metal-organic compounds
Poly[[tetraaqua(μ4-imidazole-4,5-dicarboxylato)(μ3-imidazole-4,5-dicarboxylato)-μ3-sulfato-μ2-sulfato-cobalt(II)dierbium(III)] monohydrate]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: fengsun1974@yahoo.com.cn
The 2(C5H2N2O4)2(SO4)2(H2O)4]·H2O}n, contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42− anions, four coordinated water molecules and one uncoordinated water molecule. The CoII ion is six-coordinated by two O atoms from two coordinated water molecules and two O atoms and two N atoms from two imdc ligands in a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal–prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42− anions and one water O atom; the other ErIII ion is bonded to five O atoms from three imdc ligands, two O atoms from two SO42− anions as well as one coordinated water molecule. The coordinated metal units are connected by bridging imdc ligands and sulfate ions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along the b axis via N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding interactions between water molecules, SO42− anions, and imdc ligands, generating a three-dimensional framework.
of the title compound, {[CoErRelated literature
For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006); Kuang et al. (2007). For related structures, see: Sun et al. (2006); Zhu et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810047203/pv2354sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047203/pv2354Isup2.hkl
A mixture of CoSO4.7H2O (0.141 g, 0.5 mmol), Er2O3 (0.098 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.
H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with restraints: N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O). In the final difference map, the largest residual electron density and the deepest hole are located at 0.96 and 0.85 Å, respectively from Er2.
In the past few years, there has been a tremendous increase of interset in lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands because of their impressive topological structures as well aso due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.
The asymmetric unite of the title compound (Fig. 1), contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42- anions, four coordinated water molecules and one lattice water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imdc ligands, to give a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two idmc ligands, three O atoms from three SO42- anions and one water molecule; the other ErIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imdc ligands and sulfate anions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via hydrogen-bonding interactions between water molecules, SO42- anions, and imdc ligands to generate the three-dimensional framework (Tab. 1 and Fig. 2).
For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006); Kuang et al. (2007). For related structures, see: Sun et al. (2006); Zhu et al. (2010).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) -1 + x, y, z; (B) -x, -y, -z; (C) -1 + x, y, -1 + z; (D) -1 - x, -y, -z; (E) -x, -y, 1 - z. | |
Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines. |
[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O | Z = 2 |
Mr = 983.84 | F(000) = 930 |
Triclinic, P1 | Dx = 2.799 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0512 (5) Å | Cell parameters from 4400 reflections |
b = 10.6827 (6) Å | θ = 2.4–28.0° |
c = 12.8945 (8) Å | µ = 8.12 mm−1 |
α = 92.955 (1)° | T = 296 K |
β = 97.054 (1)° | Block, red |
γ = 108.612 (1)° | 0.20 × 0.18 × 0.15 mm |
V = 1167.17 (12) Å3 |
Bruker APEXII area-detector diffractometer | 4123 independent reflections |
Radiation source: fine-focus sealed tube | 3820 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scan | θmax = 25.2°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→5 |
Tmin = 0.215, Tmax = 0.296 | k = −12→12 |
6026 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0283P)2 + 1.940P] where P = (Fo2 + 2Fc2)/3 |
4123 reflections | (Δ/σ)max = 0.001 |
397 parameters | Δρmax = 0.87 e Å−3 |
12 restraints | Δρmin = −1.35 e Å−3 |
[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O | γ = 108.612 (1)° |
Mr = 983.84 | V = 1167.17 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0512 (5) Å | Mo Kα radiation |
b = 10.6827 (6) Å | µ = 8.12 mm−1 |
c = 12.8945 (8) Å | T = 296 K |
α = 92.955 (1)° | 0.20 × 0.18 × 0.15 mm |
β = 97.054 (1)° |
Bruker APEXII area-detector diffractometer | 4123 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3820 reflections with I > 2σ(I) |
Tmin = 0.215, Tmax = 0.296 | Rint = 0.017 |
6026 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 12 restraints |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.87 e Å−3 |
4123 reflections | Δρmin = −1.35 e Å−3 |
397 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Er1 | −0.09070 (2) | 0.049642 (19) | 0.366467 (14) | 0.01288 (7) | |
Er2 | −0.37193 (2) | 0.088827 (18) | −0.105666 (14) | 0.01193 (7) | |
Co1 | 0.34879 (7) | 0.28628 (6) | 0.27282 (4) | 0.01585 (14) | |
S1 | −0.22681 (13) | −0.07707 (11) | 0.09734 (8) | 0.0129 (2) | |
S2 | −0.07687 (14) | −0.27513 (11) | 0.40191 (9) | 0.0170 (2) | |
C1 | 0.4802 (5) | 0.0827 (4) | 0.6454 (3) | 0.0145 (9) | |
C2 | 0.5054 (5) | 0.1537 (4) | 0.5507 (3) | 0.0152 (9) | |
C3 | 0.6350 (6) | 0.2989 (5) | 0.4510 (4) | 0.0212 (10) | |
H3 | 0.7175 | 0.3621 | 0.4271 | 0.025* | |
C4 | 0.4062 (5) | 0.1634 (4) | 0.4630 (3) | 0.0150 (9) | |
C5 | 0.2387 (5) | 0.1004 (4) | 0.4232 (3) | 0.0144 (9) | |
C6 | 0.5165 (5) | 0.1950 (4) | 0.1209 (3) | 0.0144 (9) | |
C7 | 0.5691 (6) | 0.3402 (5) | 0.1209 (4) | 0.0177 (10) | |
C8 | 0.5776 (6) | 0.5343 (5) | 0.1817 (4) | 0.0235 (11) | |
H8 | 0.5609 | 0.6028 | 0.2209 | 0.028* | |
C9 | 0.6679 (6) | 0.4298 (4) | 0.0658 (4) | 0.0196 (10) | |
C10 | 0.7520 (6) | 0.4192 (5) | −0.0250 (4) | 0.0218 (11) | |
N1 | 0.6495 (5) | 0.2411 (4) | 0.5397 (3) | 0.0190 (9) | |
N2 | 0.4904 (5) | 0.2554 (4) | 0.4025 (3) | 0.0169 (8) | |
N3 | 0.5133 (5) | 0.4078 (4) | 0.1927 (3) | 0.0189 (9) | |
N4 | 0.6703 (5) | 0.5521 (4) | 0.1067 (3) | 0.0249 (9) | |
O1 | −0.2200 (4) | 0.0083 (3) | 0.0104 (2) | 0.0208 (7) | |
O2 | −0.3866 (4) | −0.1266 (3) | 0.1256 (3) | 0.0224 (7) | |
O3 | −0.1750 (4) | −0.1884 (3) | 0.0667 (3) | 0.0245 (8) | |
O4 | −0.1162 (4) | 0.0023 (3) | 0.1883 (2) | 0.0229 (8) | |
O5 | −0.1393 (4) | −0.1746 (3) | 0.3560 (2) | 0.0218 (7) | |
O6 | −0.1995 (5) | −0.4018 (4) | 0.3964 (3) | 0.0407 (10) | |
O7 | −0.0089 (4) | −0.2307 (3) | 0.5147 (2) | 0.0235 (8) | |
O8 | 0.0526 (4) | −0.2828 (4) | 0.3446 (3) | 0.0278 (8) | |
O9 | 0.1450 (4) | 0.0157 (3) | 0.4693 (2) | 0.0171 (7) | |
O10 | 0.1848 (4) | 0.1367 (3) | 0.3383 (2) | 0.0182 (7) | |
O11 | 0.3504 (4) | −0.0057 (3) | 0.6478 (2) | 0.0183 (7) | |
O12 | 0.5935 (4) | 0.1177 (3) | 0.7192 (2) | 0.0235 (8) | |
O13 | 0.4190 (4) | 0.1442 (3) | 0.1823 (2) | 0.0178 (7) | |
O14 | 0.5640 (4) | 0.1192 (3) | 0.0648 (2) | 0.0164 (7) | |
O15 | 0.7324 (5) | 0.3048 (3) | −0.0682 (3) | 0.0322 (9) | |
O16 | 0.8340 (5) | 0.5232 (3) | −0.0549 (3) | 0.0367 (10) | |
H2 | 0.726 (7) | 0.631 (3) | 0.097 (5) | 0.055* | |
H1 | 0.739 (4) | 0.250 (6) | 0.576 (5) | 0.055* | |
O1W | −0.1359 (4) | 0.1275 (4) | −0.1711 (3) | 0.0261 (8) | |
H1W | −0.120 (7) | 0.159 (6) | −0.227 (3) | 0.039* | |
H2W | −0.050 (4) | 0.140 (6) | −0.135 (4) | 0.039* | |
O2W | 0.1566 (5) | 0.2533 (4) | 0.1512 (3) | 0.0285 (8) | |
H3W | 0.164 (8) | 0.320 (4) | 0.122 (4) | 0.043* | |
H4W | 0.121 (7) | 0.182 (3) | 0.118 (4) | 0.043* | |
O3W | 0.2893 (6) | 0.4288 (4) | 0.3606 (3) | 0.0376 (10) | |
H5W | 0.226 (7) | 0.456 (7) | 0.326 (5) | 0.056* | |
H6W | 0.290 (9) | 0.416 (7) | 0.422 (2) | 0.056* | |
O4W | −0.1271 (5) | 0.2319 (4) | 0.2783 (3) | 0.0366 (10) | |
H7W | −0.072 (7) | 0.310 (3) | 0.286 (5) | 0.055* | |
H8W | −0.106 (8) | 0.223 (7) | 0.220 (3) | 0.055* | |
O5W | 0.0527 (6) | 0.4842 (4) | 0.2458 (3) | 0.0433 (11) | |
H9W | 0.044 (9) | 0.557 (4) | 0.269 (5) | 0.065* | |
H10W | 0.079 (9) | 0.499 (7) | 0.185 (3) | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.01014 (12) | 0.01703 (11) | 0.01108 (11) | 0.00352 (8) | 0.00105 (8) | 0.00507 (8) |
Er2 | 0.01019 (12) | 0.01510 (11) | 0.01112 (11) | 0.00425 (8) | 0.00202 (8) | 0.00503 (8) |
Co1 | 0.0167 (3) | 0.0187 (3) | 0.0132 (3) | 0.0060 (3) | 0.0037 (2) | 0.0058 (2) |
S1 | 0.0105 (6) | 0.0177 (5) | 0.0113 (5) | 0.0056 (4) | 0.0012 (4) | 0.0046 (4) |
S2 | 0.0165 (6) | 0.0160 (5) | 0.0170 (5) | 0.0042 (5) | −0.0009 (5) | 0.0020 (4) |
C1 | 0.014 (2) | 0.024 (2) | 0.010 (2) | 0.013 (2) | 0.0026 (18) | 0.0040 (18) |
C2 | 0.009 (2) | 0.021 (2) | 0.015 (2) | 0.0033 (19) | 0.0025 (18) | 0.0037 (18) |
C3 | 0.017 (3) | 0.025 (3) | 0.021 (2) | 0.003 (2) | 0.005 (2) | 0.010 (2) |
C4 | 0.017 (3) | 0.021 (2) | 0.009 (2) | 0.007 (2) | 0.0039 (18) | 0.0029 (17) |
C5 | 0.013 (2) | 0.021 (2) | 0.012 (2) | 0.0077 (19) | 0.0023 (18) | 0.0007 (18) |
C6 | 0.010 (2) | 0.018 (2) | 0.013 (2) | 0.0030 (19) | −0.0023 (18) | 0.0039 (18) |
C7 | 0.015 (2) | 0.019 (2) | 0.018 (2) | 0.0043 (19) | 0.0024 (19) | 0.0044 (18) |
C8 | 0.031 (3) | 0.018 (2) | 0.023 (2) | 0.007 (2) | 0.011 (2) | 0.0044 (19) |
C9 | 0.020 (3) | 0.016 (2) | 0.021 (2) | 0.003 (2) | 0.004 (2) | 0.0038 (19) |
C10 | 0.022 (3) | 0.019 (2) | 0.023 (2) | 0.003 (2) | 0.009 (2) | 0.006 (2) |
N1 | 0.008 (2) | 0.026 (2) | 0.0180 (19) | 0.0005 (17) | −0.0027 (16) | 0.0045 (17) |
N2 | 0.014 (2) | 0.021 (2) | 0.0164 (19) | 0.0049 (16) | 0.0034 (16) | 0.0049 (16) |
N3 | 0.023 (2) | 0.016 (2) | 0.0168 (19) | 0.0049 (17) | 0.0050 (17) | 0.0012 (15) |
N4 | 0.030 (3) | 0.016 (2) | 0.027 (2) | 0.0035 (19) | 0.0112 (19) | 0.0055 (18) |
O1 | 0.0156 (18) | 0.0305 (19) | 0.0197 (16) | 0.0097 (15) | 0.0039 (14) | 0.0155 (14) |
O2 | 0.0127 (18) | 0.0340 (19) | 0.0241 (17) | 0.0097 (15) | 0.0060 (14) | 0.0164 (15) |
O3 | 0.028 (2) | 0.0163 (17) | 0.0333 (19) | 0.0085 (15) | 0.0146 (16) | 0.0047 (14) |
O4 | 0.0192 (19) | 0.0291 (19) | 0.0143 (16) | 0.0004 (15) | −0.0006 (14) | 0.0032 (14) |
O5 | 0.0226 (19) | 0.0201 (17) | 0.0219 (17) | 0.0079 (15) | −0.0028 (14) | 0.0022 (14) |
O6 | 0.030 (2) | 0.023 (2) | 0.054 (3) | −0.0059 (17) | −0.0115 (19) | 0.0110 (18) |
O7 | 0.034 (2) | 0.0225 (18) | 0.0148 (16) | 0.0116 (16) | 0.0009 (15) | 0.0048 (13) |
O8 | 0.026 (2) | 0.044 (2) | 0.0189 (17) | 0.0186 (17) | 0.0052 (15) | 0.0015 (15) |
O9 | 0.0104 (16) | 0.0256 (18) | 0.0136 (15) | 0.0025 (14) | 0.0031 (13) | 0.0080 (13) |
O10 | 0.0124 (17) | 0.0270 (18) | 0.0146 (15) | 0.0044 (14) | 0.0032 (13) | 0.0082 (13) |
O11 | 0.0102 (17) | 0.0265 (18) | 0.0170 (16) | 0.0035 (14) | 0.0018 (13) | 0.0079 (13) |
O12 | 0.0103 (17) | 0.038 (2) | 0.0179 (16) | 0.0024 (15) | −0.0020 (14) | 0.0098 (15) |
O13 | 0.0208 (18) | 0.0150 (16) | 0.0169 (15) | 0.0024 (14) | 0.0082 (14) | 0.0045 (13) |
O14 | 0.0190 (18) | 0.0136 (15) | 0.0161 (15) | 0.0036 (13) | 0.0051 (13) | 0.0014 (12) |
O15 | 0.041 (2) | 0.0173 (18) | 0.036 (2) | 0.0022 (16) | 0.0194 (18) | 0.0018 (15) |
O16 | 0.050 (3) | 0.0216 (19) | 0.040 (2) | 0.0056 (18) | 0.026 (2) | 0.0105 (16) |
O1W | 0.0148 (19) | 0.046 (2) | 0.0222 (18) | 0.0137 (17) | 0.0050 (15) | 0.0139 (17) |
O2W | 0.032 (2) | 0.030 (2) | 0.0228 (19) | 0.0108 (19) | −0.0028 (16) | 0.0054 (16) |
O3W | 0.052 (3) | 0.035 (2) | 0.031 (2) | 0.024 (2) | 0.001 (2) | 0.0002 (18) |
O4W | 0.047 (3) | 0.025 (2) | 0.033 (2) | 0.0063 (19) | −0.001 (2) | 0.0113 (18) |
O5W | 0.063 (3) | 0.035 (2) | 0.043 (2) | 0.025 (2) | 0.025 (2) | 0.009 (2) |
Er1—O11i | 2.227 (3) | C3—H3 | 0.9300 |
Er1—O7i | 2.268 (3) | C4—N2 | 1.380 (6) |
Er1—O5 | 2.286 (3) | C4—C5 | 1.462 (6) |
Er1—O4 | 2.294 (3) | C5—O9 | 1.258 (5) |
Er1—O9i | 2.324 (3) | C5—O10 | 1.272 (5) |
Er1—O4W | 2.396 (4) | C6—O14 | 1.267 (5) |
Er1—O10 | 2.447 (3) | C6—O13 | 1.269 (5) |
Er1—O9 | 2.508 (3) | C6—C7 | 1.470 (6) |
Er1—C5 | 2.848 (4) | C6—Er2v | 2.879 (4) |
Er2—O15ii | 2.198 (3) | C7—C9 | 1.378 (7) |
Er2—O12iii | 2.291 (3) | C7—N3 | 1.383 (6) |
Er2—O1 | 2.292 (3) | C8—N3 | 1.313 (6) |
Er2—O1W | 2.316 (4) | C8—N4 | 1.338 (6) |
Er2—O2iv | 2.333 (3) | C8—H8 | 0.9300 |
Er2—O14ii | 2.373 (3) | C9—N4 | 1.376 (6) |
Er2—O14v | 2.474 (3) | C9—C10 | 1.492 (7) |
Er2—O13v | 2.514 (3) | C10—O16 | 1.234 (6) |
Er2—C6v | 2.879 (4) | C10—O15 | 1.266 (6) |
Er2—Er2iv | 3.9596 (4) | N1—H1 | 0.86 (5) |
Co1—N3 | 2.062 (4) | N4—H2 | 0.86 (4) |
Co1—N2 | 2.085 (4) | O2—Er2iv | 2.333 (3) |
Co1—O3W | 2.093 (4) | O7—Er1i | 2.268 (3) |
Co1—O10 | 2.099 (3) | O9—Er1i | 2.324 (3) |
Co1—O2W | 2.120 (4) | O11—Er1i | 2.227 (3) |
Co1—O13 | 2.165 (3) | O12—Er2vi | 2.291 (3) |
S1—O3 | 1.464 (3) | O13—Er2v | 2.514 (3) |
S1—O4 | 1.471 (3) | O14—Er2vii | 2.373 (3) |
S1—O2 | 1.471 (3) | O14—Er2v | 2.474 (3) |
S1—O1 | 1.477 (3) | O15—Er2vii | 2.198 (3) |
S2—O6 | 1.443 (4) | O1W—H1W | 0.82 (5) |
S2—O5 | 1.481 (3) | O1W—H2W | 0.82 (5) |
S2—O8 | 1.482 (4) | O2W—H3W | 0.81 (4) |
S2—O7 | 1.497 (3) | O2W—H4W | 0.80 (4) |
C1—O11 | 1.255 (6) | O3W—H5W | 0.82 (7) |
C1—O12 | 1.256 (5) | O3W—H6W | 0.81 (3) |
C1—C2 | 1.474 (6) | O4W—H7W | 0.82 (4) |
C2—N1 | 1.369 (6) | O4W—H8W | 0.81 (5) |
C2—C4 | 1.385 (6) | O5W—H9W | 0.85 (5) |
C3—N2 | 1.304 (6) | O5W—H10W | 0.86 (5) |
C3—N1 | 1.339 (6) | ||
O11i—Er1—O7i | 103.78 (12) | O2W—Co1—O13 | 87.26 (13) |
O11i—Er1—O5 | 87.24 (12) | O3—S1—O4 | 108.4 (2) |
O7i—Er1—O5 | 140.03 (11) | O3—S1—O2 | 110.1 (2) |
O11i—Er1—O4 | 89.33 (12) | O4—S1—O2 | 109.7 (2) |
O7i—Er1—O4 | 137.77 (12) | O3—S1—O1 | 109.2 (2) |
O5—Er1—O4 | 79.46 (12) | O4—S1—O1 | 107.83 (19) |
O11i—Er1—O9i | 77.27 (11) | O2—S1—O1 | 111.55 (19) |
O7i—Er1—O9i | 71.65 (11) | O6—S2—O5 | 111.1 (2) |
O5—Er1—O9i | 73.70 (11) | O6—S2—O8 | 112.1 (2) |
O4—Er1—O9i | 150.39 (11) | O5—S2—O8 | 107.4 (2) |
O11i—Er1—O4W | 77.71 (14) | O6—S2—O7 | 108.6 (2) |
O7i—Er1—O4W | 73.79 (12) | O5—S2—O7 | 109.60 (18) |
O5—Er1—O4W | 145.94 (13) | O8—S2—O7 | 107.9 (2) |
O4—Er1—O4W | 70.10 (13) | O11—C1—O12 | 124.8 (4) |
O9i—Er1—O4W | 130.42 (13) | O11—C1—C2 | 119.4 (4) |
O11i—Er1—O10 | 162.82 (11) | O12—C1—C2 | 115.8 (4) |
O7i—Er1—O10 | 77.34 (12) | N1—C2—C4 | 104.3 (4) |
O5—Er1—O10 | 102.96 (12) | N1—C2—C1 | 121.7 (4) |
O4—Er1—O10 | 79.20 (11) | C4—C2—C1 | 133.7 (4) |
O9i—Er1—O10 | 118.64 (10) | N2—C3—N1 | 111.4 (4) |
O4W—Er1—O10 | 86.33 (13) | N2—C3—H3 | 124.3 |
O11i—Er1—O9 | 145.10 (10) | N1—C3—H3 | 124.3 |
O7i—Er1—O9 | 75.86 (11) | N2—C4—C2 | 109.5 (4) |
O5—Er1—O9 | 73.80 (11) | N2—C4—C5 | 115.7 (4) |
O4—Er1—O9 | 114.74 (11) | C2—C4—C5 | 134.8 (4) |
O9i—Er1—O9 | 69.47 (12) | O9—C5—O10 | 118.6 (4) |
O4W—Er1—O9 | 132.82 (13) | O9—C5—C4 | 123.8 (4) |
O10—Er1—O9 | 52.05 (10) | O10—C5—C4 | 117.6 (4) |
O11i—Er1—C5 | 169.83 (11) | O9—C5—Er1 | 61.7 (2) |
O7i—Er1—C5 | 71.00 (13) | O10—C5—Er1 | 58.9 (2) |
O5—Er1—C5 | 91.51 (12) | C4—C5—Er1 | 163.6 (3) |
O4—Er1—C5 | 100.37 (12) | O14—C6—O13 | 118.8 (4) |
O9i—Er1—C5 | 92.68 (11) | O14—C6—C7 | 124.0 (4) |
O4W—Er1—C5 | 108.36 (14) | O13—C6—C7 | 117.2 (4) |
O10—Er1—C5 | 26.44 (11) | O14—C6—Er2v | 58.8 (2) |
O9—Er1—C5 | 26.19 (11) | O13—C6—Er2v | 60.7 (2) |
O15ii—Er2—O12iii | 89.96 (13) | C7—C6—Er2v | 172.0 (3) |
O15ii—Er2—O1 | 102.94 (13) | C9—C7—N3 | 109.4 (4) |
O12iii—Er2—O1 | 139.27 (12) | C9—C7—C6 | 134.6 (4) |
O15ii—Er2—O1W | 79.51 (14) | N3—C7—C6 | 116.0 (4) |
O12iii—Er2—O1W | 69.98 (12) | N3—C8—N4 | 111.3 (4) |
O1—Er2—O1W | 74.63 (12) | N3—C8—H8 | 124.3 |
O15ii—Er2—O2iv | 85.40 (13) | N4—C8—H8 | 124.3 |
O12iii—Er2—O2iv | 78.38 (12) | N4—C9—C7 | 104.8 (4) |
O1—Er2—O2iv | 140.26 (11) | N4—C9—C10 | 120.1 (4) |
O1W—Er2—O2iv | 144.73 (11) | C7—C9—C10 | 134.9 (4) |
O15ii—Er2—O14ii | 77.81 (12) | O16—C10—O15 | 124.0 (5) |
O12iii—Er2—O14ii | 149.10 (12) | O16—C10—C9 | 117.7 (4) |
O1—Er2—O14ii | 71.57 (11) | O15—C10—C9 | 118.3 (4) |
O1W—Er2—O14ii | 133.35 (12) | C3—N1—C2 | 108.8 (4) |
O2iv—Er2—O14ii | 72.50 (11) | C3—N1—H1 | 123 (5) |
O15ii—Er2—O14v | 146.41 (12) | C2—N1—H1 | 127 (5) |
O12iii—Er2—O14v | 111.88 (11) | C3—N2—C4 | 106.0 (4) |
O1—Er2—O14v | 77.45 (11) | C3—N2—Co1 | 141.3 (3) |
O1W—Er2—O14v | 131.03 (12) | C4—N2—Co1 | 112.6 (3) |
O2iv—Er2—O14v | 75.04 (11) | C8—N3—C7 | 106.0 (4) |
O14ii—Er2—O14v | 70.43 (11) | C8—N3—Co1 | 139.7 (3) |
O15ii—Er2—O13v | 161.49 (12) | C7—N3—Co1 | 114.1 (3) |
O12iii—Er2—O13v | 80.41 (11) | C8—N4—C9 | 108.5 (4) |
O1—Er2—O13v | 75.46 (11) | C8—N4—H2 | 120 (4) |
O1W—Er2—O13v | 82.34 (12) | C9—N4—H2 | 131 (4) |
O2iv—Er2—O13v | 107.80 (11) | S1—O1—Er2 | 143.0 (2) |
O14ii—Er2—O13v | 118.04 (10) | S1—O2—Er2iv | 142.13 (19) |
O14v—Er2—O13v | 51.89 (10) | S1—O4—Er1 | 142.7 (2) |
O15ii—Er2—C6v | 171.02 (13) | S2—O5—Er1 | 141.0 (2) |
O12iii—Er2—C6v | 98.50 (12) | S2—O7—Er1i | 143.41 (19) |
O1—Er2—C6v | 72.49 (12) | C5—O9—Er1i | 143.6 (3) |
O1W—Er2—C6v | 106.14 (13) | C5—O9—Er1 | 92.2 (3) |
O2iv—Er2—C6v | 93.33 (12) | Er1i—O9—Er1 | 110.53 (12) |
O14ii—Er2—C6v | 93.33 (11) | C5—O10—Co1 | 115.3 (3) |
O14v—Er2—C6v | 26.00 (11) | C5—O10—Er1 | 94.6 (3) |
O13v—Er2—C6v | 26.10 (11) | Co1—O10—Er1 | 144.42 (15) |
O15ii—Er2—Er2iv | 113.19 (9) | C1—O11—Er1i | 144.9 (3) |
O12iii—Er2—Er2iv | 138.32 (8) | C1—O12—Er2vi | 136.0 (3) |
O1—Er2—Er2iv | 71.02 (8) | C6—O13—Co1 | 114.4 (3) |
O1W—Er2—Er2iv | 145.23 (8) | C6—O13—Er2v | 93.2 (3) |
O2iv—Er2—Er2iv | 70.03 (8) | Co1—O13—Er2v | 150.77 (15) |
O14ii—Er2—Er2iv | 36.06 (7) | C6—O14—Er2vii | 141.8 (3) |
O14v—Er2—Er2iv | 34.37 (7) | C6—O14—Er2v | 95.2 (3) |
O13v—Er2—Er2iv | 84.04 (7) | Er2vii—O14—Er2v | 109.57 (11) |
C6v—Er2—Er2iv | 58.22 (9) | C10—O15—Er2vii | 158.3 (3) |
N3—Co1—N2 | 102.00 (15) | Er2—O1W—H1W | 123 (4) |
N3—Co1—O3W | 100.19 (16) | Er2—O1W—H2W | 125 (4) |
N2—Co1—O3W | 92.08 (15) | H1W—O1W—H2W | 108 (6) |
N3—Co1—O10 | 170.48 (14) | Co1—O2W—H3W | 111 (5) |
N2—Co1—O10 | 78.70 (13) | Co1—O2W—H4W | 119 (5) |
O3W—Co1—O10 | 89.25 (16) | H3W—O2W—H4W | 119 (6) |
N3—Co1—O2W | 95.07 (15) | Co1—O3W—H5W | 112 (5) |
N2—Co1—O2W | 160.56 (15) | Co1—O3W—H6W | 113 (5) |
O3W—Co1—O2W | 94.00 (16) | H5W—O3W—H6W | 126 (7) |
O10—Co1—O2W | 82.93 (14) | Er1—O4W—H7W | 130 (5) |
N3—Co1—O13 | 77.96 (13) | Er1—O4W—H8W | 107 (5) |
N2—Co1—O13 | 87.28 (14) | H7W—O4W—H8W | 91 (7) |
O3W—Co1—O13 | 177.87 (16) | H9W—O5W—H10W | 104 (7) |
O10—Co1—O13 | 92.62 (12) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) x−1, y, z−1; (iv) −x−1, −y, −z; (v) −x, −y, −z; (vi) x+1, y, z+1; (vii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O8viii | 0.86 (5) | 1.95 (5) | 2.806 (6) | 176 (7) |
O1W—H1W···O8v | 0.82 (5) | 2.08 (5) | 2.885 (6) | 166 (5) |
N4—H2···O3ix | 0.86 (4) | 1.93 (3) | 2.785 (5) | 172 (7) |
O1W—H2W···O3v | 0.82 (5) | 2.01 (4) | 2.822 (5) | 170 (4) |
O1W—H2W···O4v | 0.82 (5) | 2.58 (5) | 3.048 (5) | 118 (5) |
O2W—H3W···O16x | 0.81 (4) | 1.92 (5) | 2.730 (5) | 176 (8) |
O2W—H4W···O3v | 0.80 (4) | 2.49 (5) | 2.897 (5) | 113 (4) |
O3W—H5W···O5W | 0.82 (7) | 1.89 (7) | 2.692 (7) | 169 (7) |
O3W—H6W···O6i | 0.81 (3) | 2.57 (4) | 3.336 (6) | 158 (8) |
O4W—H7W···O5W | 0.82 (4) | 1.98 (4) | 2.752 (6) | 158 (6) |
O4W—H8W···O2W | 0.81 (5) | 2.57 (7) | 3.167 (6) | 132 (6) |
O5W—H9W···O8xi | 0.85 (5) | 1.90 (5) | 2.737 (6) | 169 (5) |
O5W—H10W···O16x | 0.86 (5) | 1.97 (6) | 2.787 (6) | 159 (7) |
C3—H3···O6ix | 0.93 | 2.46 | 3.224 (7) | 140 |
Symmetry codes: (i) −x, −y, −z+1; (v) −x, −y, −z; (viii) −x+1, −y, −z+1; (ix) x+1, y+1, z; (x) −x+1, −y+1, −z; (xi) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O |
Mr | 983.84 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.0512 (5), 10.6827 (6), 12.8945 (8) |
α, β, γ (°) | 92.955 (1), 97.054 (1), 108.612 (1) |
V (Å3) | 1167.17 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.12 |
Crystal size (mm) | 0.20 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.215, 0.296 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6026, 4123, 3820 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.055, 1.03 |
No. of reflections | 4123 |
No. of parameters | 397 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.87, −1.35 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O8i | 0.86 (5) | 1.95 (5) | 2.806 (6) | 176 (7) |
O1W—H1W···O8ii | 0.82 (5) | 2.08 (5) | 2.885 (6) | 166 (5) |
N4—H2···O3iii | 0.86 (4) | 1.93 (3) | 2.785 (5) | 172 (7) |
O1W—H2W···O3ii | 0.82 (5) | 2.01 (4) | 2.822 (5) | 170 (4) |
O1W—H2W···O4ii | 0.82 (5) | 2.58 (5) | 3.048 (5) | 118 (5) |
O2W—H3W···O16iv | 0.81 (4) | 1.92 (5) | 2.730 (5) | 176 (8) |
O2W—H4W···O3ii | 0.80 (4) | 2.49 (5) | 2.897 (5) | 113 (4) |
O3W—H5W···O5W | 0.82 (7) | 1.89 (7) | 2.692 (7) | 169 (7) |
O3W—H6W···O6v | 0.81 (3) | 2.57 (4) | 3.336 (6) | 158 (8) |
O4W—H7W···O5W | 0.82 (4) | 1.98 (4) | 2.752 (6) | 158 (6) |
O4W—H8W···O2W | 0.81 (5) | 2.57 (7) | 3.167 (6) | 132 (6) |
O5W—H9W···O8vi | 0.85 (5) | 1.90 (5) | 2.737 (6) | 169 (5) |
O5W—H10W···O16iv | 0.86 (5) | 1.97 (6) | 2.787 (6) | 159 (7) |
C3—H3···O6iii | 0.93 | 2.46 | 3.224 (7) | 140 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z; (v) −x, −y, −z+1; (vi) x, y+1, z. |
Acknowledgements
The author acknowledges South China Normal University for supporting this work.
References
Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. Web of Science CSD CrossRef CAS Google Scholar
Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702. Web of Science CSD CrossRef Google Scholar
Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past few years, there has been a tremendous increase of interset in lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands because of their impressive topological structures as well aso due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.
The asymmetric unite of the title compound (Fig. 1), contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42- anions, four coordinated water molecules and one lattice water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imdc ligands, to give a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two idmc ligands, three O atoms from three SO42- anions and one water molecule; the other ErIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imdc ligands and sulfate anions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via hydrogen-bonding interactions between water molecules, SO42- anions, and imdc ligands to generate the three-dimensional framework (Tab. 1 and Fig. 2).