organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-5-methyl­sulfonyl-1H-pyrazolo­[4,3-e][1,2,4]triazine

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 28 October 2010; accepted 15 November 2010; online 20 November 2010)

In the title compound, C7H9N5O2S, the pyrazolo­[4,3-e][1,2,4]triazine fused-ring system is essentially planar [maximum deviation = 0.0420 (3) Å]. In the crystal, mol­ecules related by twofold axes are linked into a mol­ecular net via inter­molecular C—H⋯O and C—H⋯N hydrogen bonds. ππ inter­actions are observed between the triazine and pyrazole rings of mol­ecules related by the the twofold axis and inversion symmetry with centroid–centroid distances of 3.778 (3) and 3.416 (3) Å, respectively.

Related literature

For background to sulfones, see: Ingall (1984[Ingall, A. H. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 3, pp. 939-942. New York: Pergamon Press.]). For our work on the development of convenient synthetic approaches for the construction of biologically active heterocycles, see: Karczmarzyk et al. (2007[Karczmarzyk, Z., Mojzych, M. & Rykowski, A. (2007). J. Mol. Struct. 829, 22-28.]). For related structures, see: Hirata et al. (1996[Hirata, K., Nakagami, H., Takashina, J., Mahmud, T., Kobayashi, M., In, Y., Ishida, T. & Miyamoto, K. (1996). Heterocycles, 43, 1513-1519.]); Rykowski et al. (2000[Rykowski, A., Mojzych, M. & Karczmarzyk, Z. (2000). Heterocycles, 53, 2175-2181.]); Cherng-Chyi et al. (1994[Cherng-Chyi, T., Dau-Chang, W., Long-Chih, H., Ming-Chu, C. & Yu, W. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2253-2257.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N5O2S

  • Mr = 227.25

  • Monoclinic, C 2/c

  • a = 17.901 (1) Å

  • b = 8.1268 (7) Å

  • c = 14.203 (3) Å

  • β = 103.17 (1)°

  • V = 2011.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.860, Tmax = 0.980

  • 3688 measured reflections

  • 2948 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.064

  • 2 standard reflections every 100 reflections intensity decay: 1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.227

  • S = 1.02

  • 2948 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O13i 0.96 2.51 3.442 (7) 163
C11—H11B⋯O14ii 0.96 2.42 3.341 (7) 161
C15—H15A⋯N2iii 0.96 2.59 3.466 (7) 152
Symmetry codes: (i) x, y+1, z; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: KM4B8 (Gałdecki et al., 1996[Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM4B8; data reduction: DATAPROC (Gałdecki et al., 1995[Gałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfones have proven to be valuable synthons for the synthesis of a wide variety of biologically active heterocyclic systems (Ingall, 1984). As an extension of our efforts directed towards the development of convenient synthetic approaches for the construction of biologically active heterocycles (Karczmarzyk et al., 2007), we report herein the crystal and molecular structure of the title compound.

The geometry (bond lengths, angles and planarity) of the title molecule (I) is very similar to those observed in closely related structures (Hirata et al., 1996; Rykowski et al., 2000). In the title molecule, a substitution by methylsulfonyl group in the 1,2,4-triazine ring results in a significant deformation of the endocyclic angles N2—C3—N4 of 130.3 (4)° and C3—N4—C5 of 110.6 (4)°. This effect is caused probably by the strong electron-withdrawing property of SO2CH3 substituent and has been reported in similar structures (Cherng-Chyi et al., 1994).

In the crystal structure, the molecules related by 2-fold axes are linked into molecular net via intermolecular C—H···O and C—H···N hydrogen bonds (Fig. 2 and Tab. 1). In addition, the π-electron systems of the pyrazolo[4,3-e][1,2,4]triazine fused rings belonging to inversion- (one side) and 2-fold axis- (other side) related molecules overlap each other, with centroid-to-centroid separation of 3.416 (3) Å between the pyrazole ring at (x, y, z) and triazine ring at (-x, 1 - y, -z), and 3.778 (3) Å between pyrazole ring at (x, y, z) and triazine ring at (-x, y, 1/2 - z). The π···π distances are 3.2375 (18) and 3.2719 (18) Å, respectively.

Related literature top

For background to sulfones, see: Ingall (1984). For our work on the development of convenient synthetic approaches for the construction of biologically active heterocycles, see: Karczmarzyk et al. (2007). For related structures, see: Hirata et al. (1996); Rykowski et al. (2000); Cherng-Chyi et al. (1994).

Experimental top

To a solution of 2,3-dimethyl-5-methylsulfanyl-1H-pyrazolo[4,3-e][1,2,4]triazine (1 mmol) in benzene (20 ml), water (30 ml), potassium manganate (VII) (3 mmol), catalitic amounts of tetrabuthylammonium bromide (0.2 mmol) and acetic acid (1.5 ml) were added. The reaction mixture was stirred at room temperature for 1 h. A saturated solution of Na2S2O5 in water was then added to the mixture until the purple colour disappeared. The organic layer was separated and the aqueos phase was extracted with benzene (3x10 ml). The combined organic extracts were dried over anhydrous MgSO4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: chloroform) to afford the title compound as a yellow solid. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution.

Refinement top

The H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.96 Å and were included in the refinement with Uiso(H) = 1.5Ueq(C).

Structure description top

Sulfones have proven to be valuable synthons for the synthesis of a wide variety of biologically active heterocyclic systems (Ingall, 1984). As an extension of our efforts directed towards the development of convenient synthetic approaches for the construction of biologically active heterocycles (Karczmarzyk et al., 2007), we report herein the crystal and molecular structure of the title compound.

The geometry (bond lengths, angles and planarity) of the title molecule (I) is very similar to those observed in closely related structures (Hirata et al., 1996; Rykowski et al., 2000). In the title molecule, a substitution by methylsulfonyl group in the 1,2,4-triazine ring results in a significant deformation of the endocyclic angles N2—C3—N4 of 130.3 (4)° and C3—N4—C5 of 110.6 (4)°. This effect is caused probably by the strong electron-withdrawing property of SO2CH3 substituent and has been reported in similar structures (Cherng-Chyi et al., 1994).

In the crystal structure, the molecules related by 2-fold axes are linked into molecular net via intermolecular C—H···O and C—H···N hydrogen bonds (Fig. 2 and Tab. 1). In addition, the π-electron systems of the pyrazolo[4,3-e][1,2,4]triazine fused rings belonging to inversion- (one side) and 2-fold axis- (other side) related molecules overlap each other, with centroid-to-centroid separation of 3.416 (3) Å between the pyrazole ring at (x, y, z) and triazine ring at (-x, 1 - y, -z), and 3.778 (3) Å between pyrazole ring at (x, y, z) and triazine ring at (-x, y, 1/2 - z). The π···π distances are 3.2375 (18) and 3.2719 (18) Å, respectively.

For background to sulfones, see: Ingall (1984). For our work on the development of convenient synthetic approaches for the construction of biologically active heterocycles, see: Karczmarzyk et al. (2007). For related structures, see: Hirata et al. (1996); Rykowski et al. (2000); Cherng-Chyi et al. (1994).

Computing details top

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8 (Gałdecki et al., 1996); data reduction: DATAPROC (Gałdecki et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Dashed lines indicate C—H···X (X = O, N) intermolecular interactions.
1,3-Dimethyl-5-methylsulfonyl-1H-pyrazolo[4,3-e][1,2,4]triazine top
Crystal data top
C7H9N5O2SF(000) = 944
Mr = 227.25Dx = 1.500 Mg m3
Monoclinic, C2/cMelting point: 444 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.901 (1) ÅCell parameters from 25 reflections
b = 8.1268 (7) Åθ = 4.4–25.2°
c = 14.203 (3) ŵ = 0.31 mm1
β = 103.17 (1)°T = 293 K
V = 2011.9 (5) Å3Prism, colourless
Z = 80.40 × 0.30 × 0.10 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1085 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
ω–2θ scansh = 2524
Absorption correction: ψ scan
(North et al., 1968)
k = 111
Tmin = 0.860, Tmax = 0.980l = 119
3688 measured reflections2 standard reflections every 100 reflections
2948 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C7H9N5O2SV = 2011.9 (5) Å3
Mr = 227.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.901 (1) ŵ = 0.31 mm1
b = 8.1268 (7) ÅT = 293 K
c = 14.203 (3) Å0.40 × 0.30 × 0.10 mm
β = 103.17 (1)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1085 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.064
Tmin = 0.860, Tmax = 0.9802 standard reflections every 100 reflections
3688 measured reflections intensity decay: 1.4%
2948 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.02Δρmax = 0.81 e Å3
2948 reflectionsΔρmin = 0.72 e Å3
139 parameters
Special details top

Experimental. Yield: 95% and m.p. 444 K. 1H NMR (CDCl3) δ: 2.77 (s, 3H), 3.57 (s, 3H), 4.39 (s, 3H); IR (KBr,ν, cm-1): 2920, 1330, 1120; MS (m/z, %): 227 (8) [M+], 199 (32), 120 (21), 95 (51), 79 (94), 67 (28), 52 (100). Analysis calculated for C7H9N5O2S: C 37.00, H 3.99, N 30.82%; found: C 37.01, H 3.85, N 30.76%.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S120.15935 (7)0.15917 (15)0.19815 (10)0.0433 (4)
O130.1310 (2)0.0271 (5)0.1348 (3)0.0748 (13)
O140.1737 (2)0.1313 (5)0.3001 (3)0.0765 (13)
N10.0756 (2)0.6040 (5)0.1881 (3)0.0412 (10)
N20.1192 (2)0.4699 (5)0.2062 (3)0.0373 (9)
N40.02186 (19)0.2860 (5)0.1191 (3)0.0361 (9)
N70.0502 (2)0.6833 (5)0.0994 (3)0.0388 (9)
N80.1138 (2)0.6061 (5)0.0483 (3)0.0435 (10)
C30.0915 (2)0.3259 (5)0.1696 (3)0.0317 (9)
C50.0227 (2)0.4200 (5)0.1003 (3)0.0336 (10)
C60.0051 (2)0.5751 (5)0.1322 (3)0.0332 (10)
C90.0993 (2)0.4447 (6)0.0469 (3)0.0377 (11)
C100.0494 (3)0.8619 (6)0.1113 (4)0.0586 (15)
H10A0.07700.89090.15940.088*
H10B0.07320.91280.05090.088*
H10C0.00270.89950.13150.088*
C110.1567 (3)0.3236 (6)0.0021 (4)0.0567 (14)
H11A0.20110.38040.03810.085*
H11B0.17120.25390.04530.085*
H11C0.13500.25790.04540.085*
C150.2416 (3)0.2357 (8)0.1689 (5)0.0646 (17)
H15A0.28070.15260.18030.097*
H15B0.25930.33020.20830.097*
H15C0.23030.26690.10200.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S120.0358 (6)0.0407 (7)0.0504 (7)0.0015 (6)0.0035 (5)0.0050 (6)
O130.058 (2)0.044 (2)0.108 (3)0.0052 (19)0.011 (2)0.022 (2)
O140.075 (3)0.096 (3)0.057 (2)0.030 (2)0.012 (2)0.036 (2)
N10.0313 (19)0.047 (2)0.042 (2)0.0005 (18)0.0021 (16)0.0085 (19)
N20.0316 (18)0.038 (2)0.039 (2)0.0034 (17)0.0013 (15)0.0006 (18)
N40.0315 (18)0.040 (2)0.035 (2)0.0049 (16)0.0025 (16)0.0024 (17)
N70.0339 (19)0.040 (2)0.040 (2)0.0048 (18)0.0033 (16)0.0033 (18)
N80.0247 (18)0.063 (3)0.041 (2)0.0028 (18)0.0028 (16)0.000 (2)
C30.0264 (18)0.036 (2)0.031 (2)0.0035 (19)0.0035 (16)0.001 (2)
C50.0250 (19)0.045 (3)0.030 (2)0.000 (2)0.0058 (16)0.003 (2)
C60.027 (2)0.041 (3)0.030 (2)0.0020 (19)0.0049 (16)0.006 (2)
C90.025 (2)0.051 (3)0.035 (3)0.004 (2)0.0017 (18)0.007 (2)
C100.057 (3)0.052 (3)0.061 (4)0.014 (3)0.000 (3)0.003 (3)
C110.036 (2)0.065 (3)0.062 (3)0.022 (3)0.005 (2)0.006 (3)
C150.035 (3)0.073 (4)0.089 (4)0.009 (3)0.020 (3)0.023 (3)
Geometric parameters (Å, º) top
S12—O131.418 (4)C5—C61.393 (6)
S12—O141.430 (4)C5—C91.423 (6)
S12—C151.733 (5)C9—C111.476 (6)
S12—C31.803 (4)C10—H10A0.9600
N1—N21.331 (5)C10—H10B0.9600
N1—C61.350 (5)C10—H10C0.9600
N2—C31.330 (5)C11—H11A0.9600
N4—C31.329 (5)C11—H11B0.9600
N4—C51.340 (5)C11—H11C0.9600
N7—C61.326 (5)C15—H15A0.9600
N7—N81.357 (5)C15—H15B0.9600
N7—C101.461 (6)C15—H15C0.9600
N8—C91.338 (6)
O13—S12—O14118.6 (3)N8—C9—C5107.3 (4)
O13—S12—C15108.7 (3)N8—C9—C11123.0 (4)
O14—S12—C15109.4 (3)C5—C9—C11129.8 (4)
O13—S12—C3107.5 (2)N7—C10—H10A109.5
O14—S12—C3107.6 (2)N7—C10—H10B109.5
C15—S12—C3104.0 (2)H10A—C10—H10B109.5
N2—N1—C6113.5 (4)N7—C10—H10C109.5
N1—N2—C3119.7 (3)H10A—C10—H10C109.5
C3—N4—C5110.6 (4)H10B—C10—H10C109.5
C6—N7—N8110.5 (4)C9—C11—H11A109.5
C6—N7—C10129.1 (4)C9—C11—H11B109.5
N8—N7—C10120.4 (4)H11A—C11—H11B109.5
C9—N8—N7108.6 (3)C9—C11—H11C109.5
N4—C3—N2130.3 (4)H11A—C11—H11C109.5
N4—C3—S12116.0 (3)H11B—C11—H11C109.5
N2—C3—S12113.6 (3)S12—C15—H15A109.5
N4—C5—C6121.3 (4)S12—C15—H15B109.5
N4—C5—C9132.7 (4)H15A—C15—H15B109.5
C6—C5—C9106.0 (4)S12—C15—H15C109.5
N7—C6—N1127.9 (4)H15A—C15—H15C109.5
N7—C6—C5107.7 (4)H15B—C15—H15C109.5
N1—C6—C5124.4 (4)
C6—N1—N2—C30.2 (6)C10—N7—C6—N12.4 (8)
C6—N7—N8—C90.8 (5)N8—N7—C6—C51.0 (5)
C10—N7—N8—C9179.0 (4)C10—N7—C6—C5178.8 (5)
C5—N4—C3—N24.2 (6)N2—N1—C6—N7177.7 (4)
C5—N4—C3—S12178.4 (3)N2—N1—C6—C53.7 (6)
N1—N2—C3—N44.5 (7)N4—C5—C6—N7177.2 (4)
N1—N2—C3—S12178.1 (3)C9—C5—C6—N70.8 (5)
O13—S12—C3—N417.9 (4)N4—C5—C6—N13.9 (7)
O14—S12—C3—N4110.9 (4)C9—C5—C6—N1178.1 (4)
C15—S12—C3—N4133.0 (4)N7—N8—C9—C50.2 (5)
O13—S12—C3—N2164.3 (3)N7—N8—C9—C11179.5 (4)
O14—S12—C3—N266.9 (4)N4—C5—C9—N8177.3 (4)
C15—S12—C3—N249.2 (4)C6—C5—C9—N80.3 (5)
C3—N4—C5—C60.0 (6)N4—C5—C9—C113.5 (8)
C3—N4—C5—C9177.3 (4)C6—C5—C9—C11178.9 (5)
N8—N7—C6—N1177.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O13i0.962.513.442 (7)163
C11—H11B···O14ii0.962.423.341 (7)161
C15—H15A···N2iii0.962.593.466 (7)152
Cg(pyrazole)···Cg(triazine)ii3.778 (3)
Cg(pyrazole)···Cg(triazine)iv3.416 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC7H9N5O2S
Mr227.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.901 (1), 8.1268 (7), 14.203 (3)
β (°) 103.17 (1)
V3)2011.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.860, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3688, 2948, 1085
Rint0.064
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.227, 1.02
No. of reflections2948
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.72

Computer programs: KM4B8 (Gałdecki et al., 1996), DATAPROC (Gałdecki et al., 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O13i0.962.513.442 (7)163
C11—H11B···O14ii0.962.423.341 (7)161
C15—H15A···N2iii0.962.593.466 (7)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

References

First citationCherng-Chyi, T., Dau-Chang, W., Long-Chih, H., Ming-Chu, C. & Yu, W. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2253–2257.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationGałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationHirata, K., Nakagami, H., Takashina, J., Mahmud, T., Kobayashi, M., In, Y., Ishida, T. & Miyamoto, K. (1996). Heterocycles, 43, 1513–1519.  CAS Google Scholar
First citationIngall, A. H. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 3, pp. 939–942. New York: Pergamon Press.  Google Scholar
First citationKarczmarzyk, Z., Mojzych, M. & Rykowski, A. (2007). J. Mol. Struct. 829, 22–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRykowski, A., Mojzych, M. & Karczmarzyk, Z. (2000). Heterocycles, 53, 2175–2181.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds