organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(3-amino-4-hy­dr­oxy­phen­yl)acetate

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 12 October 2010; accepted 29 October 2010; online 6 November 2010)

The asymmetric unit of the title compound, C10H13NO3, contains two crystallographically independent mol­ecules with different conformations of the eth­oxy­carbonyl groups; the terminal C—C—O—C torsion angles in the two mol­ecules are 83.6 (6) and −171.1 (3)°, resulting in twisted and straight chain conformations, respectively. The crystal structure is stabilized by inter­molecular N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds. Intra­molecular hydrogen bonds occur between the amino N and phenolic O atoms.

Related literature

For general background to the use of phenyl­acetate derivatives as inter­mediates for the rational design of new chemotherapeutic agents, see: Xiao, Fang et al. (2008[Xiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); Xiao, Lv et al. (2008[Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008). Chem. Med. Chem. 3, 1516-1519.]). For the preparation of the title compound, see: Xiao et al. 2010[Xiao, Z.-P., Wang, Y.-C., Ou, G.-Y., Wu, J., Luo, T. & Yi, S.-F. (2010). Synth. Commun. 40, 661-665.]. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3

  • Mr = 195.21

  • Triclinic, [P \overline 1]

  • a = 8.5940 (17) Å

  • b = 10.142 (2) Å

  • c = 12.043 (2) Å

  • α = 98.23 (3)°

  • β = 104.96 (3)°

  • γ = 90.41 (3)°

  • V = 1002.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.991

  • 3857 measured reflections

  • 3598 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.213

  • S = 1.09

  • 3598 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 2.37 3.097 (5) 143
N2—H2D⋯O5ii 0.86 2.42 3.222 (5) 155
O3—H3A⋯N2iii 0.82 2.23 2.978 (5) 152
O6—H6B⋯N1iv 0.82 2.31 3.015 (5) 145
C10—H10A⋯O6ii 0.93 2.49 3.414 (5) 174
N1—H1B⋯O3 0.86 2.12 2.517 (5) 108
N2—H2D⋯O6 0.86 2.33 2.641 (4) 102
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x+1, y-1, z; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of phenylacetate are key intermates for the rational design of new chemotherapeutic agents such as antibacterials (Xiao, Fang, et al. 2008) and anticancers (Xiao, Lv, et al. 2008). As a part of our research on pharmoceutically active 4-hydroxy-3-phenylfuran-2(5H)-ones, we have synthesized the title compound and herein we report its crystal structure.

The crystal structure contains two crystallographically independent molecules in an asymmetric unit of the title compound with different conformations of the ethoxy carbonyl groups. The terminal torsion angles C1—C2—O1—C3 in molecule (1) and C11—C12—O4—C13 in molecule (2) are 83.6 (6) and -171.1 (3)° resulting in twisted and straight chian conformations, respectively (Figures 1 and 2). In both molecules of the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). The molecules assemble into an infinite two-dimensional ribbon through intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1 and Fig. 3). In each molecule there is an intramolecular N—H···O hydrogen bond resulting in a five-membered ring (Table 2 and Fig. 1 and 2).

Related literature top

For general background to the use of phenylacetate derivatives as intermediates for the rational design of new chemotherapeutic agents, see: Xiao, Fang et al. (2008); Xiao, Lv et al. (2008). For the preparation of the title compound, see: Xiao et al. 2010. For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the reported procedures (Xiao et al., 2010). Reduced iron powder was added to a solution of ammonium chloride (0.8 g, 15 mmole) in water (10 ml) under nitrogen atmosphere. To this stirring mixture, a solution of ethyl 2-(4-hydroxy-3-nitrophenyl)acetate (1.13 g, 5 mmole) in acetone (25 ml) was added dropwise. It was refluxed in an oil bath for 4 h. When the reaction was complete, the resulting mixture was extracted with ethylacetate, and the combined organic layers were basified by adding a saturated solution of NaHCO3. The solvent was removed under reduced pressure and furnished the title compound, which was crystallized from ethylacetate-petroleum ether (1:2) to give colorless blocks suitable for single-crystal structure determination.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.86 and O—H = 0.82 Å and C—H = 0.93, 0.97 and 0.96 Å for aryl, methyl and methylene groups, reaspectively. Uiso(H) values were set at 1.5 × Ueq(O and methyl C) and 1.2 × the Ueq of the rest of the parent atoms.

Structure description top

Derivatives of phenylacetate are key intermates for the rational design of new chemotherapeutic agents such as antibacterials (Xiao, Fang, et al. 2008) and anticancers (Xiao, Lv, et al. 2008). As a part of our research on pharmoceutically active 4-hydroxy-3-phenylfuran-2(5H)-ones, we have synthesized the title compound and herein we report its crystal structure.

The crystal structure contains two crystallographically independent molecules in an asymmetric unit of the title compound with different conformations of the ethoxy carbonyl groups. The terminal torsion angles C1—C2—O1—C3 in molecule (1) and C11—C12—O4—C13 in molecule (2) are 83.6 (6) and -171.1 (3)° resulting in twisted and straight chian conformations, respectively (Figures 1 and 2). In both molecules of the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). The molecules assemble into an infinite two-dimensional ribbon through intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1 and Fig. 3). In each molecule there is an intramolecular N—H···O hydrogen bond resulting in a five-membered ring (Table 2 and Fig. 1 and 2).

For general background to the use of phenylacetate derivatives as intermediates for the rational design of new chemotherapeutic agents, see: Xiao, Fang et al. (2008); Xiao, Lv et al. (2008). For the preparation of the title compound, see: Xiao et al. 2010. For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule (1) of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the molecule (2) of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A unit cell packing of the title compound showing intermolecular N—H···O and O—H···N hydrogen bonds by dashed lines.
Ethyl 2-(3-amino-4-hydroxyphenyl)acetate top
Crystal data top
C10H13NO3Z = 4
Mr = 195.21F(000) = 416
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5940 (17) ÅCell parameters from 2097 reflections
b = 10.142 (2) Åθ = 2.4–24.9°
c = 12.043 (2) ŵ = 0.10 mm1
α = 98.23 (3)°T = 293 K
β = 104.96 (3)°Block, colorless
γ = 90.41 (3)°0.30 × 0.10 × 0.10 mm
V = 1002.6 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3598 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.972, Tmax = 0.991k = 1212
3857 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.7608P]
where P = (Fo2 + 2Fc2)/3
3598 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H13NO3γ = 90.41 (3)°
Mr = 195.21V = 1002.6 (3) Å3
Triclinic, P1Z = 4
a = 8.5940 (17) ÅMo Kα radiation
b = 10.142 (2) ŵ = 0.10 mm1
c = 12.043 (2) ÅT = 293 K
α = 98.23 (3)°0.30 × 0.10 × 0.10 mm
β = 104.96 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3598 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2121 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.991Rint = 0.030
3857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
3598 reflectionsΔρmin = 0.32 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0536 (4)0.8579 (3)0.9060 (3)0.0860 (11)
O21.2035 (3)0.7342 (3)0.8128 (3)0.0690 (9)
O30.9659 (3)0.2198 (3)0.4667 (3)0.0611 (8)
H3A1.03530.16710.48780.092*
N10.7667 (5)0.3994 (3)0.4283 (3)0.063
H1A0.69930.45860.40590.075*
H1B0.77740.33140.37970.075*
C11.1307 (7)1.0449 (5)0.8320 (6)0.102 (2)
H1C1.20961.11720.84660.153*
H1D1.02601.08010.82630.153*
H1E1.13060.98930.76040.153*
C21.1679 (6)0.9708 (5)0.9218 (5)0.0779 (15)
H2A1.16971.02810.99390.093*
H2B1.27500.93770.92830.093*
C31.0796 (5)0.7484 (4)0.8404 (4)0.0513 (10)
C40.9484 (5)0.6448 (4)0.8233 (4)0.0655 (13)
H4A0.84540.68610.80360.079*
H4B0.95810.61120.89620.079*
C50.9492 (5)0.5276 (4)0.7290 (4)0.0500 (10)
C61.0634 (5)0.4308 (4)0.7533 (4)0.0514 (10)
H6A1.13420.43570.82670.062*
C71.0690 (5)0.3282 (4)0.6664 (4)0.0531 (10)
H7A1.14550.26440.68250.064*
C80.9663 (4)0.3164 (3)0.5569 (3)0.0430 (9)
C90.8494 (4)0.4121 (3)0.5322 (3)0.0424 (9)
C100.8459 (5)0.5164 (4)0.6213 (4)0.0498 (10)
H10A0.76970.58060.60610.060*
O40.3631 (3)0.5329 (2)0.1330 (2)0.0541 (7)
O50.5351 (4)0.6553 (3)0.2847 (3)0.0739 (10)
O60.4558 (4)1.2663 (3)0.4366 (3)0.0727 (10)
H6B0.51071.31150.40820.087*
N20.2886 (4)1.1022 (4)0.5184 (3)0.0628 (10)
H2C0.23241.04980.54470.075*
H2D0.31651.18160.55480.075*
C110.4060 (6)0.3167 (4)0.0431 (4)0.0734 (14)
H11A0.47220.24120.05270.110*
H11B0.41190.35050.02630.110*
H11C0.29630.29010.03690.110*
C120.4636 (5)0.4217 (4)0.1442 (4)0.0642 (12)
H12A0.46250.38660.21480.077*
H12B0.57370.45010.14960.077*
C130.4116 (5)0.6431 (4)0.2094 (3)0.0465 (9)
C140.2909 (5)0.7474 (4)0.1919 (4)0.0570 (11)
H14A0.19730.71780.21410.068*
H14B0.25680.75270.10940.068*
C150.3408 (4)0.8849 (3)0.2550 (3)0.0454 (9)
C160.4443 (5)0.9678 (4)0.2213 (4)0.0559 (11)
H16A0.48520.93730.15840.067*
C170.4866 (5)1.0952 (4)0.2809 (3)0.0508 (10)
H17A0.55121.15120.25480.061*
C180.4349 (4)1.1409 (3)0.3781 (3)0.0374 (8)
C190.3347 (4)1.0583 (3)0.4161 (3)0.0403 (8)
C200.2923 (4)0.9312 (3)0.3547 (3)0.0443 (9)
H20A0.22900.87460.38120.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.090 (2)0.0554 (19)0.127 (3)0.0022 (17)0.072 (2)0.0197 (19)
O20.0548 (18)0.0541 (18)0.104 (2)0.0050 (14)0.0410 (17)0.0067 (16)
O30.0565 (17)0.0441 (16)0.092 (2)0.0117 (13)0.0403 (15)0.0021 (15)
N10.0820.0390.0830.0020.0490.011
C10.092 (4)0.067 (3)0.132 (5)0.005 (3)0.001 (4)0.023 (4)
C20.080 (3)0.054 (3)0.099 (4)0.001 (3)0.036 (3)0.014 (3)
C30.051 (2)0.045 (2)0.063 (3)0.0007 (18)0.030 (2)0.0049 (19)
C40.057 (3)0.056 (3)0.093 (3)0.000 (2)0.048 (2)0.011 (2)
C50.050 (2)0.042 (2)0.072 (3)0.0019 (18)0.044 (2)0.0027 (19)
C60.042 (2)0.056 (3)0.060 (2)0.0005 (18)0.0209 (18)0.008 (2)
C70.042 (2)0.051 (2)0.077 (3)0.0067 (17)0.032 (2)0.015 (2)
C80.045 (2)0.0288 (18)0.064 (3)0.0039 (15)0.0325 (19)0.0027 (17)
C90.043 (2)0.039 (2)0.054 (2)0.0008 (16)0.0248 (17)0.0128 (17)
C100.052 (2)0.035 (2)0.077 (3)0.0142 (17)0.042 (2)0.0121 (19)
O40.0550 (16)0.0347 (14)0.0755 (19)0.0100 (12)0.0259 (14)0.0012 (13)
O50.0589 (19)0.0487 (17)0.099 (2)0.0180 (14)0.0063 (18)0.0132 (16)
O60.103 (2)0.0329 (15)0.098 (2)0.0021 (15)0.063 (2)0.0031 (15)
N20.072 (2)0.054 (2)0.080 (3)0.0021 (17)0.052 (2)0.0063 (18)
C110.086 (3)0.048 (3)0.103 (4)0.012 (2)0.064 (3)0.007 (2)
C120.061 (3)0.049 (2)0.090 (3)0.020 (2)0.031 (2)0.012 (2)
C130.049 (2)0.036 (2)0.058 (2)0.0049 (17)0.0269 (19)0.0070 (17)
C140.046 (2)0.044 (2)0.077 (3)0.0004 (18)0.016 (2)0.006 (2)
C150.042 (2)0.0305 (19)0.068 (3)0.0096 (15)0.0244 (18)0.0029 (17)
C160.054 (2)0.052 (2)0.077 (3)0.0091 (19)0.042 (2)0.010 (2)
C170.059 (2)0.040 (2)0.065 (3)0.0037 (18)0.034 (2)0.0120 (19)
C180.0343 (18)0.0245 (17)0.053 (2)0.0034 (13)0.0115 (15)0.0042 (15)
C190.0350 (18)0.038 (2)0.055 (2)0.0165 (15)0.0225 (16)0.0106 (17)
C200.044 (2)0.0311 (19)0.060 (2)0.0016 (15)0.0172 (18)0.0090 (17)
Geometric parameters (Å, º) top
O1—C31.324 (5)O4—C131.331 (4)
O1—C21.462 (6)O4—C121.426 (5)
O2—C31.199 (4)O5—C131.198 (5)
O3—C81.353 (4)O6—C181.350 (4)
O3—H3A0.8200O6—H6B0.8200
N1—C91.257 (5)N2—C191.405 (5)
N1—H1A0.8600N2—H2C0.8600
N1—H1B0.8600N2—H2D0.8600
C1—C21.376 (7)C11—C121.474 (6)
C1—H1C0.9600C11—H11A0.9600
C1—H1D0.9600C11—H11B0.9600
C1—H1E0.9600C11—H11C0.9600
C2—H2A0.9700C12—H12A0.9700
C2—H2B0.9700C12—H12B0.9700
C3—C41.489 (5)C13—C141.485 (6)
C4—C51.523 (5)C14—C151.491 (5)
C4—H4A0.9700C14—H14A0.9700
C4—H4B0.9700C14—H14B0.9700
C5—C101.359 (6)C15—C201.391 (5)
C5—C61.400 (6)C15—C161.391 (5)
C6—C71.377 (5)C16—C171.382 (5)
C6—H6A0.9300C16—H16A0.9300
C7—C81.372 (6)C17—C181.379 (5)
C7—H7A0.9300C17—H17A0.9300
C8—C91.408 (5)C18—C191.398 (5)
C9—C101.401 (5)C19—C201.386 (5)
C10—H10A0.9300C20—H20A0.9300
C3—O1—C2116.0 (3)C13—O4—C12117.4 (3)
C8—O3—H3A109.5C18—O6—H6B109.5
C9—N1—H1A120.0C19—N2—H2C120.0
C9—N1—H1B120.0C19—N2—H2D120.0
H1A—N1—H1B120.0H2C—N2—H2D120.0
C2—C1—H1C109.5C12—C11—H11A109.5
C2—C1—H1D109.5C12—C11—H11B109.5
H1C—C1—H1D109.5H11A—C11—H11B109.5
C2—C1—H1E109.5C12—C11—H11C109.5
H1C—C1—H1E109.5H11A—C11—H11C109.5
H1D—C1—H1E109.5H11B—C11—H11C109.5
C1—C2—O1113.0 (5)O4—C12—C11110.2 (4)
C1—C2—H2A109.0O4—C12—H12A109.6
O1—C2—H2A109.0C11—C12—H12A109.6
C1—C2—H2B109.0O4—C12—H12B109.6
O1—C2—H2B109.0C11—C12—H12B109.6
H2A—C2—H2B107.8H12A—C12—H12B108.1
O2—C3—O1121.8 (4)O5—C13—O4124.2 (4)
O2—C3—C4126.7 (4)O5—C13—C14124.3 (3)
O1—C3—C4110.9 (3)O4—C13—C14111.5 (3)
C3—C4—C5114.2 (3)C13—C14—C15117.7 (3)
C3—C4—H4A108.7C13—C14—H14A107.9
C5—C4—H4A108.7C15—C14—H14A107.9
C3—C4—H4B108.7C13—C14—H14B107.9
C5—C4—H4B108.7C15—C14—H14B107.9
H4A—C4—H4B107.6H14A—C14—H14B107.2
C10—C5—C6119.1 (4)C20—C15—C16117.7 (3)
C10—C5—C4122.0 (4)C20—C15—C14120.4 (3)
C6—C5—C4118.8 (4)C16—C15—C14121.8 (4)
C7—C6—C5118.8 (4)C17—C16—C15120.3 (4)
C7—C6—H6A120.6C17—C16—H16A119.8
C5—C6—H6A120.6C15—C16—H16A119.8
C8—C7—C6122.6 (4)C18—C17—C16121.2 (4)
C8—C7—H7A118.7C18—C17—H17A119.4
C6—C7—H7A118.7C16—C17—H17A119.4
O3—C8—C7126.1 (4)O6—C18—C17126.4 (3)
O3—C8—C9114.9 (4)O6—C18—C19113.6 (3)
C7—C8—C9119.0 (3)C17—C18—C19119.6 (3)
N1—C9—C10126.8 (4)C20—C19—C18118.4 (3)
N1—C9—C8115.3 (4)C20—C19—N2121.9 (3)
C10—C9—C8117.7 (4)C18—C19—N2119.6 (3)
C5—C10—C9122.7 (4)C19—C20—C15122.6 (3)
C5—C10—H10A118.6C19—C20—H20A118.7
C9—C10—H10A118.6C15—C20—H20A118.7
C3—O1—C2—C183.7 (6)C13—O4—C12—C11171.1 (3)
C2—O1—C3—O212.7 (7)C12—O4—C13—O51.6 (6)
C2—O1—C3—C4175.5 (4)C12—O4—C13—C14176.5 (3)
O2—C3—C4—C521.0 (7)O5—C13—C14—C1513.4 (6)
O1—C3—C4—C5167.7 (4)O4—C13—C14—C15168.5 (3)
C3—C4—C5—C10101.7 (5)C13—C14—C15—C20102.0 (5)
C3—C4—C5—C676.3 (5)C13—C14—C15—C1674.0 (5)
C10—C5—C6—C71.0 (5)C20—C15—C16—C174.7 (6)
C4—C5—C6—C7177.0 (3)C14—C15—C16—C17179.2 (4)
C5—C6—C7—C80.5 (6)C15—C16—C17—C183.5 (6)
C6—C7—C8—O3179.0 (3)C16—C17—C18—O6173.4 (4)
C6—C7—C8—C90.5 (5)C16—C17—C18—C191.5 (6)
O3—C8—C9—N13.8 (4)O6—C18—C19—C20173.8 (3)
C7—C8—C9—N1175.7 (3)C17—C18—C19—C200.9 (5)
O3—C8—C9—C10178.7 (3)O6—C18—C19—N210.3 (5)
C7—C8—C9—C100.8 (5)C17—C18—C19—N2176.8 (3)
C6—C5—C10—C90.6 (5)C18—C19—C20—C152.4 (5)
C4—C5—C10—C9177.3 (3)N2—C19—C20—C15178.2 (4)
N1—C9—C10—C5174.5 (4)C16—C15—C20—C194.2 (6)
C8—C9—C10—C50.3 (5)C14—C15—C20—C19179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.373.097 (5)143
N2—H2D···O5ii0.862.423.222 (5)155
O3—H3A···N2iii0.822.232.978 (5)152
O6—H6B···N1iv0.822.313.015 (5)145
C10—H10A···O6ii0.932.493.414 (5)174
N1—H1B···O30.862.122.517 (5)108
N2—H2D···O60.862.332.641 (4)102
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO3
Mr195.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5940 (17), 10.142 (2), 12.043 (2)
α, β, γ (°)98.23 (3), 104.96 (3), 90.41 (3)
V3)1002.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3857, 3598, 2121
Rint0.030
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.213, 1.09
No. of reflections3598
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.373.097 (5)143.1
N2—H2D···O5ii0.862.423.222 (5)154.6
O3—H3A···N2iii0.822.232.978 (5)151.5
O6—H6B···N1iv0.822.313.015 (5)144.6
C10—H10A···O6ii0.932.493.414 (5)174.0
N1—H1B···O30.862.122.517 (5)107.6
N2—H2D···O60.862.332.641 (4)101.8
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y1, z; (iv) x, y+1, z.
 

Acknowledgements

The work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China, the Undergraduate Innovative Test Program (JSU-CX-2009–42) of Jishou University, China and by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008). Chem. Med. Chem. 3, 1516–1519.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Wang, Y.-C., Ou, G.-Y., Wu, J., Luo, T. & Yi, S.-F. (2010). Synth. Commun. 40, 661–665.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds