metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­(μ4-imidazole-4,5-di­carboxyl­ato)(μ3-imidazole-4,5-di­carboxyl­ato)-μ3-sulfato-μ2-sulfato-cobalt(II)dierbium(III)] monohydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: fengsun1974@yahoo.com.cn

(Received 3 November 2010; accepted 15 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, {[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O}n, contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxyl­ate (imdc) ligands, two SO42− anions, four coordinated water mol­ecules and one uncoordinated water mol­ecule. The CoII ion is six-coordinated by two O atoms from two coordinated water mol­ecules and two O atoms and two N atoms from two imdc ligands in a slightly distorted octa­hedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal–prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, three O atoms from three SO42− anions and one water O atom; the other ErIII ion is bonded to five O atoms from three imdc ligands, two O atoms from two SO42− anions as well as one coordinated water mol­ecule. The coordinated metal units are connected by bridging imdc ligands and sulfate ions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along the b axis via N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding inter­actions between water mol­ecules, SO42− anions, and imdc ligands, generating a three-dimensional framework.

Related literature

For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]). For related structures, see: Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O

  • Mr = 983.84

  • Triclinic, [P \overline 1]

  • a = 9.0512 (5) Å

  • b = 10.6827 (6) Å

  • c = 12.8945 (8) Å

  • α = 92.955 (1)°

  • β = 97.054 (1)°

  • γ = 108.612 (1)°

  • V = 1167.17 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.12 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.215, Tmax = 0.296

  • 6026 measured reflections

  • 4123 independent reflections

  • 3820 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.03

  • 4123 reflections

  • 397 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O8i 0.86 (5) 1.95 (5) 2.806 (6) 176 (7)
O1W—H1W⋯O8ii 0.82 (5) 2.08 (5) 2.885 (6) 166 (5)
N4—H2⋯O3iii 0.86 (4) 1.93 (3) 2.785 (5) 172 (7)
O1W—H2W⋯O3ii 0.82 (5) 2.01 (4) 2.822 (5) 170 (4)
O1W—H2W⋯O4ii 0.82 (5) 2.58 (5) 3.048 (5) 118 (5)
O2W—H3W⋯O16iv 0.81 (4) 1.92 (5) 2.730 (5) 176 (8)
O2W—H4W⋯O3ii 0.80 (4) 2.49 (5) 2.897 (5) 113 (4)
O3W—H5W⋯O5W 0.82 (7) 1.89 (7) 2.692 (7) 169 (7)
O3W—H6W⋯O6v 0.81 (3) 2.57 (4) 3.336 (6) 158 (8)
O4W—H7W⋯O5W 0.82 (4) 1.98 (4) 2.752 (6) 158 (6)
O4W—H8W⋯O2W 0.81 (5) 2.57 (7) 3.167 (6) 132 (6)
O5W—H9W⋯O8vi 0.85 (5) 1.90 (5) 2.737 (6) 169 (5)
O5W—H10W⋯O16iv 0.86 (5) 1.97 (6) 2.787 (6) 159 (7)
C3—H3⋯O6iii 0.93 2.46 3.224 (7) 140
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z; (v) -x, -y, -z+1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, there has been a tremendous increase of interset in lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands because of their impressive topological structures as well aso due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42- anions, four coordinated water molecules and one lattice water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imdc ligands, to give a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two idmc ligands, three O atoms from three SO42- anions and one water molecule; the other ErIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imdc ligands and sulfate anions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via hydrogen-bonding interactions between water molecules, SO42- anions, and imdc ligands to generate the three-dimensional framework (Tab. 1 and Fig. 2).

Related literature top

For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006); Kuang et al. (2007). For related structures, see: Sun et al. (2006); Zhu et al. (2010).

Experimental top

A mixture of CoSO4.7H2O (0.141 g, 0.5 mmol), Er2O3 (0.098 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with restraints: N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O). In the final difference map, the largest residual electron density and the deepest hole are located at 0.96 and 0.85 Å, respectively from Er2.

Structure description top

In the past few years, there has been a tremendous increase of interset in lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands because of their impressive topological structures as well aso due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42- anions, four coordinated water molecules and one lattice water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imdc ligands, to give a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two idmc ligands, three O atoms from three SO42- anions and one water molecule; the other ErIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imdc ligands and sulfate anions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via hydrogen-bonding interactions between water molecules, SO42- anions, and imdc ligands to generate the three-dimensional framework (Tab. 1 and Fig. 2).

For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006); Kuang et al. (2007). For related structures, see: Sun et al. (2006); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) -1 + x, y, z; (B) -x, -y, -z; (C) -1 + x, y, -1 + z; (D) -1 - x, -y, -z; (E) -x, -y, 1 - z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.
Poly[[tetraaqua(µ4-imidazole-4,5-dicarboxylato)(µ3-imidazole- 4,5-dicarboxylato)-µ3-sulfato-µ2-sulfato-cobalt(II)dierbium(III)] monohydrate] top
Crystal data top
[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2OZ = 2
Mr = 983.84F(000) = 930
Triclinic, P1Dx = 2.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0512 (5) ÅCell parameters from 4400 reflections
b = 10.6827 (6) Åθ = 2.4–28.0°
c = 12.8945 (8) ŵ = 8.12 mm1
α = 92.955 (1)°T = 296 K
β = 97.054 (1)°Block, red
γ = 108.612 (1)°0.20 × 0.18 × 0.15 mm
V = 1167.17 (12) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4123 independent reflections
Radiation source: fine-focus sealed tube3820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scanθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 105
Tmin = 0.215, Tmax = 0.296k = 1212
6026 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 1.940P]
where P = (Fo2 + 2Fc2)/3
4123 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = 1.35 e Å3
Crystal data top
[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2Oγ = 108.612 (1)°
Mr = 983.84V = 1167.17 (12) Å3
Triclinic, P1Z = 2
a = 9.0512 (5) ÅMo Kα radiation
b = 10.6827 (6) ŵ = 8.12 mm1
c = 12.8945 (8) ÅT = 296 K
α = 92.955 (1)°0.20 × 0.18 × 0.15 mm
β = 97.054 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3820 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.296Rint = 0.017
6026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02312 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.87 e Å3
4123 reflectionsΔρmin = 1.35 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.09070 (2)0.049642 (19)0.366467 (14)0.01288 (7)
Er20.37193 (2)0.088827 (18)0.105666 (14)0.01193 (7)
Co10.34879 (7)0.28628 (6)0.27282 (4)0.01585 (14)
S10.22681 (13)0.07707 (11)0.09734 (8)0.0129 (2)
S20.07687 (14)0.27513 (11)0.40191 (9)0.0170 (2)
C10.4802 (5)0.0827 (4)0.6454 (3)0.0145 (9)
C20.5054 (5)0.1537 (4)0.5507 (3)0.0152 (9)
C30.6350 (6)0.2989 (5)0.4510 (4)0.0212 (10)
H30.71750.36210.42710.025*
C40.4062 (5)0.1634 (4)0.4630 (3)0.0150 (9)
C50.2387 (5)0.1004 (4)0.4232 (3)0.0144 (9)
C60.5165 (5)0.1950 (4)0.1209 (3)0.0144 (9)
C70.5691 (6)0.3402 (5)0.1209 (4)0.0177 (10)
C80.5776 (6)0.5343 (5)0.1817 (4)0.0235 (11)
H80.56090.60280.22090.028*
C90.6679 (6)0.4298 (4)0.0658 (4)0.0196 (10)
C100.7520 (6)0.4192 (5)0.0250 (4)0.0218 (11)
N10.6495 (5)0.2411 (4)0.5397 (3)0.0190 (9)
N20.4904 (5)0.2554 (4)0.4025 (3)0.0169 (8)
N30.5133 (5)0.4078 (4)0.1927 (3)0.0189 (9)
N40.6703 (5)0.5521 (4)0.1067 (3)0.0249 (9)
O10.2200 (4)0.0083 (3)0.0104 (2)0.0208 (7)
O20.3866 (4)0.1266 (3)0.1256 (3)0.0224 (7)
O30.1750 (4)0.1884 (3)0.0667 (3)0.0245 (8)
O40.1162 (4)0.0023 (3)0.1883 (2)0.0229 (8)
O50.1393 (4)0.1746 (3)0.3560 (2)0.0218 (7)
O60.1995 (5)0.4018 (4)0.3964 (3)0.0407 (10)
O70.0089 (4)0.2307 (3)0.5147 (2)0.0235 (8)
O80.0526 (4)0.2828 (4)0.3446 (3)0.0278 (8)
O90.1450 (4)0.0157 (3)0.4693 (2)0.0171 (7)
O100.1848 (4)0.1367 (3)0.3383 (2)0.0182 (7)
O110.3504 (4)0.0057 (3)0.6478 (2)0.0183 (7)
O120.5935 (4)0.1177 (3)0.7192 (2)0.0235 (8)
O130.4190 (4)0.1442 (3)0.1823 (2)0.0178 (7)
O140.5640 (4)0.1192 (3)0.0648 (2)0.0164 (7)
O150.7324 (5)0.3048 (3)0.0682 (3)0.0322 (9)
O160.8340 (5)0.5232 (3)0.0549 (3)0.0367 (10)
H20.726 (7)0.631 (3)0.097 (5)0.055*
H10.739 (4)0.250 (6)0.576 (5)0.055*
O1W0.1359 (4)0.1275 (4)0.1711 (3)0.0261 (8)
H1W0.120 (7)0.159 (6)0.227 (3)0.039*
H2W0.050 (4)0.140 (6)0.135 (4)0.039*
O2W0.1566 (5)0.2533 (4)0.1512 (3)0.0285 (8)
H3W0.164 (8)0.320 (4)0.122 (4)0.043*
H4W0.121 (7)0.182 (3)0.118 (4)0.043*
O3W0.2893 (6)0.4288 (4)0.3606 (3)0.0376 (10)
H5W0.226 (7)0.456 (7)0.326 (5)0.056*
H6W0.290 (9)0.416 (7)0.422 (2)0.056*
O4W0.1271 (5)0.2319 (4)0.2783 (3)0.0366 (10)
H7W0.072 (7)0.310 (3)0.286 (5)0.055*
H8W0.106 (8)0.223 (7)0.220 (3)0.055*
O5W0.0527 (6)0.4842 (4)0.2458 (3)0.0433 (11)
H9W0.044 (9)0.557 (4)0.269 (5)0.065*
H10W0.079 (9)0.499 (7)0.185 (3)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01014 (12)0.01703 (11)0.01108 (11)0.00352 (8)0.00105 (8)0.00507 (8)
Er20.01019 (12)0.01510 (11)0.01112 (11)0.00425 (8)0.00202 (8)0.00503 (8)
Co10.0167 (3)0.0187 (3)0.0132 (3)0.0060 (3)0.0037 (2)0.0058 (2)
S10.0105 (6)0.0177 (5)0.0113 (5)0.0056 (4)0.0012 (4)0.0046 (4)
S20.0165 (6)0.0160 (5)0.0170 (5)0.0042 (5)0.0009 (5)0.0020 (4)
C10.014 (2)0.024 (2)0.010 (2)0.013 (2)0.0026 (18)0.0040 (18)
C20.009 (2)0.021 (2)0.015 (2)0.0033 (19)0.0025 (18)0.0037 (18)
C30.017 (3)0.025 (3)0.021 (2)0.003 (2)0.005 (2)0.010 (2)
C40.017 (3)0.021 (2)0.009 (2)0.007 (2)0.0039 (18)0.0029 (17)
C50.013 (2)0.021 (2)0.012 (2)0.0077 (19)0.0023 (18)0.0007 (18)
C60.010 (2)0.018 (2)0.013 (2)0.0030 (19)0.0023 (18)0.0039 (18)
C70.015 (2)0.019 (2)0.018 (2)0.0043 (19)0.0024 (19)0.0044 (18)
C80.031 (3)0.018 (2)0.023 (2)0.007 (2)0.011 (2)0.0044 (19)
C90.020 (3)0.016 (2)0.021 (2)0.003 (2)0.004 (2)0.0038 (19)
C100.022 (3)0.019 (2)0.023 (2)0.003 (2)0.009 (2)0.006 (2)
N10.008 (2)0.026 (2)0.0180 (19)0.0005 (17)0.0027 (16)0.0045 (17)
N20.014 (2)0.021 (2)0.0164 (19)0.0049 (16)0.0034 (16)0.0049 (16)
N30.023 (2)0.016 (2)0.0168 (19)0.0049 (17)0.0050 (17)0.0012 (15)
N40.030 (3)0.016 (2)0.027 (2)0.0035 (19)0.0112 (19)0.0055 (18)
O10.0156 (18)0.0305 (19)0.0197 (16)0.0097 (15)0.0039 (14)0.0155 (14)
O20.0127 (18)0.0340 (19)0.0241 (17)0.0097 (15)0.0060 (14)0.0164 (15)
O30.028 (2)0.0163 (17)0.0333 (19)0.0085 (15)0.0146 (16)0.0047 (14)
O40.0192 (19)0.0291 (19)0.0143 (16)0.0004 (15)0.0006 (14)0.0032 (14)
O50.0226 (19)0.0201 (17)0.0219 (17)0.0079 (15)0.0028 (14)0.0022 (14)
O60.030 (2)0.023 (2)0.054 (3)0.0059 (17)0.0115 (19)0.0110 (18)
O70.034 (2)0.0225 (18)0.0148 (16)0.0116 (16)0.0009 (15)0.0048 (13)
O80.026 (2)0.044 (2)0.0189 (17)0.0186 (17)0.0052 (15)0.0015 (15)
O90.0104 (16)0.0256 (18)0.0136 (15)0.0025 (14)0.0031 (13)0.0080 (13)
O100.0124 (17)0.0270 (18)0.0146 (15)0.0044 (14)0.0032 (13)0.0082 (13)
O110.0102 (17)0.0265 (18)0.0170 (16)0.0035 (14)0.0018 (13)0.0079 (13)
O120.0103 (17)0.038 (2)0.0179 (16)0.0024 (15)0.0020 (14)0.0098 (15)
O130.0208 (18)0.0150 (16)0.0169 (15)0.0024 (14)0.0082 (14)0.0045 (13)
O140.0190 (18)0.0136 (15)0.0161 (15)0.0036 (13)0.0051 (13)0.0014 (12)
O150.041 (2)0.0173 (18)0.036 (2)0.0022 (16)0.0194 (18)0.0018 (15)
O160.050 (3)0.0216 (19)0.040 (2)0.0056 (18)0.026 (2)0.0105 (16)
O1W0.0148 (19)0.046 (2)0.0222 (18)0.0137 (17)0.0050 (15)0.0139 (17)
O2W0.032 (2)0.030 (2)0.0228 (19)0.0108 (19)0.0028 (16)0.0054 (16)
O3W0.052 (3)0.035 (2)0.031 (2)0.024 (2)0.001 (2)0.0002 (18)
O4W0.047 (3)0.025 (2)0.033 (2)0.0063 (19)0.001 (2)0.0113 (18)
O5W0.063 (3)0.035 (2)0.043 (2)0.025 (2)0.025 (2)0.009 (2)
Geometric parameters (Å, º) top
Er1—O11i2.227 (3)C3—H30.9300
Er1—O7i2.268 (3)C4—N21.380 (6)
Er1—O52.286 (3)C4—C51.462 (6)
Er1—O42.294 (3)C5—O91.258 (5)
Er1—O9i2.324 (3)C5—O101.272 (5)
Er1—O4W2.396 (4)C6—O141.267 (5)
Er1—O102.447 (3)C6—O131.269 (5)
Er1—O92.508 (3)C6—C71.470 (6)
Er1—C52.848 (4)C6—Er2v2.879 (4)
Er2—O15ii2.198 (3)C7—C91.378 (7)
Er2—O12iii2.291 (3)C7—N31.383 (6)
Er2—O12.292 (3)C8—N31.313 (6)
Er2—O1W2.316 (4)C8—N41.338 (6)
Er2—O2iv2.333 (3)C8—H80.9300
Er2—O14ii2.373 (3)C9—N41.376 (6)
Er2—O14v2.474 (3)C9—C101.492 (7)
Er2—O13v2.514 (3)C10—O161.234 (6)
Er2—C6v2.879 (4)C10—O151.266 (6)
Er2—Er2iv3.9596 (4)N1—H10.86 (5)
Co1—N32.062 (4)N4—H20.86 (4)
Co1—N22.085 (4)O2—Er2iv2.333 (3)
Co1—O3W2.093 (4)O7—Er1i2.268 (3)
Co1—O102.099 (3)O9—Er1i2.324 (3)
Co1—O2W2.120 (4)O11—Er1i2.227 (3)
Co1—O132.165 (3)O12—Er2vi2.291 (3)
S1—O31.464 (3)O13—Er2v2.514 (3)
S1—O41.471 (3)O14—Er2vii2.373 (3)
S1—O21.471 (3)O14—Er2v2.474 (3)
S1—O11.477 (3)O15—Er2vii2.198 (3)
S2—O61.443 (4)O1W—H1W0.82 (5)
S2—O51.481 (3)O1W—H2W0.82 (5)
S2—O81.482 (4)O2W—H3W0.81 (4)
S2—O71.497 (3)O2W—H4W0.80 (4)
C1—O111.255 (6)O3W—H5W0.82 (7)
C1—O121.256 (5)O3W—H6W0.81 (3)
C1—C21.474 (6)O4W—H7W0.82 (4)
C2—N11.369 (6)O4W—H8W0.81 (5)
C2—C41.385 (6)O5W—H9W0.85 (5)
C3—N21.304 (6)O5W—H10W0.86 (5)
C3—N11.339 (6)
O11i—Er1—O7i103.78 (12)O2W—Co1—O1387.26 (13)
O11i—Er1—O587.24 (12)O3—S1—O4108.4 (2)
O7i—Er1—O5140.03 (11)O3—S1—O2110.1 (2)
O11i—Er1—O489.33 (12)O4—S1—O2109.7 (2)
O7i—Er1—O4137.77 (12)O3—S1—O1109.2 (2)
O5—Er1—O479.46 (12)O4—S1—O1107.83 (19)
O11i—Er1—O9i77.27 (11)O2—S1—O1111.55 (19)
O7i—Er1—O9i71.65 (11)O6—S2—O5111.1 (2)
O5—Er1—O9i73.70 (11)O6—S2—O8112.1 (2)
O4—Er1—O9i150.39 (11)O5—S2—O8107.4 (2)
O11i—Er1—O4W77.71 (14)O6—S2—O7108.6 (2)
O7i—Er1—O4W73.79 (12)O5—S2—O7109.60 (18)
O5—Er1—O4W145.94 (13)O8—S2—O7107.9 (2)
O4—Er1—O4W70.10 (13)O11—C1—O12124.8 (4)
O9i—Er1—O4W130.42 (13)O11—C1—C2119.4 (4)
O11i—Er1—O10162.82 (11)O12—C1—C2115.8 (4)
O7i—Er1—O1077.34 (12)N1—C2—C4104.3 (4)
O5—Er1—O10102.96 (12)N1—C2—C1121.7 (4)
O4—Er1—O1079.20 (11)C4—C2—C1133.7 (4)
O9i—Er1—O10118.64 (10)N2—C3—N1111.4 (4)
O4W—Er1—O1086.33 (13)N2—C3—H3124.3
O11i—Er1—O9145.10 (10)N1—C3—H3124.3
O7i—Er1—O975.86 (11)N2—C4—C2109.5 (4)
O5—Er1—O973.80 (11)N2—C4—C5115.7 (4)
O4—Er1—O9114.74 (11)C2—C4—C5134.8 (4)
O9i—Er1—O969.47 (12)O9—C5—O10118.6 (4)
O4W—Er1—O9132.82 (13)O9—C5—C4123.8 (4)
O10—Er1—O952.05 (10)O10—C5—C4117.6 (4)
O11i—Er1—C5169.83 (11)O9—C5—Er161.7 (2)
O7i—Er1—C571.00 (13)O10—C5—Er158.9 (2)
O5—Er1—C591.51 (12)C4—C5—Er1163.6 (3)
O4—Er1—C5100.37 (12)O14—C6—O13118.8 (4)
O9i—Er1—C592.68 (11)O14—C6—C7124.0 (4)
O4W—Er1—C5108.36 (14)O13—C6—C7117.2 (4)
O10—Er1—C526.44 (11)O14—C6—Er2v58.8 (2)
O9—Er1—C526.19 (11)O13—C6—Er2v60.7 (2)
O15ii—Er2—O12iii89.96 (13)C7—C6—Er2v172.0 (3)
O15ii—Er2—O1102.94 (13)C9—C7—N3109.4 (4)
O12iii—Er2—O1139.27 (12)C9—C7—C6134.6 (4)
O15ii—Er2—O1W79.51 (14)N3—C7—C6116.0 (4)
O12iii—Er2—O1W69.98 (12)N3—C8—N4111.3 (4)
O1—Er2—O1W74.63 (12)N3—C8—H8124.3
O15ii—Er2—O2iv85.40 (13)N4—C8—H8124.3
O12iii—Er2—O2iv78.38 (12)N4—C9—C7104.8 (4)
O1—Er2—O2iv140.26 (11)N4—C9—C10120.1 (4)
O1W—Er2—O2iv144.73 (11)C7—C9—C10134.9 (4)
O15ii—Er2—O14ii77.81 (12)O16—C10—O15124.0 (5)
O12iii—Er2—O14ii149.10 (12)O16—C10—C9117.7 (4)
O1—Er2—O14ii71.57 (11)O15—C10—C9118.3 (4)
O1W—Er2—O14ii133.35 (12)C3—N1—C2108.8 (4)
O2iv—Er2—O14ii72.50 (11)C3—N1—H1123 (5)
O15ii—Er2—O14v146.41 (12)C2—N1—H1127 (5)
O12iii—Er2—O14v111.88 (11)C3—N2—C4106.0 (4)
O1—Er2—O14v77.45 (11)C3—N2—Co1141.3 (3)
O1W—Er2—O14v131.03 (12)C4—N2—Co1112.6 (3)
O2iv—Er2—O14v75.04 (11)C8—N3—C7106.0 (4)
O14ii—Er2—O14v70.43 (11)C8—N3—Co1139.7 (3)
O15ii—Er2—O13v161.49 (12)C7—N3—Co1114.1 (3)
O12iii—Er2—O13v80.41 (11)C8—N4—C9108.5 (4)
O1—Er2—O13v75.46 (11)C8—N4—H2120 (4)
O1W—Er2—O13v82.34 (12)C9—N4—H2131 (4)
O2iv—Er2—O13v107.80 (11)S1—O1—Er2143.0 (2)
O14ii—Er2—O13v118.04 (10)S1—O2—Er2iv142.13 (19)
O14v—Er2—O13v51.89 (10)S1—O4—Er1142.7 (2)
O15ii—Er2—C6v171.02 (13)S2—O5—Er1141.0 (2)
O12iii—Er2—C6v98.50 (12)S2—O7—Er1i143.41 (19)
O1—Er2—C6v72.49 (12)C5—O9—Er1i143.6 (3)
O1W—Er2—C6v106.14 (13)C5—O9—Er192.2 (3)
O2iv—Er2—C6v93.33 (12)Er1i—O9—Er1110.53 (12)
O14ii—Er2—C6v93.33 (11)C5—O10—Co1115.3 (3)
O14v—Er2—C6v26.00 (11)C5—O10—Er194.6 (3)
O13v—Er2—C6v26.10 (11)Co1—O10—Er1144.42 (15)
O15ii—Er2—Er2iv113.19 (9)C1—O11—Er1i144.9 (3)
O12iii—Er2—Er2iv138.32 (8)C1—O12—Er2vi136.0 (3)
O1—Er2—Er2iv71.02 (8)C6—O13—Co1114.4 (3)
O1W—Er2—Er2iv145.23 (8)C6—O13—Er2v93.2 (3)
O2iv—Er2—Er2iv70.03 (8)Co1—O13—Er2v150.77 (15)
O14ii—Er2—Er2iv36.06 (7)C6—O14—Er2vii141.8 (3)
O14v—Er2—Er2iv34.37 (7)C6—O14—Er2v95.2 (3)
O13v—Er2—Er2iv84.04 (7)Er2vii—O14—Er2v109.57 (11)
C6v—Er2—Er2iv58.22 (9)C10—O15—Er2vii158.3 (3)
N3—Co1—N2102.00 (15)Er2—O1W—H1W123 (4)
N3—Co1—O3W100.19 (16)Er2—O1W—H2W125 (4)
N2—Co1—O3W92.08 (15)H1W—O1W—H2W108 (6)
N3—Co1—O10170.48 (14)Co1—O2W—H3W111 (5)
N2—Co1—O1078.70 (13)Co1—O2W—H4W119 (5)
O3W—Co1—O1089.25 (16)H3W—O2W—H4W119 (6)
N3—Co1—O2W95.07 (15)Co1—O3W—H5W112 (5)
N2—Co1—O2W160.56 (15)Co1—O3W—H6W113 (5)
O3W—Co1—O2W94.00 (16)H5W—O3W—H6W126 (7)
O10—Co1—O2W82.93 (14)Er1—O4W—H7W130 (5)
N3—Co1—O1377.96 (13)Er1—O4W—H8W107 (5)
N2—Co1—O1387.28 (14)H7W—O4W—H8W91 (7)
O3W—Co1—O13177.87 (16)H9W—O5W—H10W104 (7)
O10—Co1—O1392.62 (12)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x1, y, z1; (iv) x1, y, z; (v) x, y, z; (vi) x+1, y, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8viii0.86 (5)1.95 (5)2.806 (6)176 (7)
O1W—H1W···O8v0.82 (5)2.08 (5)2.885 (6)166 (5)
N4—H2···O3ix0.86 (4)1.93 (3)2.785 (5)172 (7)
O1W—H2W···O3v0.82 (5)2.01 (4)2.822 (5)170 (4)
O1W—H2W···O4v0.82 (5)2.58 (5)3.048 (5)118 (5)
O2W—H3W···O16x0.81 (4)1.92 (5)2.730 (5)176 (8)
O2W—H4W···O3v0.80 (4)2.49 (5)2.897 (5)113 (4)
O3W—H5W···O5W0.82 (7)1.89 (7)2.692 (7)169 (7)
O3W—H6W···O6i0.81 (3)2.57 (4)3.336 (6)158 (8)
O4W—H7W···O5W0.82 (4)1.98 (4)2.752 (6)158 (6)
O4W—H8W···O2W0.81 (5)2.57 (7)3.167 (6)132 (6)
O5W—H9W···O8xi0.85 (5)1.90 (5)2.737 (6)169 (5)
O5W—H10W···O16x0.86 (5)1.97 (6)2.787 (6)159 (7)
C3—H3···O6ix0.932.463.224 (7)140
Symmetry codes: (i) x, y, z+1; (v) x, y, z; (viii) x+1, y, z+1; (ix) x+1, y+1, z; (x) x+1, y+1, z; (xi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O
Mr983.84
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0512 (5), 10.6827 (6), 12.8945 (8)
α, β, γ (°)92.955 (1), 97.054 (1), 108.612 (1)
V3)1167.17 (12)
Z2
Radiation typeMo Kα
µ (mm1)8.12
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.215, 0.296
No. of measured, independent and
observed [I > 2σ(I)] reflections
6026, 4123, 3820
Rint0.017
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.03
No. of reflections4123
No. of parameters397
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 1.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O8i0.86 (5)1.95 (5)2.806 (6)176 (7)
O1W—H1W···O8ii0.82 (5)2.08 (5)2.885 (6)166 (5)
N4—H2···O3iii0.86 (4)1.93 (3)2.785 (5)172 (7)
O1W—H2W···O3ii0.82 (5)2.01 (4)2.822 (5)170 (4)
O1W—H2W···O4ii0.82 (5)2.58 (5)3.048 (5)118 (5)
O2W—H3W···O16iv0.81 (4)1.92 (5)2.730 (5)176 (8)
O2W—H4W···O3ii0.80 (4)2.49 (5)2.897 (5)113 (4)
O3W—H5W···O5W0.82 (7)1.89 (7)2.692 (7)169 (7)
O3W—H6W···O6v0.81 (3)2.57 (4)3.336 (6)158 (8)
O4W—H7W···O5W0.82 (4)1.98 (4)2.752 (6)158 (6)
O4W—H8W···O2W0.81 (5)2.57 (7)3.167 (6)132 (6)
O5W—H9W···O8vi0.85 (5)1.90 (5)2.737 (6)169 (5)
O5W—H10W···O16iv0.86 (5)1.97 (6)2.787 (6)159 (7)
C3—H3···O6iii0.932.463.224 (7)140
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x, y+1, z.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds