organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6,8-Tri­bromo­quinoline

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, ­Gaziosmanpaşa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 28 October 2010; accepted 5 November 2010; online 13 November 2010)

The title mol­ecule, C9H4Br3N, is almost planar, the maximum deviation being 0.110 (1) Å. The crystal structure is stabilized by weak aromatic ππ inter­actions [centroid–centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent mol­ecules.

Related literature

For background to the synthesis of natural biologically active quinoline derivatives and for the synthesis of the title compound, see: Şahin et al. (2008[Şahin, A. O., Çakmak, O., Demirtaş, I., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068-10074.]). For the structure of 6,8-dibromo­quinoline, see: Çelik et al. (2010[Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010). Acta Cryst. E66, o2997-o2998.]).

[Scheme 1]

Experimental

Crystal data
  • C9H4Br3N

  • Mr = 365.83

  • Monoclinic, P 21 /n

  • a = 3.9810 (2) Å

  • b = 12.4176 (4) Å

  • c = 19.7419 (6) Å

  • β = 92.827 (3)°

  • V = 974.74 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 14.93 mm−1

  • T = 296 K

  • 0.51 × 0.06 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.049, Tmax = 0.663

  • 3688 measured reflections

  • 1816 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.05

  • 1816 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The presence of quinoline skeleton in the framework of pharmacologically active compounds and natural products has spurred on the development of different strategies for their synthesis. The lithium–halogen exchange reaction of the title compound (I) may serve for the synthesis of natural biologically active quinoline derivatives, such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008). In this paper we report a one pot synthesis of (I) with high yield (90%) and its crystal structure.

The title molecule is almost planar, with the maximum and minimum deviations from the mean plane being 0.110 (1) and -0.001 (6) Å for Br2 and C4, respectively. Its crystal structure is stabilized by weak ππ stacking interactions between the pyridine and benzene rings of the quinoline ring systems of the adjacent molecules [Cg1···Cg2i = 3.802 (4) Å; symmetry code: (i) 1 + x, y, z; Cg1 and Cg2 are centroids of the N1/C1/C6–C9 pyridine and C1–C6 benzene rings of the quinoline ring system, respectively].

The crystal structure of 6,8-dibromoquinoline has been reported recently Çelik et al. (2010).

Related literature top

For background to the synthesis of natural biologically active

quinoline derivatives and for the synthesis of the title compound, see: Şahin et al. (2008). For the structure of 6,8-dibromoquinoline, see: Çelik et al. (2010).

Experimental top

6,8-Dibromo-1,2,3,4-tetrahydroquinoline was synthesized according to the literature method (Şahin et al., 2008). To a solution of 6,8-dibromo-1,2,3,4-tetrahydroquinoline (0.5 g, 3.75 mmol, 1 eq) in CHCl3 (20 ml) was dropped bromine (1.8 g, 11.25 mmol, 3 eq) in CHCl3 (10 ml) over 5 min in the dark and at room temperature. After completion of the reaction (bromine consumed completely, 3 days), the solid was dissolved in CHCl3 (35 ml) and the organic layer was washed with 5% NaHCO3 solution (3x20 ml) and dried over Na2SO4. After evaporation of the solvent, the crude material (1.32 g) was passed through a short alumina column eluting with EtOAc–hexane (1:12, 75 ml) (hexane/ethyl acetate, 9:1, Rf= 0.65). Colourless solid residue was obtained. The mixture was recrystallized from the solvent (benzene) in a freezer (263 K) to give pure 3,6,8-tribromoquinoline in 90% yield (1.24 g) if the form of colourless neddle shaped crystals; m.p. 441–443 K.

Refinement top

H atoms were included in geometric positions with C—H = 0.93 Å and refined by using a riding model [Uiso(H) = 1.2Ueq(C)]. The highest peak in the final difference map was located 0.92Å from Br2, while the deepest hole was located 1.05Å from Br3.

Structure description top

The presence of quinoline skeleton in the framework of pharmacologically active compounds and natural products has spurred on the development of different strategies for their synthesis. The lithium–halogen exchange reaction of the title compound (I) may serve for the synthesis of natural biologically active quinoline derivatives, such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008). In this paper we report a one pot synthesis of (I) with high yield (90%) and its crystal structure.

The title molecule is almost planar, with the maximum and minimum deviations from the mean plane being 0.110 (1) and -0.001 (6) Å for Br2 and C4, respectively. Its crystal structure is stabilized by weak ππ stacking interactions between the pyridine and benzene rings of the quinoline ring systems of the adjacent molecules [Cg1···Cg2i = 3.802 (4) Å; symmetry code: (i) 1 + x, y, z; Cg1 and Cg2 are centroids of the N1/C1/C6–C9 pyridine and C1–C6 benzene rings of the quinoline ring system, respectively].

The crystal structure of 6,8-dibromoquinoline has been reported recently Çelik et al. (2010).

For background to the synthesis of natural biologically active

quinoline derivatives and for the synthesis of the title compound, see: Şahin et al. (2008). For the structure of 6,8-dibromoquinoline, see: Çelik et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for have been drawn at the 50% probability level.
3,6,8-Tribromoquinoline top
Crystal data top
C9H4Br3NF(000) = 680
Mr = 365.83Dx = 2.493 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 2025 reflections
a = 3.9810 (2) Åθ = 3.6–70.4°
b = 12.4176 (4) ŵ = 14.93 mm1
c = 19.7419 (6) ÅT = 296 K
β = 92.827 (3)°Needle, colourless
V = 974.74 (7) Å30.51 × 0.06 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
1816 independent reflections
Radiation source: Enhance (Cu) X-ray Source1484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 10.2673 pixels mm-1θmax = 70.6°, θmin = 5.7°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 915
Tmin = 0.049, Tmax = 0.663l = 2224
3688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1066P)2]
where P = (Fo2 + 2Fc2)/3
1816 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C9H4Br3NV = 974.74 (7) Å3
Mr = 365.83Z = 4
Monoclinic, P21/nCu Kα radiation
a = 3.9810 (2) ŵ = 14.93 mm1
b = 12.4176 (4) ÅT = 296 K
c = 19.7419 (6) Å0.51 × 0.06 × 0.03 mm
β = 92.827 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
1816 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1484 reflections with I > 2σ(I)
Tmin = 0.049, Tmax = 0.663Rint = 0.060
3688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.05Δρmax = 1.45 e Å3
1816 reflectionsΔρmin = 0.80 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.6380 (2)0.29099 (6)0.90189 (4)0.0568 (3)
Br20.11453 (19)0.12590 (6)0.92944 (4)0.0525 (3)
Br30.7497 (2)0.08258 (7)0.56672 (4)0.0608 (3)
N10.7203 (14)0.2168 (5)0.7553 (3)0.0440 (17)
C10.5666 (16)0.1396 (5)0.7921 (3)0.0396 (17)
C20.5134 (15)0.1576 (5)0.8619 (3)0.0404 (17)
C30.3758 (16)0.0808 (5)0.9010 (3)0.0428 (17)
C40.2822 (16)0.0184 (5)0.8725 (3)0.0425 (17)
C50.3078 (15)0.0384 (5)0.8042 (3)0.0405 (17)
C60.4583 (15)0.0399 (5)0.7636 (3)0.0387 (17)
C70.5126 (16)0.0209 (5)0.6946 (3)0.0426 (17)
C80.6665 (16)0.0996 (5)0.6597 (3)0.0429 (17)
C90.7713 (17)0.1961 (6)0.6919 (3)0.0462 (17)
H30.344000.094200.946600.0520*
H50.227200.102500.785200.0480*
H70.445600.043300.673800.0510*
H90.881700.247300.666700.0550*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0752 (6)0.0456 (4)0.0506 (5)0.0125 (3)0.0119 (4)0.0120 (3)
Br20.0622 (5)0.0498 (5)0.0464 (4)0.0097 (3)0.0107 (3)0.0057 (3)
Br30.0798 (6)0.0652 (5)0.0385 (4)0.0047 (4)0.0132 (3)0.0003 (3)
N10.053 (3)0.040 (3)0.039 (3)0.003 (2)0.003 (2)0.002 (2)
C10.043 (3)0.032 (3)0.044 (3)0.002 (2)0.003 (2)0.002 (2)
C20.044 (3)0.037 (3)0.040 (3)0.002 (2)0.000 (2)0.004 (2)
C30.042 (3)0.050 (3)0.037 (3)0.003 (3)0.007 (2)0.006 (3)
C40.046 (3)0.039 (3)0.043 (3)0.000 (3)0.006 (2)0.003 (2)
C50.045 (3)0.038 (3)0.038 (3)0.000 (2)0.004 (2)0.000 (2)
C60.039 (3)0.038 (3)0.039 (3)0.006 (2)0.000 (2)0.003 (2)
C70.048 (3)0.041 (3)0.039 (3)0.007 (3)0.005 (2)0.003 (2)
C80.045 (3)0.047 (3)0.037 (3)0.010 (3)0.004 (2)0.003 (2)
C90.053 (3)0.047 (3)0.039 (3)0.002 (3)0.006 (3)0.004 (2)
Geometric parameters (Å, º) top
Br1—C21.891 (6)C4—C51.380 (8)
Br2—C41.888 (6)C5—C61.412 (9)
Br3—C81.893 (6)C6—C71.410 (8)
N1—C11.366 (9)C7—C81.359 (9)
N1—C91.303 (8)C8—C91.410 (9)
C1—C21.422 (8)C3—H30.9300
C1—C61.418 (9)C5—H50.9300
C2—C31.359 (9)C7—H70.9300
C3—C41.397 (9)C9—H90.9300
Br1···N13.070 (6)C7···C8ii3.542 (9)
Br1···Br3i3.6969 (12)C7···Br1iv3.738 (6)
Br1···C7i3.738 (6)C8···C7viii3.542 (9)
Br2···C4ii3.696 (6)C9···Br2ix3.553 (7)
Br2···C9iii3.553 (7)C9···C6viii3.587 (9)
Br3···Br1iv3.6969 (12)C5···H9iv2.9800
Br3···Br3v3.8186 (12)H3···Br2vii3.1500
Br1···H7i3.0800H3···Br2vi3.2000
Br2···H9iii3.1000H5···H72.5100
Br2···H3vi3.2000H5···H9iv2.5800
Br2···H9iv3.2400H7···H52.5100
Br2···H3vii3.1500H7···Br1iv3.0800
N1···Br13.070 (6)H9···Br2ix3.1000
C4···Br2viii3.696 (6)H9···Br2i3.2400
C5···C6ii3.572 (8)H9···C5i2.9800
C6···C5viii3.572 (8)H9···H5i2.5800
C6···C9ii3.587 (9)
C1—N1—C9117.9 (6)C5—C6—C7121.5 (6)
N1—C1—C2119.8 (6)C6—C7—C8117.7 (6)
N1—C1—C6122.5 (6)Br3—C8—C7121.1 (5)
C2—C1—C6117.7 (5)Br3—C8—C9118.0 (5)
Br1—C2—C1119.6 (5)C7—C8—C9120.9 (6)
Br1—C2—C3118.8 (5)N1—C9—C8123.0 (6)
C1—C2—C3121.6 (6)C2—C3—H3120.00
C2—C3—C4119.8 (6)C4—C3—H3120.00
Br2—C4—C3118.6 (4)C4—C5—H5120.00
Br2—C4—C5120.0 (5)C6—C5—H5121.00
C3—C4—C5121.4 (6)C6—C7—H7121.00
C4—C5—C6119.0 (6)C8—C7—H7121.00
C1—C6—C5120.3 (5)N1—C9—H9119.00
C1—C6—C7118.1 (5)C8—C9—H9118.00
C9—N1—C1—C2178.4 (6)C2—C3—C4—Br2176.6 (5)
C9—N1—C1—C60.9 (9)C2—C3—C4—C53.9 (10)
C1—N1—C9—C81.9 (10)Br2—C4—C5—C6175.1 (5)
N1—C1—C2—Br12.9 (8)C3—C4—C5—C65.4 (9)
N1—C1—C2—C3176.9 (6)C4—C5—C6—C13.0 (9)
C6—C1—C2—Br1177.8 (4)C4—C5—C6—C7175.5 (6)
C6—C1—C2—C32.5 (9)C1—C6—C7—C80.1 (9)
N1—C1—C6—C5178.5 (6)C5—C6—C7—C8178.4 (6)
N1—C1—C6—C70.1 (9)C6—C7—C8—Br3179.7 (5)
C2—C1—C6—C50.9 (9)C6—C7—C8—C90.8 (9)
C2—C1—C6—C7179.5 (6)Br3—C8—C9—N1178.6 (5)
Br1—C2—C3—C4179.9 (5)C7—C8—C9—N11.9 (10)
C1—C2—C3—C40.2 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1/2, y1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2; (v) x+1, y, z+1; (vi) x+1, y, z+2; (vii) x, y, z+2; (viii) x+1, y, z; (ix) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H4Br3N
Mr365.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)3.9810 (2), 12.4176 (4), 19.7419 (6)
β (°) 92.827 (3)
V3)974.74 (7)
Z4
Radiation typeCu Kα
µ (mm1)14.93
Crystal size (mm)0.51 × 0.06 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.049, 0.663
No. of measured, independent and
observed [I > 2σ(I)] reflections
3688, 1816, 1484
Rint0.060
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.05
No. of reflections1816
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.80

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

ππ Stacking interactions in the title structure top
Cg1 and Cg2 are centroids of the N1/C1/C6–C9 pyridine and C1–C6 benzene rings of the quinoline ring system, respectively.
Ring 1Ring 2(sym)(Ring 1)···(Ring 2) (Å)
Cg1Cg2i3.802 (4)
i: 1+x, y, z.
 

Acknowledgements

The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No. 2009/ F-266) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010). Acta Cryst. E66, o2997–o2998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationŞahin, A. O., Çakmak, O., Demirtaş, I., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds