organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-2-r,6-c-bis­­(4-chloro­phen­yl)-3-methyl-1,2,5,6-tetra­hydro­pyridin-4-yl acetate

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
*Correspondence e-mail: profkprajan@yahoo.co.in

(Received 17 October 2010; accepted 16 November 2010; online 20 November 2010)

In the title compound, C22H21Cl2NO3, the pyridine ring adopts a half-chair conformation and the 4-chloro­phenyl groups occupy axial positions. The 4-chloro­phenyl groups are almost perpendicular to the plane of the tetra­hydro­pyridine ring forming dihedral angles 84.62 (6) and 85.55 (5)°; the dihedral angle between the two 4-chloro­phenyl rings is 12.16 (4)°. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For a related structure, see: Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21Cl2NO3

  • Mr = 418.30

  • Monoclinic, C c

  • a = 16.560 (3) Å

  • b = 14.809 (3) Å

  • c = 10.241 (2) Å

  • β = 124.27 (3)°

  • V = 2075.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.936

  • 13520 measured reflections

  • 5546 independent reflections

  • 4578 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.04

  • 5546 reflections

  • 256 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2649 Friedel pairs

  • Flack parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.98 2.44 3.341 (3) 152
C4—H4B⋯O1ii 0.97 2.35 3.308 (3) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The X-ray crystal structure determination of the title compound was undertaken to determine the effect of substitution of acetyl and acetoxy groups at positions 1 and 4, respectively, on the conformation of the tetrahydropyridine ring. The tetrahydropyridine ring adopts a half chair conformation with N1 and C3 atoms 0.324 (3) and -0.328 (3) Å, respectively, out of the basal plane formed by the remaining ring atoms (C4/C5/C6/C7) and the aryl groups occupy axial positions. The 4-chlorophenyl groups, C11–C16/Cl1 and C17–C22/Cl2, are almost perpendicular to the tetrahydropyridine ring forming dihedral angles 84.62 (6) and 85.55 (5)°, respectively; the dihedral angle between the two 4-chlorophenyl rings is 12.16 (4)°. The aryl groups take axial positions to avoid A1,3 strain. The acetoxy group O2/O3/C9/C10 is almost perpendicular (88.05 (6)°) to the tetrahydropyridine ring. The crystal structure is stabilized by intermolecular C—H···O interactions. The bond distances and angles in the title compound are comparable to a similar structure reported earlier (Subha Nandhini et al., (2003).

Related literature top

For a related structure, see: Subha Nandhini et al. (2003).

Experimental top

A mixture of 3 t-methyl-2r,6c-bis(4-chlorophenyl)-piperidin-4-one (0.01 mol) and hippuric acid in acetic anhydride (20 ml) was refluxed for about 2 h. After the completion of reaction, excess of acetic anhydride was removed by distillation and water (50 ml) was added. The title compound thus obtained as a solid product was separated and colourless crystals were grown by slow evaporation method using ethanol as solvent.

Refinement top

The H atoms were included in the refinement at geometrically idealized positions with C—H distances 0.93, 0.96, 0.97 and 0.99 Å for aryl, methyl, methylene and methyne type H-atoms in riding mode allowing Uiso(H) = 1.5 or 1.2 Ueq of the carrier methyl and non-methyl C-atoms, respectively.

Structure description top

The X-ray crystal structure determination of the title compound was undertaken to determine the effect of substitution of acetyl and acetoxy groups at positions 1 and 4, respectively, on the conformation of the tetrahydropyridine ring. The tetrahydropyridine ring adopts a half chair conformation with N1 and C3 atoms 0.324 (3) and -0.328 (3) Å, respectively, out of the basal plane formed by the remaining ring atoms (C4/C5/C6/C7) and the aryl groups occupy axial positions. The 4-chlorophenyl groups, C11–C16/Cl1 and C17–C22/Cl2, are almost perpendicular to the tetrahydropyridine ring forming dihedral angles 84.62 (6) and 85.55 (5)°, respectively; the dihedral angle between the two 4-chlorophenyl rings is 12.16 (4)°. The aryl groups take axial positions to avoid A1,3 strain. The acetoxy group O2/O3/C9/C10 is almost perpendicular (88.05 (6)°) to the tetrahydropyridine ring. The crystal structure is stabilized by intermolecular C—H···O interactions. The bond distances and angles in the title compound are comparable to a similar structure reported earlier (Subha Nandhini et al., (2003).

For a related structure, see: Subha Nandhini et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of the possible three C—H···O hydrogen bonds C4—H4B···O1i, C3—H3···O3ii and C21—H21···O1iii [symmetry code: (i) x, -y+1, z+1/2, (ii) x+1/2, -y+1/2, z+1/2 /and (iii) x,-y+1,+z-1/2] with in the unit cell.
1-Acetyl-2-r,6-c-bis(4-chlorophenyl)-3-methyl-1,2,5,6-tetrahydropyridin-4-yl acetate top
Crystal data top
C22H21Cl2NO3F(000) = 872
Mr = 418.30Dx = 1.339 Mg m3
Monoclinic, CcMelting point: 411 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 16.560 (3) ÅCell parameters from 6663 reflections
b = 14.809 (3) Åθ = 2.8–59.2°
c = 10.241 (2) ŵ = 0.34 mm1
β = 124.27 (3)°T = 293 K
V = 2075.5 (10) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5546 independent reflections
Radiation source: fine-focus sealed tube4578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 29.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2222
Tmin = 0.866, Tmax = 0.936k = 2020
13520 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.011
5546 reflectionsΔρmax = 0.27 e Å3
256 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 2649 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C22H21Cl2NO3V = 2075.5 (10) Å3
Mr = 418.30Z = 4
Monoclinic, CcMo Kα radiation
a = 16.560 (3) ŵ = 0.34 mm1
b = 14.809 (3) ÅT = 293 K
c = 10.241 (2) Å0.30 × 0.25 × 0.20 mm
β = 124.27 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4578 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.936Rint = 0.020
13520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.17 e Å3
5546 reflectionsAbsolute structure: Flack (1983), 2649 Friedel pairs
256 parametersAbsolute structure parameter: 0.02 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.12844 (5)0.18128 (4)0.47636 (7)0.07210 (17)
Cl10.25477 (6)0.00598 (5)0.08332 (9)0.0858 (2)
O20.03552 (10)0.37134 (10)0.21164 (17)0.0576 (4)
N10.26481 (10)0.40891 (9)0.16833 (17)0.0389 (3)
C20.33771 (12)0.46887 (12)0.2128 (2)0.0478 (4)
O10.32636 (10)0.53254 (10)0.1281 (2)0.0664 (4)
C200.13277 (14)0.25613 (13)0.3423 (2)0.0488 (4)
C170.14951 (12)0.36840 (12)0.1132 (2)0.0395 (3)
O30.01433 (13)0.24011 (13)0.0838 (2)0.0784 (5)
C190.08085 (13)0.23746 (14)0.2795 (2)0.0496 (4)
H190.04030.18710.31310.059*
C30.27461 (12)0.33000 (11)0.2627 (2)0.0398 (3)
H30.34040.33210.36040.048*
C70.16844 (11)0.42629 (12)0.0235 (2)0.0398 (3)
H70.16800.48940.00580.048*
C40.20259 (13)0.33908 (12)0.3092 (2)0.0457 (4)
H4A0.19240.28030.33930.055*
H4B0.23010.37850.40030.055*
C110.26760 (11)0.24311 (10)0.17759 (19)0.0391 (3)
C180.08892 (12)0.29388 (13)0.1653 (2)0.0442 (4)
H180.05310.28150.12290.053*
C210.19096 (16)0.33134 (13)0.2975 (3)0.0539 (5)
H210.22460.34440.34350.065*
C160.32496 (13)0.23387 (13)0.1197 (2)0.0492 (4)
H160.36680.28070.13490.059*
C150.32233 (15)0.15862 (14)0.0411 (3)0.0557 (5)
H150.36110.15450.00220.067*
C50.10804 (13)0.37564 (13)0.1803 (2)0.0446 (4)
C120.20837 (14)0.17175 (12)0.1571 (2)0.0462 (4)
H120.16990.17570.19660.055*
C220.19884 (14)0.38696 (13)0.1840 (2)0.0497 (4)
H220.23800.43820.15370.060*
C60.08920 (12)0.41668 (12)0.0530 (2)0.0437 (4)
C140.26133 (15)0.08872 (13)0.0203 (2)0.0518 (4)
C130.20498 (15)0.09451 (14)0.0792 (2)0.0536 (4)
H130.16480.04670.06660.064*
C90.02127 (14)0.29704 (16)0.1591 (3)0.0569 (5)
C80.00692 (15)0.45758 (17)0.0687 (3)0.0646 (5)
H8A0.05840.41640.09300.097*
H8B0.00910.46970.16270.097*
H8C0.01520.51300.02890.097*
C10.43369 (16)0.45659 (18)0.3692 (3)0.0773 (7)
H1A0.47870.50240.38190.116*
H1B0.45980.39810.37270.116*
H1C0.42390.46150.45280.116*
C100.0915 (2)0.2967 (2)0.2046 (4)0.0833 (8)
H10A0.14590.33500.13410.125*
H10B0.05990.31870.31080.125*
H10C0.11430.23630.19850.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0966 (4)0.0705 (3)0.0709 (3)0.0064 (3)0.0603 (3)0.0127 (3)
Cl10.1101 (5)0.0630 (3)0.0896 (4)0.0059 (3)0.0595 (4)0.0197 (3)
O20.0616 (8)0.0641 (9)0.0680 (9)0.0104 (7)0.0490 (8)0.0149 (7)
N10.0354 (6)0.0352 (6)0.0391 (7)0.0014 (6)0.0166 (6)0.0038 (6)
C20.0403 (9)0.0400 (9)0.0554 (11)0.0051 (7)0.0222 (9)0.0003 (8)
O10.0557 (8)0.0515 (8)0.0809 (11)0.0070 (6)0.0317 (8)0.0186 (8)
C200.0537 (10)0.0509 (10)0.0419 (9)0.0050 (9)0.0269 (9)0.0031 (8)
C170.0355 (7)0.0441 (9)0.0363 (8)0.0034 (7)0.0186 (7)0.0069 (7)
O30.0740 (10)0.0830 (11)0.0867 (12)0.0323 (9)0.0504 (10)0.0365 (10)
C190.0419 (9)0.0561 (11)0.0468 (10)0.0072 (8)0.0226 (8)0.0041 (8)
C30.0401 (8)0.0393 (8)0.0349 (8)0.0014 (7)0.0179 (7)0.0031 (6)
C70.0383 (8)0.0390 (8)0.0402 (9)0.0005 (7)0.0211 (8)0.0046 (7)
C40.0556 (10)0.0439 (9)0.0417 (9)0.0039 (8)0.0299 (9)0.0022 (7)
C110.0364 (8)0.0363 (8)0.0362 (8)0.0031 (6)0.0154 (7)0.0054 (6)
C180.0396 (8)0.0535 (10)0.0425 (9)0.0022 (7)0.0249 (8)0.0005 (8)
C210.0649 (11)0.0550 (11)0.0584 (11)0.0003 (9)0.0447 (10)0.0088 (9)
C160.0416 (9)0.0492 (9)0.0576 (11)0.0014 (8)0.0284 (9)0.0054 (8)
C150.0552 (11)0.0560 (11)0.0627 (12)0.0108 (9)0.0372 (10)0.0038 (9)
C50.0480 (9)0.0459 (9)0.0488 (10)0.0057 (7)0.0326 (8)0.0114 (8)
C120.0522 (9)0.0416 (9)0.0519 (10)0.0010 (8)0.0335 (9)0.0043 (8)
C220.0562 (10)0.0459 (10)0.0548 (11)0.0036 (8)0.0360 (10)0.0056 (8)
C60.0387 (8)0.0449 (9)0.0479 (10)0.0021 (7)0.0246 (8)0.0063 (8)
C140.0596 (11)0.0439 (9)0.0473 (10)0.0126 (8)0.0273 (9)0.0026 (8)
C130.0600 (11)0.0434 (10)0.0539 (11)0.0042 (8)0.0299 (10)0.0004 (8)
C90.0465 (10)0.0690 (13)0.0547 (11)0.0071 (9)0.0283 (10)0.0039 (10)
C80.0464 (10)0.0793 (15)0.0663 (13)0.0130 (10)0.0305 (10)0.0061 (11)
C10.0444 (11)0.0672 (15)0.0794 (17)0.0147 (10)0.0100 (11)0.0094 (12)
C100.0653 (14)0.105 (2)0.100 (2)0.0069 (15)0.0590 (16)0.0042 (17)
Geometric parameters (Å, º) top
Cl2—C201.7343 (19)C11—C161.381 (2)
Cl1—C141.725 (2)C18—H180.9300
O2—C91.347 (3)C21—C221.369 (3)
O2—C51.409 (2)C21—H210.9300
N1—C21.354 (2)C16—C151.361 (3)
N1—C71.465 (2)C16—H160.9300
N1—C31.466 (2)C15—C141.377 (3)
C2—O11.222 (2)C15—H150.9300
C2—C11.503 (3)C5—C61.307 (3)
C20—C191.361 (2)C12—C131.378 (3)
C20—C211.372 (3)C12—H120.9300
C17—C181.381 (3)C22—H220.9300
C17—C221.391 (2)C6—C81.490 (3)
C17—C71.516 (2)C14—C131.369 (3)
O3—C91.191 (3)C13—H130.9300
C19—C181.381 (3)C9—C101.475 (3)
C19—H190.9300C8—H8A0.9600
C3—C41.519 (2)C8—H8B0.9600
C3—C111.521 (2)C8—H8C0.9600
C3—H30.9800C1—H1A0.9600
C7—C61.510 (2)C1—H1B0.9600
C7—H70.9800C1—H1C0.9600
C4—C51.470 (3)C10—H10A0.9600
C4—H4A0.9700C10—H10B0.9600
C4—H4B0.9700C10—H10C0.9600
C11—C121.375 (2)
C9—O2—C5116.06 (15)C15—C16—H16118.9
C2—N1—C7118.79 (14)C11—C16—H16118.9
C2—N1—C3123.66 (14)C16—C15—C14118.94 (18)
C7—N1—C3117.42 (13)C16—C15—H15120.5
O1—C2—N1121.05 (17)C14—C15—H15120.5
O1—C2—C1119.84 (18)C6—C5—O2119.56 (17)
N1—C2—C1119.11 (17)C6—C5—C4127.06 (15)
C19—C20—C21121.22 (17)O2—C5—C4113.09 (16)
C19—C20—Cl2119.27 (15)C11—C12—C13121.28 (17)
C21—C20—Cl2119.48 (14)C11—C12—H12119.4
C18—C17—C22117.96 (17)C13—C12—H12119.4
C18—C17—C7122.41 (14)C21—C22—C17121.33 (18)
C22—C17—C7119.52 (16)C21—C22—H22119.3
C20—C19—C18119.45 (17)C17—C22—H22119.3
C20—C19—H19120.3C5—C6—C8124.46 (16)
C18—C19—H19120.3C5—C6—C7119.81 (15)
N1—C3—C4108.74 (14)C8—C6—C7115.73 (16)
N1—C3—C11110.61 (13)C13—C14—C15120.48 (18)
C4—C3—C11115.75 (14)C13—C14—Cl1119.96 (17)
N1—C3—H3107.1C15—C14—Cl1119.55 (15)
C4—C3—H3107.1C14—C13—C12119.44 (18)
C11—C3—H3107.1C14—C13—H13120.3
N1—C7—C6110.78 (13)C12—C13—H13120.3
N1—C7—C17112.11 (14)O3—C9—O2122.43 (18)
C6—C7—C17112.35 (14)O3—C9—C10125.6 (2)
N1—C7—H7107.1O2—C9—C10111.9 (2)
C6—C7—H7107.1C6—C8—H8A109.5
C17—C7—H7107.1C6—C8—H8B109.5
C5—C4—C3112.22 (14)H8A—C8—H8B109.5
C5—C4—H4A109.2C6—C8—H8C109.5
C3—C4—H4A109.2H8A—C8—H8C109.5
C5—C4—H4B109.2H8B—C8—H8C109.5
C3—C4—H4B109.2C2—C1—H1A109.5
H4A—C4—H4B107.9C2—C1—H1B109.5
C12—C11—C16117.53 (16)H1A—C1—H1B109.5
C12—C11—C3123.71 (15)C2—C1—H1C109.5
C16—C11—C3118.74 (15)H1A—C1—H1C109.5
C17—C18—C19120.89 (15)H1B—C1—H1C109.5
C17—C18—H18119.6C9—C10—H10A109.5
C19—C18—H18119.6C9—C10—H10B109.5
C22—C21—C20119.07 (16)H10A—C10—H10B109.5
C22—C21—H21120.5C9—C10—H10C109.5
C20—C21—H21120.5H10A—C10—H10C109.5
C15—C16—C11122.30 (17)H10B—C10—H10C109.5
C7—N1—C2—O15.9 (3)Cl2—C20—C21—C22175.81 (16)
C3—N1—C2—O1178.46 (18)C12—C11—C16—C151.7 (3)
C7—N1—C2—C1173.89 (19)C3—C11—C16—C15179.45 (18)
C3—N1—C2—C11.8 (3)C11—C16—C15—C140.8 (3)
C21—C20—C19—C181.8 (3)C9—O2—C5—C693.2 (2)
Cl2—C20—C19—C18175.93 (15)C9—O2—C5—C492.5 (2)
C2—N1—C3—C4117.77 (18)C3—C4—C5—C615.7 (3)
C7—N1—C3—C457.97 (18)C3—C4—C5—O2170.56 (14)
C2—N1—C3—C11114.08 (18)C16—C11—C12—C131.2 (3)
C7—N1—C3—C1170.18 (18)C3—C11—C12—C13179.91 (18)
C2—N1—C7—C6130.70 (16)C20—C21—C22—C170.3 (3)
C3—N1—C7—C645.2 (2)C18—C17—C22—C212.6 (3)
C2—N1—C7—C17102.91 (18)C7—C17—C22—C21173.71 (17)
C3—N1—C7—C1781.14 (17)O2—C5—C6—C82.5 (3)
C18—C17—C7—N1103.99 (18)C4—C5—C6—C8175.8 (2)
C22—C17—C7—N172.1 (2)O2—C5—C6—C7176.44 (15)
C18—C17—C7—C621.5 (2)C4—C5—C6—C73.1 (3)
C22—C17—C7—C6162.36 (16)N1—C7—C6—C516.0 (2)
N1—C3—C4—C539.76 (19)C17—C7—C6—C5110.29 (17)
C11—C3—C4—C585.43 (19)N1—C7—C6—C8163.06 (16)
N1—C3—C11—C12131.11 (17)C17—C7—C6—C870.7 (2)
C4—C3—C11—C126.9 (2)C16—C15—C14—C130.7 (3)
N1—C3—C11—C1650.2 (2)C16—C15—C14—Cl1178.36 (16)
C4—C3—C11—C16174.38 (15)C15—C14—C13—C121.2 (3)
C22—C17—C18—C192.7 (3)Cl1—C14—C13—C12177.82 (16)
C7—C17—C18—C19173.48 (16)C11—C12—C13—C140.3 (3)
C20—C19—C18—C170.6 (3)C5—O2—C9—O33.6 (3)
C19—C20—C21—C221.9 (3)C5—O2—C9—C10177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.443.341 (3)152
C4—H4B···O1ii0.972.353.308 (3)169
C7—H7···O10.982.262.701 (2)106
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H21Cl2NO3
Mr418.30
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)16.560 (3), 14.809 (3), 10.241 (2)
β (°) 124.27 (3)
V3)2075.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.866, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
13520, 5546, 4578
Rint0.020
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.04
No. of reflections5546
No. of parameters256
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17
Absolute structureFlack (1983), 2649 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.443.341 (3)152
C4—H4B···O1ii0.972.353.308 (3)169
C7—H7···O10.982.262.701 (2)106
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to Dr Babu Varghese, Senior Scientist, Indian Institute of Technology Madras, for his valuable suggestions and for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds