H18C109.5
C5—N1—Pt1113.95 (17)H18B—C18—H18C109.5
C6—N2—C10122.6 (2)C16—C19—H19A109.5
C6—N2—Pt1119.14 (17)C16—C19—H19B109.5
C10—N2—Pt1118.21 (17)H19A—C19—H19B109.5
C15—N3—C11118.1 (2)C16—C19—H19C109.5
C15—N3—Pt1128.79 (18)H19A—C19—H19C109.5
C11—N3—Pt1112.93 (17)H19B—C19—H19C109.5
N1—C1—C2121.7 (3)C23—C20—C8109.4 (2)
N1—C1—H1A119.2C23—C20—C21108.7 (2)
C2—C1—H1A119.2C8—C20—C21112.3 (2)
C1—C2—C3121.0 (3)C23—C20—C22109.9 (3)
C1—C2—H2A119.5C8—C20—C22108.7 (2)
C3—C2—H2A119.5C21—C20—C22107.9 (2)
C2—C3—C4116.7 (3)C20—C21—H21A109.5
C2—C3—C16121.4 (2)C20—C21—H21B109.5
C4—C3—C16121.8 (3)H21A—C21—H21B109.5
C5—C4—C3120.6 (3)C20—C21—H21C109.5
C5—C4—H4A119.7H21A—C21—H21C109.5
C3—C4—H4A119.7H21B—C21—H21C109.5
N1—C5—C4121.4 (2)C20—C22—H22A109.5
N1—C5—C6114.2 (2)C20—C22—H22B109.5
C4—C5—C6124.4 (2)H22A—C22—H22B109.5
N2—C6—C7119.5 (2)C20—C22—H22C109.5
N2—C6—C5112.1 (2)H22A—C22—H22C109.5
C7—C6—C5128.4 (2)H22B—C22—H22C109.5
C6—C7—C8119.9 (2)C20—C23—H23A109.5
C6—C7—H7A120.0C20—C23—H23B109.5
C8—C7—H7A120.0H23A—C23—H23B109.5
C7—C8—C9118.6 (2)C20—C23—H23C109.5
C7—C8—C20120.4 (2)H23A—C23—H23C109.5
C9—C8—C20120.9 (2)H23B—C23—H23C109.5
C10—C9—C8119.7 (2)C27—C24—C13111.9 (2)
C10—C9—H9A120.2C27—C24—C26110.0 (3)
C8—C9—H9A120.2C13—C24—C26109.9 (2)
N2—C10—C9119.6 (2)C27—C24—C25108.4 (3)
N2—C10—C11112.6 (2)C13—C24—C25107.5 (2)
C9—C10—C11127.8 (2)C26—C24—C25109.0 (2)
N3—C11—C12121.1 (2)C24—C25—H25A109.5
N3—C11—C10114.8 (2)C24—C25—H25B109.5
C12—C11—C10124.0 (2)H25A—C25—H25B109.5
C11—C12—C13121.4 (2)C24—C25—H25C109.5
C11—C12—H12A119.3H25A—C25—H25C109.5
C13—C12—H12A119.3H25B—C25—H25C109.5
C14—C13—C12116.4 (2)C24—C26—H26A109.5
C14—C13—C24123.8 (2)C24—C26—H26B109.5
C12—C13—C24119.7 (2)H26A—C26—H26B109.5
C13—C14—C15120.7 (3)C24—C26—H26C109.5
C13—C14—H14A119.6H26A—C26—H26C109.5
C15—C14—H14A119.6H26B—C26—H26C109.5
N3—C15—C14122.0 (2)C24—C27—H27A109.5
N3—C15—H15A119.0C24—C27—H27B109.5
C14—C15—H15A119.0H27A—C27—H27B109.5
C3—C16—C19111.4 (2)C24—C27—H27C109.5
C3—C16—C18111.8 (2)H27A—C27—H27C109.5
C19—C16—C18108.9 (2)H27B—C27—H27C109.5
C3—C16—C17107.7 (2)F3—B1—F1109.6 (2)
C19—C16—C17108.2 (2)F3—B1—F4109.8 (2)
C18—C16—C17108.7 (3)F1—B1—F4109.1 (2)
C16—C17—H17A109.5F3—B1—F2109.4 (2)
C16—C17—H17B109.5F1—B1—F2109.4 (2)
H17A—C17—H17B109.5F4—B1—F2109.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.952.513.330 (3)145
C2—H2A···F1i0.952.363.229 (3)151
C7—H7A···F2ii0.952.463.333 (3)154
C17—H17B···F4ii0.982.363.295 (3)159
C27—H27C···F3iii0.982.483.349 (4)147
C9—H9A···F40.952.393.250 (3)150
C12—H12A···F40.952.493.298 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtCl(C27H35N3)]BF4
Mr718.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.5921 (7), 16.4998 (9), 13.3262 (7)
β (°) 92.239 (1)
V3)2766.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.22
Crystal size (mm)0.35 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionNumerical
(SADABS; Bruker, 2008)
Tmin, Tmax0.266, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
24815, 6116, 5415
Rint0.027
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.058, 1.00
No. of reflections6116
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.93, 0.89

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.952.513.330 (3)145
C2—H2A···F1i0.952.363.229 (3)151
C7—H7A···F2ii0.952.463.333 (3)154
C17—H17B···F4ii0.982.363.295 (3)159
C27—H27C···F3iii0.982.483.349 (4)147
C9—H9A···F40.952.393.250 (3)150
C12—H12A···F40.952.493.298 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Welch Foundation (AD-0007) for a chemistry department grant supporting undergraduate research.

References

First citationAngle, C. S., DiPasquale, A. G., Rheingold, A. L. & Doerrer, L. H. (2006). Acta Cryst. C62, m340–m342.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBailey, J. A., Hill, M. G., Marsh, R. E., Miskowski, V. M., Schaefer, W. P. & Gray, H. B. (1995). Inorg. Chem. 34, 4591–4599.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatrice, R. J., Nesterov, V. N. & Smucker, B. W. (2010). Acta Cryst. E66, m1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHowe-Grant, M. & Lippard, S. J. (1980). Inorg. Synth. 20, 101–105.  CrossRef Google Scholar
First citationLai, S.-W., Chan, M. C. W., Cheung, K.-K. & Che, C.-M. (1999). Inorg. Chem. 38, 4262–4267.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds