organic compounds
2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate sesquihydrate
aDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran, bDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and cDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: sharif44m@yahoo.com
In the title compound, C6H9N2+·C7H4NO4−·1.5H2O, extensive O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, as well as ion pairing, π–π stacking interactions [centroid–centroid distances = 3.4690 (8) and 3.6932 (8) Å between aromatic rings] occur in the crystal. There are hydrogen-bonding interactions between water molecules, which result in cyclic tetrameric water clusters. One of the water O molecules has half occupancy. In the anion molecules, the –CO2 and –CO2H groups make torsion angles of 1.73 (18) and −12.14 (18)° with respect to the ring.
Related literature
For background to hydrogen bonding involving water, see: Long et al. (2004); Atwood et al., 2001); Miyake & Aida (2003). For related structures, see: Aghabozorg et al. (2008); Tabatabaee et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810046866/pv2352sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046866/pv2352Isup2.hkl
An aqueous solution of 2a4mp (324 mg, 3 mmol) in water (10 ml) was added to a stirring solution of pydcH2 (501 mg, 3 mmol) in water (10 ml). The reaction mixture was stirred at 298 K for 2h. Colorless crystals of the title compound were obtained by slow concentration of the solution at room temperature.
One of the water molecules (O2W) has 0.5 occupancy factor. The hydrogen atoms of OH, NH and NH2 groups and water molecules were found in difference Fourier synthesis. The H-atoms of OH, NH and NH2 groups were refined in isotropic approximation. The rest of the H-atoms were refined in riding model with C–H = 0.95 and 0.98 Å for aryl and methyl H-atoms and O–H = 0.85 Å for water molecules. The Uiso(H) parameters were 1.2 Ueq(Caryl/O) and 1.5 Ueq(Cmethyl).
The presence of water is important in establishing H-bonded contributions to the total lattice energy, and is significant in establishing the stability of the hydrated crystal structures (Long et al., 2004). Several water clusters found in organic or metallo-organic crystal hosts have been structurally characterized (Atwood et al., 2001). A detailed understanding of the numerous possible structures and stability of isolated water clusters in diverse surroundings can help us understand the nature of water-water interactions in bulk water or ice. In this paper, we report the synthesis and
of the title proton transfer system, (I), derived from pyridine-2,6-dicarboxylic acid (pydcH2) and 2-amino-4-methylpyridine (2a4mp).In the title compound, the
contains a cation, (2a4mpH)2+, an anion, (pydcH)- and 1.5 water molecules (Fig. 1). The bond distances and bond angles in the title compound are in agreement with the corresponding distances and angles reported in some related crystal structures (Aghabozorg et al., (2008); Tabatabaee et al., (2009). In the the cations and the anions are linked by hydrogen bonds (Tab. 1 and Fig. 2). In the structure, water molecules form cyclic tetrameric water clusters (Tab. 1 and Fig. 3) in the most stable pattern (Miyake & Aida, 2003). The clusters play a bridging role (Fig. 2), linking the adjacent cations and anions via hydrogen bonds and contributing to the formation of an extensive supramolecular structure.Moreover, π–π stacking interactions with distances between ring centroids = 3.4690 (8) Å and 3.6931 (8)Å, (Fig. 4) together with C7═O3···π involving aromatic ring of (pydcH)- (Fig. 5) seem to be effective in stabilizing the crystal structure.
For background to hydrogen bonding involving water, see: Long et al. (2004); Atwood et al., 2001); Miyake & Aida (2003). For related structures, see: Aghabozorg et al. (2008); Tabatabaee et al. (2009).
Data collection: SMART (Bruker, 1998b); cell
SAINT-Plus (Bruker, 1998a); data reduction: SAINT-Plus (Bruker, 1998a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I) showing hydrogen bonds as dashed lines. Hydrogen atoms not involved in H-bonds have been excluded for clarity. | |
Fig. 3. Tetrameric water cluster formed by H-bonds between water molecules in the title compound. | |
Fig. 4. A view of the π-π stacking interaction between aromatic rings of the pyridine-2-carboxylate-6-carbonic acid and 2-amino-4-picolinium. | |
Fig. 5. A view of the C═-O···π interaction between C7═O3 group and the centroid of the N1/C1-C5 aromatic ring of the anion, (pydcH)-. |
C6H9N2+·C7H4NO4−·1.5H2O | F(000) = 636 |
Mr = 302.29 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1125 reflections |
a = 9.2373 (6) Å | θ = 2–25° |
b = 7.1972 (5) Å | µ = 0.11 mm−1 |
c = 21.6495 (14) Å | T = 120 K |
β = 93.951 (1)° | Rhombic, colorless |
V = 1435.90 (17) Å3 | 0.20 × 0.20 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD area detector diffractometer | 3801 independent reflections |
Radiation source: fine-focus sealed tube | 3077 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 29.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.980, Tmax = 0.995 | k = −9→9 |
15297 measured reflections | l = −29→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0244P)2 + 1.3516P] where P = (Fo2 + 2Fc2)/3 |
3801 reflections | (Δ/σ)max = 0.001 |
216 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C6H9N2+·C7H4NO4−·1.5H2O | V = 1435.90 (17) Å3 |
Mr = 302.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2373 (6) Å | µ = 0.11 mm−1 |
b = 7.1972 (5) Å | T = 120 K |
c = 21.6495 (14) Å | 0.20 × 0.20 × 0.10 mm |
β = 93.951 (1)° |
Bruker SMART 1000 CCD area detector diffractometer | 3801 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3077 reflections with I > 2.0σ(I) |
Tmin = 0.980, Tmax = 0.995 | Rint = 0.026 |
15297 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.36 e Å−3 |
3801 reflections | Δρmin = −0.25 e Å−3 |
216 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.26470 (12) | −0.06479 (14) | 0.64545 (5) | 0.0309 (2) | |
H1O | 0.356 (3) | −0.019 (3) | 0.6373 (11) | 0.066 (7)* | |
O2 | 0.06351 (11) | 0.00989 (15) | 0.68870 (5) | 0.0325 (2) | |
O3 | 0.64297 (10) | 0.62489 (14) | 0.66239 (5) | 0.0288 (2) | |
O4 | 0.65846 (10) | 0.32081 (14) | 0.64256 (5) | 0.0264 (2) | |
O1W | 0.53707 (11) | 0.96510 (15) | 0.61389 (5) | 0.0305 (2) | |
H1WA | 0.5713 | 1.0680 | 0.6275 | 0.037* | |
H1WB | 0.5756 | 0.8707 | 0.6320 | 0.037* | |
O2W | 0.6530 (2) | 1.0929 (3) | 0.49926 (10) | 0.0310 (5) | 0.50 |
H2WB | 0.5892 | 1.0666 | 0.4704 | 0.037* | 0.50 |
H2WA | 0.6142 | 1.0552 | 0.5315 | 0.037* | 0.50 |
N1 | 0.38249 (11) | 0.26733 (15) | 0.67222 (5) | 0.0192 (2) | |
N2 | 0.91543 (12) | 0.37469 (16) | 0.59293 (5) | 0.0223 (2) | |
H2N | 0.822 (2) | 0.364 (3) | 0.6099 (9) | 0.043 (5)* | |
N3 | 0.93113 (13) | 0.67564 (18) | 0.62910 (6) | 0.0270 (3) | |
H3NB | 0.835 (2) | 0.658 (3) | 0.6447 (8) | 0.037 (5)* | |
H3NA | 0.986 (2) | 0.776 (3) | 0.6395 (9) | 0.044 (5)* | |
C1 | 0.25047 (13) | 0.23786 (18) | 0.69207 (6) | 0.0199 (2) | |
C2 | 0.17514 (14) | 0.3666 (2) | 0.72513 (6) | 0.0232 (3) | |
H2A | 0.0818 | 0.3388 | 0.7386 | 0.028* | |
C3 | 0.23996 (14) | 0.5369 (2) | 0.73793 (6) | 0.0247 (3) | |
H3A | 0.1922 | 0.6286 | 0.7607 | 0.030* | |
C4 | 0.37662 (14) | 0.57143 (19) | 0.71688 (6) | 0.0223 (3) | |
H4A | 0.4232 | 0.6876 | 0.7247 | 0.027* | |
C5 | 0.44366 (13) | 0.43305 (18) | 0.68430 (6) | 0.0188 (2) | |
C6 | 0.18551 (15) | 0.05222 (19) | 0.67584 (7) | 0.0246 (3) | |
C7 | 0.59368 (14) | 0.46266 (18) | 0.66116 (6) | 0.0210 (3) | |
C8 | 0.99015 (14) | 0.53539 (19) | 0.59952 (6) | 0.0213 (3) | |
C9 | 1.12726 (14) | 0.5468 (2) | 0.57398 (6) | 0.0225 (3) | |
H9A | 1.1815 | 0.6589 | 0.5776 | 0.027* | |
C10 | 1.18187 (14) | 0.3971 (2) | 0.54415 (6) | 0.0236 (3) | |
C11 | 1.09980 (15) | 0.2309 (2) | 0.53908 (7) | 0.0262 (3) | |
H11A | 1.1361 | 0.1252 | 0.5189 | 0.031* | |
C12 | 0.96820 (15) | 0.2250 (2) | 0.56356 (7) | 0.0260 (3) | |
H12A | 0.9122 | 0.1143 | 0.5601 | 0.031* | |
C13 | 1.32713 (15) | 0.4067 (2) | 0.51713 (7) | 0.0304 (3) | |
H13A | 1.3607 | 0.5359 | 0.5172 | 0.046* | |
H13B | 1.3184 | 0.3600 | 0.4745 | 0.046* | |
H13C | 1.3971 | 0.3305 | 0.5420 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0254 (5) | 0.0214 (5) | 0.0463 (6) | −0.0024 (4) | 0.0069 (4) | −0.0036 (4) |
O2 | 0.0241 (5) | 0.0321 (6) | 0.0420 (6) | −0.0091 (4) | 0.0083 (4) | 0.0018 (5) |
O3 | 0.0212 (5) | 0.0213 (5) | 0.0446 (6) | −0.0042 (4) | 0.0074 (4) | −0.0023 (4) |
O4 | 0.0197 (4) | 0.0216 (5) | 0.0390 (6) | 0.0005 (4) | 0.0097 (4) | −0.0001 (4) |
O1W | 0.0315 (5) | 0.0227 (5) | 0.0377 (6) | 0.0012 (4) | 0.0043 (4) | −0.0029 (4) |
O2W | 0.0253 (10) | 0.0408 (12) | 0.0271 (10) | 0.0025 (9) | 0.0032 (8) | −0.0036 (9) |
N1 | 0.0168 (5) | 0.0204 (5) | 0.0208 (5) | 0.0003 (4) | 0.0027 (4) | 0.0018 (4) |
N2 | 0.0180 (5) | 0.0242 (6) | 0.0251 (5) | −0.0012 (4) | 0.0040 (4) | 0.0003 (4) |
N3 | 0.0209 (6) | 0.0264 (6) | 0.0345 (7) | −0.0019 (5) | 0.0076 (5) | −0.0054 (5) |
C1 | 0.0181 (6) | 0.0217 (6) | 0.0201 (6) | −0.0010 (5) | 0.0022 (4) | 0.0027 (5) |
C2 | 0.0188 (6) | 0.0295 (7) | 0.0219 (6) | 0.0004 (5) | 0.0046 (5) | 0.0015 (5) |
C3 | 0.0220 (6) | 0.0287 (7) | 0.0236 (6) | 0.0040 (5) | 0.0039 (5) | −0.0045 (5) |
C4 | 0.0202 (6) | 0.0216 (6) | 0.0249 (6) | 0.0000 (5) | 0.0011 (5) | −0.0032 (5) |
C5 | 0.0163 (5) | 0.0207 (6) | 0.0196 (6) | 0.0008 (5) | 0.0026 (4) | 0.0010 (5) |
C6 | 0.0235 (6) | 0.0224 (6) | 0.0280 (7) | −0.0027 (5) | 0.0030 (5) | 0.0041 (5) |
C7 | 0.0177 (6) | 0.0212 (6) | 0.0242 (6) | −0.0007 (5) | 0.0022 (5) | 0.0015 (5) |
C8 | 0.0182 (6) | 0.0239 (6) | 0.0219 (6) | 0.0003 (5) | 0.0019 (5) | 0.0011 (5) |
C9 | 0.0175 (6) | 0.0263 (7) | 0.0239 (6) | −0.0020 (5) | 0.0025 (5) | 0.0022 (5) |
C10 | 0.0169 (6) | 0.0325 (7) | 0.0217 (6) | 0.0024 (5) | 0.0032 (5) | 0.0034 (5) |
C11 | 0.0248 (6) | 0.0275 (7) | 0.0266 (7) | 0.0038 (5) | 0.0038 (5) | −0.0028 (5) |
C12 | 0.0248 (6) | 0.0244 (7) | 0.0288 (7) | −0.0012 (5) | 0.0019 (5) | −0.0018 (5) |
C13 | 0.0207 (6) | 0.0409 (8) | 0.0304 (7) | 0.0028 (6) | 0.0082 (5) | 0.0023 (6) |
O1—C6 | 1.3204 (17) | C2—C3 | 1.384 (2) |
O1—H1O | 0.93 (2) | C2—H2A | 0.9500 |
O2—C6 | 1.2179 (17) | C3—C4 | 1.3937 (18) |
O3—C7 | 1.2528 (16) | C3—H3A | 0.9500 |
O4—C7 | 1.2632 (16) | C4—C5 | 1.3904 (18) |
O1W—H1WA | 0.8500 | C4—H4A | 0.9500 |
O1W—H1WB | 0.8500 | C5—C7 | 1.5206 (17) |
O2W—H2WB | 0.8500 | C8—C9 | 1.4188 (17) |
O2W—H2WA | 0.8501 | C9—C10 | 1.3701 (19) |
N1—C1 | 1.3375 (16) | C9—H9A | 0.9500 |
N1—C5 | 1.3379 (17) | C10—C11 | 1.416 (2) |
N2—C8 | 1.3494 (17) | C10—C13 | 1.5019 (18) |
N2—C12 | 1.3583 (18) | C11—C12 | 1.3598 (19) |
N2—H2N | 0.96 (2) | C11—H11A | 0.9500 |
N3—C8 | 1.3320 (18) | C12—H12A | 0.9500 |
N3—H3NB | 0.978 (19) | C13—H13A | 0.9800 |
N3—H3NA | 0.90 (2) | C13—H13B | 0.9800 |
C1—C2 | 1.3872 (18) | C13—H13C | 0.9800 |
C1—C6 | 1.4966 (19) | ||
C6—O1—H1O | 114.2 (15) | O2—C6—C1 | 122.14 (13) |
H1WA—O1W—H1WB | 113.8 | O1—C6—C1 | 117.35 (12) |
H2WB—O2W—H2WA | 102.8 | O3—C7—O4 | 125.49 (12) |
C1—N1—C5 | 117.44 (11) | O3—C7—C5 | 117.50 (12) |
C8—N2—C12 | 122.13 (12) | O4—C7—C5 | 117.01 (11) |
C8—N2—H2N | 119.4 (12) | N3—C8—N2 | 118.49 (12) |
C12—N2—H2N | 118.5 (12) | N3—C8—C9 | 123.32 (13) |
C8—N3—H3NB | 118.6 (11) | N2—C8—C9 | 118.18 (12) |
C8—N3—H3NA | 119.0 (13) | C10—C9—C8 | 120.37 (13) |
H3NB—N3—H3NA | 121.7 (17) | C10—C9—H9A | 119.8 |
N1—C1—C2 | 124.10 (12) | C8—C9—H9A | 119.8 |
N1—C1—C6 | 115.21 (12) | C9—C10—C11 | 119.22 (12) |
C2—C1—C6 | 120.69 (12) | C9—C10—C13 | 121.01 (13) |
C3—C2—C1 | 118.01 (12) | C11—C10—C13 | 119.77 (13) |
C3—C2—H2A | 121.0 | C12—C11—C10 | 118.97 (13) |
C1—C2—H2A | 121.0 | C12—C11—H11A | 120.5 |
C2—C3—C4 | 118.79 (12) | C10—C11—H11A | 120.5 |
C2—C3—H3A | 120.6 | N2—C12—C11 | 121.12 (13) |
C4—C3—H3A | 120.6 | N2—C12—H12A | 119.4 |
C5—C4—C3 | 118.91 (13) | C11—C12—H12A | 119.4 |
C5—C4—H4A | 120.5 | C10—C13—H13A | 109.5 |
C3—C4—H4A | 120.5 | C10—C13—H13B | 109.5 |
N1—C5—C4 | 122.74 (11) | H13A—C13—H13B | 109.5 |
N1—C5—C7 | 116.28 (11) | C10—C13—H13C | 109.5 |
C4—C5—C7 | 120.97 (12) | H13A—C13—H13C | 109.5 |
O2—C6—O1 | 120.49 (13) | H13B—C13—H13C | 109.5 |
C5—N1—C1—C2 | −1.24 (19) | N1—C5—C7—O3 | 168.20 (12) |
C5—N1—C1—C6 | 178.42 (11) | C4—C5—C7—O3 | −12.68 (19) |
N1—C1—C2—C3 | 0.6 (2) | N1—C5—C7—O4 | −12.13 (17) |
C6—C1—C2—C3 | −179.05 (12) | C4—C5—C7—O4 | 166.98 (12) |
C1—C2—C3—C4 | 0.4 (2) | C12—N2—C8—N3 | −179.79 (13) |
C2—C3—C4—C5 | −0.6 (2) | C12—N2—C8—C9 | 0.82 (19) |
C1—N1—C5—C4 | 0.94 (18) | N3—C8—C9—C10 | 179.92 (13) |
C1—N1—C5—C7 | −179.97 (11) | N2—C8—C9—C10 | −0.72 (19) |
C3—C4—C5—N1 | 0.0 (2) | C8—C9—C10—C11 | 0.0 (2) |
C3—C4—C5—C7 | −179.08 (12) | C8—C9—C10—C13 | −179.71 (13) |
N1—C1—C6—O2 | −176.83 (13) | C9—C10—C11—C12 | 0.5 (2) |
C2—C1—C6—O2 | 2.8 (2) | C13—C10—C11—C12 | −179.69 (13) |
N1—C1—C6—O1 | 1.73 (18) | C8—N2—C12—C11 | −0.2 (2) |
C2—C1—C6—O1 | −178.60 (12) | C10—C11—C12—N2 | −0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.85 | 2.01 | 2.846 (2) | 169 |
O1W—H1WA···N1i | 0.85 | 2.50 | 2.935 (2) | 112 |
O1W—H1WB···O3 | 0.85 | 1.97 | 2.813 (2) | 169 |
O2W—H2WB···O1Wii | 0.85 | 2.11 | 2.944 (2) | 167 |
O2W—H2WA···O1W | 0.85 | 2.07 | 2.919 (2) | 175 |
O1—H1O···O1Wiii | 0.93 (3) | 1.78 (3) | 2.661 (2) | 155 (2) |
O1—H1O···N1 | 0.93 (3) | 2.20 (2) | 2.673 (2) | 110 (2) |
N2—H2N···O4 | 0.96 (2) | 1.74 (2) | 2.700 (2) | 174 (2) |
N3—H3NB···O3 | 0.98 (2) | 1.86 (2) | 2.829 (2) | 172 (2) |
N3—H3NA···O2iv | 0.90 (2) | 2.09 (2) | 2.955 (2) | 160 (2) |
C2—H2A···O2v | 0.95 | 2.47 | 3.158 (2) | 129 |
C9—H9A···O1iv | 0.95 | 2.56 | 3.399 (2) | 147 |
C11—H11A···O2Wvi | 0.95 | 2.55 | 3.405 (2) | 149 |
Cg(1)N2/C8–C12···Cg(1)vi | 3.4690 (8) | |||
Cg(1)···Cg(2)N1/C1–C5vii | 3.6932 (8) | |||
C7—O3···Cg(2)viii | 3.50 (1) | 125 (1) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z; (iv) x+1, y+1, z; (v) −x, y+1/2, −z+3/2; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z; (viii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C7H4NO4−·1.5H2O |
Mr | 302.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.2373 (6), 7.1972 (5), 21.6495 (14) |
β (°) | 93.951 (1) |
V (Å3) | 1435.90 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.20 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.980, 0.995 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 15297, 3801, 3077 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.102, 0.99 |
No. of reflections | 3801 |
No. of parameters | 216 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.25 |
Computer programs: SMART (Bruker, 1998b), SAINT-Plus (Bruker, 1998a), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.85 | 2.01 | 2.846 (2) | 169 |
O1W—H1WA···N1i | 0.85 | 2.50 | 2.935 (2) | 112 |
O1W—H1WB···O3 | 0.85 | 1.97 | 2.813 (2) | 169 |
O2W—H2WB···O1Wii | 0.85 | 2.11 | 2.944 (2) | 167 |
O2W—H2WA···O1W | 0.85 | 2.07 | 2.919 (2) | 175 |
O1—H1O···O1Wiii | 0.93 (3) | 1.78 (3) | 2.661 (2) | 155 (2) |
O1—H1O···N1 | 0.93 (3) | 2.20 (2) | 2.673 (2) | 110 (2) |
N2—H2N···O4 | 0.96 (2) | 1.74 (2) | 2.700 (2) | 174 (2) |
N3—H3NB···O3 | 0.98 (2) | 1.86 (2) | 2.829 (2) | 172 (2) |
N3—H3NA···O2iv | 0.90 (2) | 2.09 (2) | 2.955 (2) | 160 (2) |
C2—H2A···O2v | 0.95 | 2.47 | 3.158 (2) | 129 |
C9—H9A···O1iv | 0.95 | 2.56 | 3.399 (2) | 147 |
C11—H11A···O2Wvi | 0.95 | 2.55 | 3.405 (2) | 149 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z; (iv) x+1, y+1, z; (v) −x, y+1/2, −z+3/2; (vi) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank the Islamic Azad University, Yazd Branch, for financial support.
References
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Atwood, J. L., Barbour, L. J., Ness, T. J., Raston, C. L. & Raston, P. L. (2001). J. Am. Chem. Soc. 123, 7192–719. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Long, L. S., Wu, Y. R., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800. Web of Science CSD CrossRef PubMed CAS Google Scholar
Miyake, T. & Aida, M. (2003). Internet Electron. J. Mol. Des. 2, 24–32. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The presence of water is important in establishing H-bonded contributions to the total lattice energy, and is significant in establishing the stability of the hydrated crystal structures (Long et al., 2004). Several water clusters found in organic or metallo-organic crystal hosts have been structurally characterized (Atwood et al., 2001). A detailed understanding of the numerous possible structures and stability of isolated water clusters in diverse surroundings can help us understand the nature of water-water interactions in bulk water or ice. In this paper, we report the synthesis and crystal structure of the title proton transfer system, (I), derived from pyridine-2,6-dicarboxylic acid (pydcH2) and 2-amino-4-methylpyridine (2a4mp).
In the title compound, the asymmetric unit contains a cation, (2a4mpH)2+, an anion, (pydcH)- and 1.5 water molecules (Fig. 1). The bond distances and bond angles in the title compound are in agreement with the corresponding distances and angles reported in some related crystal structures (Aghabozorg et al., (2008); Tabatabaee et al., (2009). In the crystal structure, the cations and the anions are linked by hydrogen bonds (Tab. 1 and Fig. 2). In the structure, water molecules form cyclic tetrameric water clusters (Tab. 1 and Fig. 3) in the most stable pattern (Miyake & Aida, 2003). The clusters play a bridging role (Fig. 2), linking the adjacent cations and anions via hydrogen bonds and contributing to the formation of an extensive supramolecular structure.
Moreover, π–π stacking interactions with distances between ring centroids = 3.4690 (8) Å and 3.6931 (8)Å, (Fig. 4) together with C7═O3···π involving aromatic ring of (pydcH)- (Fig. 5) seem to be effective in stabilizing the crystal structure.