organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(3-fluoro­phen­yl)-6-(naphthalen-1-yl)pyridine-3-carbo­nitrile

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and bDepartment of Chemical Engineering, Yancheng College of Textile Technology, Yancheng 224051, People's Republic of China
*Correspondence e-mail: xujiaying-1984@163.com

(Received 7 November 2010; accepted 19 November 2010; online 24 November 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C22H14FN3, which differ slightly in the relative orientations of the naphthyl and phenyl groups with respect to the pyridyl ring framework. In one mol­ecule, the naphthyl ring system and the phenyl ring form dihedral of angles 56.50 (2) and 48.23 (3)°, respectively, with the pyridyl ring plane. In the other mol­ecule, the corresponding dihedral angles are 50.01 (2) and 51.1 (3)°, respectively. In the crystal, inter­molecular N—H⋯N hydrogen bonds connect the independent mol­ecules into dimers.

Related literature

For general background to the use of the title compound an inter­mediate, see: Moreau et al. (1999[Moreau, J. L. & Huber, G. (1999). Brain Res. Rev. 31, 65-82.]). For the synthetic procedure, see: Mantri et al. (2008[Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449-4455.]). For related structures, see: Mkhalid et al. (2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489-491.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14FN3

  • Mr = 339.36

  • Triclinic, [P \overline 1]

  • a = 11.750 (2) Å

  • b = 12.703 (3) Å

  • c = 13.457 (3) Å

  • α = 73.33 (3)°

  • β = 86.82 (3)°

  • γ = 63.98 (3)°

  • V = 1723.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.991

  • 6662 measured reflections

  • 6327 independent reflections

  • 3964 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.00

  • 6327 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.86 2.30 3.108 (3) 157
N5—H5B⋯N1ii 0.86 2.25 3.031 (3) 152
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an intermediate which can be used in many fields such as medicine (Moreau et al., (1999). Herein we report its crystal structure. There are two independen tmolecules in an asymmetric unit of the title compound (Fig. 1), which differ slightly in the relative orientations of the naphthyl and phenyl groups with respect to the pyridyl ring framework. In one of the molecules, the naphthyl (C1—C10) and phenyl ring planes (C16 to C21) form torsion angles 56.50 (2) and 48.23 (3)°, respectively, with the middle pyridyl ring plane. In the other molecule, the corresponding torsion angles are 50.01 (2) and 51.1 (3)°, respectively. There are intermolecular N—H···N hydrogen bonds, which connect the independent molecules into dimers (Fig. 2 and Tab. 1). In addition, there are weak C—H···N intramolecular hydrogen bonds in each molecule.

Related literature top

For general background to the use of the title compound an intermediate, see: Moreau et al. (1999). For the synthetic procedure, see: Mantri et al. (2008). For related structures, see: Mkhalid et al. (2006).

Experimental top

The title compound was prepared by the literature method (Mantri, 2008). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature in about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C/N).

Structure description top

The title compound is an intermediate which can be used in many fields such as medicine (Moreau et al., (1999). Herein we report its crystal structure. There are two independen tmolecules in an asymmetric unit of the title compound (Fig. 1), which differ slightly in the relative orientations of the naphthyl and phenyl groups with respect to the pyridyl ring framework. In one of the molecules, the naphthyl (C1—C10) and phenyl ring planes (C16 to C21) form torsion angles 56.50 (2) and 48.23 (3)°, respectively, with the middle pyridyl ring plane. In the other molecule, the corresponding torsion angles are 50.01 (2) and 51.1 (3)°, respectively. There are intermolecular N—H···N hydrogen bonds, which connect the independent molecules into dimers (Fig. 2 and Tab. 1). In addition, there are weak C—H···N intramolecular hydrogen bonds in each molecule.

For general background to the use of the title compound an intermediate, see: Moreau et al. (1999). For the synthetic procedure, see: Mantri et al. (2008). For related structures, see: Mkhalid et al. (2006).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective drawing of the two molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing dimers formed via hydrogen bonding. H atoms not involved in hydrogen bonds have been omitted for clarity. Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.
2-Amino-4-(3-fluorophenyl)-6-(naphthalen-1-yl)pyridine-3-carbonitrile top
Crystal data top
C22H14FN3Z = 4
Mr = 339.36F(000) = 704
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.750 (2) ÅCell parameters from 25 reflections
b = 12.703 (3) Åθ = 10–13°
c = 13.457 (3) ŵ = 0.09 mm1
α = 73.33 (3)°T = 293 K
β = 86.82 (3)°Block, colourless
γ = 63.98 (3)°0.30 × 0.20 × 0.10 mm
V = 1723.4 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 1315
Tmin = 0.975, Tmax = 0.991l = 1616
6662 measured reflections3 standard reflections every 200 reflections
6327 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6327 reflectionsΔρmax = 0.18 e Å3
470 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C22H14FN3γ = 63.98 (3)°
Mr = 339.36V = 1723.4 (8) Å3
Triclinic, P1Z = 4
a = 11.750 (2) ÅMo Kα radiation
b = 12.703 (3) ŵ = 0.09 mm1
c = 13.457 (3) ÅT = 293 K
α = 73.33 (3)°0.30 × 0.20 × 0.10 mm
β = 86.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3964 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.975, Tmax = 0.9913 standard reflections every 200 reflections
6662 measured reflections intensity decay: 1%
6327 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
6327 reflectionsΔρmin = 0.20 e Å3
470 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0789 (2)0.84614 (19)0.70934 (14)0.0980 (7)
N10.14789 (18)0.52342 (18)0.30964 (16)0.0442 (5)
N20.0617 (2)0.5757 (2)0.33579 (19)0.0648 (7)
H2A0.05870.52520.30350.078*
H2B0.13140.61680.35970.078*
N30.1749 (2)0.7921 (2)0.4670 (2)0.0736 (8)
C10.4154 (2)0.5319 (3)0.1941 (2)0.0533 (7)
H1B0.38240.61630.18020.064*
C20.5166 (3)0.4717 (3)0.1393 (2)0.0657 (8)
H2C0.54910.51620.08920.079*
C30.5665 (3)0.3487 (3)0.1598 (2)0.0682 (9)
H3A0.63290.30960.12250.082*
C40.5205 (2)0.2784 (3)0.2362 (2)0.0526 (7)
C50.5736 (3)0.1498 (3)0.2592 (3)0.0718 (9)
H5A0.64040.10970.22290.086*
C60.5285 (3)0.0841 (3)0.3335 (3)0.0739 (9)
H6A0.56300.00040.34660.089*
C70.4306 (3)0.1425 (3)0.3905 (2)0.0618 (8)
H7A0.40150.09640.44260.074*
C80.3770 (2)0.2665 (2)0.37059 (19)0.0486 (6)
H8A0.31210.30380.40970.058*
C90.4182 (2)0.3390 (2)0.29187 (18)0.0420 (6)
C100.3645 (2)0.4693 (2)0.26713 (18)0.0417 (6)
C110.2517 (2)0.5404 (2)0.31648 (17)0.0391 (6)
C120.0431 (2)0.5904 (2)0.34890 (19)0.0441 (6)
C130.0410 (2)0.6724 (2)0.40287 (18)0.0406 (6)
C140.1493 (2)0.6890 (2)0.41083 (17)0.0398 (6)
C150.2547 (2)0.6228 (2)0.36471 (18)0.0425 (6)
H15A0.32800.63350.36600.051*
C160.1532 (2)0.7746 (2)0.46487 (18)0.0419 (6)
C170.1095 (2)0.7728 (2)0.56394 (19)0.0496 (6)
H17A0.07430.72010.59640.060*
C180.1196 (3)0.8499 (3)0.6121 (2)0.0580 (7)
C190.1671 (3)0.9304 (3)0.5684 (2)0.0654 (8)
H19A0.17160.98210.60330.079*
C200.2090 (3)0.9333 (3)0.4696 (3)0.0675 (8)
H20A0.24130.98840.43730.081*
C210.2032 (2)0.8552 (2)0.4187 (2)0.0534 (7)
H21A0.23320.85710.35310.064*
C220.0769 (3)0.7401 (2)0.4407 (2)0.0496 (6)
F21.1717 (2)0.0812 (2)0.19963 (18)0.1277 (9)
N40.93059 (18)0.46094 (17)0.16255 (15)0.0425 (5)
N51.12797 (19)0.3232 (2)0.24295 (18)0.0627 (7)
H5B1.12010.37070.27990.075*
H5C1.19600.25560.25150.075*
N61.2344 (2)0.0654 (2)0.1625 (2)0.0689 (7)
C230.6735 (2)0.6982 (2)0.0081 (2)0.0477 (6)
H23A0.70820.67970.06830.057*
C240.5719 (3)0.8136 (2)0.0161 (2)0.0598 (8)
H24A0.54020.87020.08120.072*
C250.5195 (3)0.8432 (2)0.0703 (2)0.0582 (7)
H25A0.45390.92080.06390.070*
C260.5635 (2)0.7576 (2)0.1697 (2)0.0454 (6)
C270.5086 (3)0.7860 (3)0.2608 (2)0.0617 (8)
H27A0.44580.86460.25550.074*
C280.5453 (3)0.7015 (3)0.3551 (2)0.0676 (9)
H28A0.50960.72210.41420.081*
C290.6378 (3)0.5825 (3)0.3629 (2)0.0645 (8)
H29A0.66020.52310.42720.077*
C300.6958 (2)0.5522 (2)0.27764 (19)0.0483 (6)
H30A0.75750.47260.28500.058*
C310.6637 (2)0.6395 (2)0.17865 (18)0.0386 (6)
C320.7222 (2)0.6128 (2)0.08634 (18)0.0387 (6)
C330.8349 (2)0.4955 (2)0.09160 (18)0.0389 (6)
C341.0336 (2)0.3545 (2)0.17145 (19)0.0425 (6)
C351.0429 (2)0.2773 (2)0.11042 (18)0.0399 (6)
C360.9455 (2)0.3158 (2)0.03418 (18)0.0399 (6)
C370.8406 (2)0.4266 (2)0.02531 (18)0.0421 (6)
H37A0.77400.45530.02460.050*
C380.9551 (2)0.2384 (2)0.03374 (18)0.0453 (6)
C391.0620 (3)0.1951 (3)0.0867 (2)0.0616 (8)
H39A1.12870.21460.08180.074*
C401.0671 (3)0.1222 (3)0.1472 (2)0.0746 (10)
C410.9727 (4)0.0891 (3)0.1559 (2)0.0806 (11)
H41A0.98030.03810.19610.097*
C420.8678 (3)0.1329 (3)0.1043 (2)0.0752 (9)
H42A0.80170.11270.10980.090*
C430.8581 (3)0.2075 (2)0.0435 (2)0.0582 (7)
H43A0.78540.23710.00870.070*
C441.1486 (2)0.1592 (2)0.1355 (2)0.0474 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1427 (19)0.1135 (16)0.0613 (12)0.0636 (15)0.0257 (12)0.0511 (11)
N10.0374 (11)0.0473 (12)0.0523 (13)0.0180 (10)0.0051 (9)0.0224 (10)
N20.0424 (13)0.0780 (17)0.0986 (19)0.0288 (12)0.0184 (13)0.0596 (15)
N30.0572 (16)0.0741 (18)0.098 (2)0.0262 (14)0.0272 (15)0.0454 (16)
C10.0564 (16)0.0697 (18)0.0492 (16)0.0368 (15)0.0082 (13)0.0258 (14)
C20.0676 (19)0.103 (3)0.0548 (18)0.056 (2)0.0262 (15)0.0385 (18)
C30.0524 (17)0.108 (3)0.067 (2)0.0390 (19)0.0276 (15)0.056 (2)
C40.0367 (14)0.0717 (19)0.0516 (16)0.0164 (14)0.0064 (12)0.0337 (14)
C50.0493 (17)0.080 (2)0.076 (2)0.0056 (17)0.0039 (16)0.0450 (19)
C60.067 (2)0.0535 (18)0.080 (2)0.0019 (16)0.0105 (18)0.0261 (17)
C70.0553 (17)0.0534 (17)0.0627 (18)0.0140 (14)0.0061 (14)0.0113 (14)
C80.0376 (13)0.0531 (16)0.0467 (15)0.0113 (12)0.0003 (11)0.0164 (13)
C90.0324 (12)0.0549 (15)0.0409 (14)0.0156 (12)0.0005 (10)0.0225 (12)
C100.0365 (13)0.0568 (16)0.0388 (13)0.0213 (12)0.0031 (11)0.0227 (12)
C110.0389 (13)0.0420 (13)0.0352 (13)0.0166 (11)0.0027 (10)0.0117 (11)
C120.0379 (13)0.0446 (14)0.0537 (15)0.0176 (11)0.0057 (11)0.0214 (12)
C130.0393 (13)0.0401 (13)0.0425 (14)0.0151 (11)0.0051 (11)0.0168 (11)
C140.0462 (14)0.0377 (13)0.0347 (13)0.0181 (11)0.0021 (11)0.0101 (10)
C150.0411 (14)0.0488 (14)0.0436 (14)0.0228 (12)0.0038 (11)0.0171 (12)
C160.0420 (14)0.0403 (13)0.0418 (14)0.0145 (11)0.0016 (11)0.0147 (11)
C170.0574 (16)0.0486 (15)0.0450 (15)0.0231 (13)0.0026 (12)0.0172 (12)
C180.0671 (19)0.0623 (18)0.0479 (16)0.0238 (16)0.0033 (14)0.0285 (14)
C190.071 (2)0.0639 (19)0.073 (2)0.0287 (17)0.0039 (16)0.0372 (16)
C200.073 (2)0.0658 (19)0.082 (2)0.0422 (17)0.0104 (17)0.0306 (17)
C210.0554 (16)0.0591 (17)0.0560 (17)0.0307 (14)0.0082 (13)0.0233 (14)
C220.0518 (16)0.0493 (15)0.0574 (16)0.0255 (14)0.0103 (13)0.0257 (13)
F20.1271 (19)0.138 (2)0.1066 (17)0.0206 (16)0.0424 (15)0.0871 (16)
N40.0350 (11)0.0414 (11)0.0517 (12)0.0109 (9)0.0019 (9)0.0240 (10)
N50.0414 (12)0.0647 (15)0.0767 (16)0.0025 (11)0.0149 (11)0.0436 (13)
N60.0590 (15)0.0497 (15)0.0838 (18)0.0059 (13)0.0038 (13)0.0270 (13)
C230.0495 (15)0.0469 (15)0.0446 (15)0.0185 (13)0.0034 (12)0.0153 (12)
C240.0603 (18)0.0463 (16)0.0525 (17)0.0116 (14)0.0051 (14)0.0031 (13)
C250.0503 (16)0.0379 (14)0.0666 (19)0.0030 (12)0.0010 (14)0.0133 (14)
C260.0385 (13)0.0420 (14)0.0544 (16)0.0126 (11)0.0036 (12)0.0207 (12)
C270.0443 (16)0.0639 (18)0.073 (2)0.0101 (14)0.0071 (14)0.0374 (17)
C280.0502 (17)0.093 (2)0.0523 (18)0.0161 (17)0.0083 (14)0.0379 (18)
C290.0481 (16)0.083 (2)0.0451 (16)0.0177 (16)0.0003 (13)0.0117 (15)
C300.0336 (13)0.0509 (15)0.0489 (15)0.0092 (12)0.0015 (11)0.0129 (13)
C310.0304 (12)0.0410 (13)0.0454 (14)0.0134 (11)0.0003 (10)0.0177 (11)
C320.0357 (13)0.0368 (13)0.0458 (14)0.0142 (11)0.0011 (11)0.0176 (11)
C330.0342 (12)0.0389 (13)0.0426 (14)0.0132 (11)0.0026 (11)0.0154 (11)
C340.0375 (13)0.0471 (14)0.0455 (14)0.0148 (12)0.0023 (11)0.0236 (12)
C350.0377 (13)0.0379 (13)0.0431 (14)0.0122 (11)0.0071 (11)0.0186 (11)
C360.0425 (14)0.0399 (13)0.0371 (13)0.0150 (11)0.0057 (11)0.0167 (11)
C370.0414 (13)0.0442 (14)0.0425 (14)0.0158 (11)0.0006 (11)0.0197 (11)
C380.0531 (15)0.0389 (13)0.0366 (13)0.0103 (12)0.0023 (11)0.0160 (11)
C390.0697 (19)0.0598 (17)0.0519 (16)0.0189 (15)0.0097 (14)0.0280 (14)
C400.087 (2)0.0625 (19)0.0509 (18)0.0042 (18)0.0111 (17)0.0318 (16)
C410.115 (3)0.0545 (19)0.059 (2)0.013 (2)0.019 (2)0.0321 (16)
C420.092 (2)0.0621 (19)0.074 (2)0.0260 (18)0.0182 (19)0.0328 (18)
C430.0658 (18)0.0546 (17)0.0582 (17)0.0222 (15)0.0026 (14)0.0279 (14)
C440.0464 (15)0.0452 (15)0.0530 (16)0.0164 (13)0.0060 (12)0.0243 (13)
Geometric parameters (Å, º) top
F1—C181.363 (3)F2—C401.354 (3)
N1—C121.336 (3)N4—C341.339 (3)
N1—C111.341 (3)N4—C331.347 (3)
N2—C121.352 (3)N5—C341.351 (3)
N2—H2A0.8600N5—H5B0.8600
N2—H2B0.8600N5—H5C0.8600
N3—C221.144 (3)N6—C441.143 (3)
C1—C101.364 (3)C23—C321.366 (3)
C1—C21.403 (4)C23—C241.405 (4)
C1—H1B0.9300C23—H23A0.9300
C2—C31.352 (4)C24—C251.357 (4)
C2—H2C0.9300C24—H24A0.9300
C3—C41.409 (4)C25—C261.410 (4)
C3—H3A0.9300C25—H25A0.9300
C4—C51.411 (4)C26—C271.418 (3)
C4—C91.420 (3)C26—C311.419 (3)
C5—C61.351 (4)C27—C281.349 (4)
C5—H5A0.9300C27—H27A0.9300
C6—C71.394 (4)C28—C291.398 (4)
C6—H6A0.9300C28—H28A0.9300
C7—C81.362 (4)C29—C301.365 (3)
C7—H7A0.9300C29—H29A0.9300
C8—C91.407 (3)C30—C311.410 (3)
C8—H8A0.9300C30—H30A0.9300
C9—C101.428 (3)C31—C321.440 (3)
C10—C111.486 (3)C32—C331.483 (3)
C11—C151.394 (3)C33—C371.398 (3)
C12—C131.423 (3)C34—C351.416 (3)
C13—C141.392 (3)C35—C361.397 (3)
C13—C221.430 (3)C35—C441.425 (3)
C14—C151.388 (3)C36—C371.383 (3)
C14—C161.488 (3)C36—C381.491 (3)
C15—H15A0.9300C37—H37A0.9300
C16—C211.380 (3)C38—C431.381 (4)
C16—C171.399 (3)C38—C391.381 (4)
C17—C181.367 (4)C39—C401.380 (4)
C17—H17A0.9300C39—H39A0.9300
C18—C191.350 (4)C40—C411.369 (5)
C19—C201.387 (4)C41—C421.355 (4)
C19—H19A0.9300C41—H41A0.9300
C20—C211.383 (4)C42—C431.386 (4)
C20—H20A0.9300C42—H42A0.9300
C21—H21A0.9300C43—H43A0.9300
C12—N1—C11118.2 (2)C34—N4—C33118.28 (19)
C12—N2—H2A120.0C34—N5—H5B120.0
C12—N2—H2B120.0C34—N5—H5C120.0
H2A—N2—H2B120.0H5B—N5—H5C120.0
C10—C1—C2121.5 (3)C32—C23—C24121.1 (2)
C10—C1—H1B119.2C32—C23—H23A119.4
C2—C1—H1B119.2C24—C23—H23A119.4
C3—C2—C1119.8 (3)C25—C24—C23120.7 (2)
C3—C2—H2C120.1C25—C24—H24A119.6
C1—C2—H2C120.1C23—C24—H24A119.6
C2—C3—C4121.5 (3)C24—C25—C26120.7 (2)
C2—C3—H3A119.3C24—C25—H25A119.7
C4—C3—H3A119.3C26—C25—H25A119.7
C3—C4—C5121.8 (3)C25—C26—C27121.6 (2)
C3—C4—C9118.8 (3)C25—C26—C31119.2 (2)
C5—C4—C9119.3 (3)C27—C26—C31119.2 (2)
C6—C5—C4120.8 (3)C28—C27—C26121.4 (3)
C6—C5—H5A119.6C28—C27—H27A119.3
C4—C5—H5A119.6C26—C27—H27A119.3
C5—C6—C7120.2 (3)C27—C28—C29119.3 (3)
C5—C6—H6A119.9C27—C28—H28A120.3
C7—C6—H6A119.9C29—C28—H28A120.3
C8—C7—C6120.6 (3)C30—C29—C28121.1 (3)
C8—C7—H7A119.7C30—C29—H29A119.4
C6—C7—H7A119.7C28—C29—H29A119.4
C7—C8—C9121.1 (2)C29—C30—C31121.1 (2)
C7—C8—H8A119.4C29—C30—H30A119.4
C9—C8—H8A119.4C31—C30—H30A119.4
C8—C9—C4117.8 (2)C30—C31—C26117.5 (2)
C8—C9—C10123.4 (2)C30—C31—C32123.5 (2)
C4—C9—C10118.8 (2)C26—C31—C32118.9 (2)
C1—C10—C9119.5 (2)C23—C32—C31119.2 (2)
C1—C10—C11118.4 (2)C23—C32—C33119.3 (2)
C9—C10—C11122.1 (2)C31—C32—C33121.5 (2)
N1—C11—C15122.5 (2)N4—C33—C37122.6 (2)
N1—C11—C10116.8 (2)N4—C33—C32116.09 (19)
C15—C11—C10120.6 (2)C37—C33—C32121.3 (2)
N1—C12—N2116.7 (2)N4—C34—N5116.6 (2)
N1—C12—C13122.2 (2)N4—C34—C35122.0 (2)
N2—C12—C13121.1 (2)N5—C34—C35121.4 (2)
C14—C13—C12119.4 (2)C36—C35—C34119.4 (2)
C14—C13—C22123.2 (2)C36—C35—C44123.1 (2)
C12—C13—C22117.2 (2)C34—C35—C44117.4 (2)
C15—C14—C13117.1 (2)C37—C36—C35117.7 (2)
C15—C14—C16120.7 (2)C37—C36—C38121.8 (2)
C13—C14—C16122.2 (2)C35—C36—C38120.5 (2)
C14—C15—C11120.5 (2)C36—C37—C33119.9 (2)
C14—C15—H15A119.8C36—C37—H37A120.1
C11—C15—H15A119.8C33—C37—H37A120.1
C21—C16—C17118.9 (2)C43—C38—C39119.1 (2)
C21—C16—C14120.2 (2)C43—C38—C36120.5 (2)
C17—C16—C14120.9 (2)C39—C38—C36120.4 (2)
C18—C17—C16118.8 (3)C40—C39—C38118.1 (3)
C18—C17—H17A120.6C40—C39—H39A120.9
C16—C17—H17A120.6C38—C39—H39A120.9
C19—C18—F1118.0 (2)F2—C40—C41119.0 (3)
C19—C18—C17123.5 (3)F2—C40—C39117.7 (4)
F1—C18—C17118.4 (3)C41—C40—C39123.3 (3)
C18—C19—C20117.7 (3)C42—C41—C40118.1 (3)
C18—C19—H19A121.1C42—C41—H41A121.0
C20—C19—H19A121.1C40—C41—H41A121.0
C21—C20—C19120.8 (3)C41—C42—C43120.5 (3)
C21—C20—H20A119.6C41—C42—H42A119.7
C19—C20—H20A119.6C43—C42—H42A119.7
C16—C21—C20120.2 (3)C38—C43—C42120.9 (3)
C16—C21—H21A119.9C38—C43—H43A119.6
C20—C21—H21A119.9C42—C43—H43A119.6
N3—C22—C13175.7 (3)N6—C44—C35175.1 (3)
C10—C1—C2—C30.9 (4)C32—C23—C24—C250.1 (4)
C1—C2—C3—C40.8 (4)C23—C24—C25—C261.8 (4)
C2—C3—C4—C5178.9 (3)C24—C25—C26—C27178.9 (3)
C2—C3—C4—C90.7 (4)C24—C25—C26—C310.0 (4)
C3—C4—C5—C6179.5 (3)C25—C26—C27—C28175.7 (3)
C9—C4—C5—C60.1 (4)C31—C26—C27—C283.2 (4)
C4—C5—C6—C71.6 (5)C26—C27—C28—C291.3 (5)
C5—C6—C7—C81.5 (5)C27—C28—C29—C303.2 (5)
C6—C7—C8—C90.4 (4)C28—C29—C30—C310.5 (4)
C7—C8—C9—C42.1 (4)C29—C30—C31—C263.9 (4)
C7—C8—C9—C10179.3 (2)C29—C30—C31—C32179.6 (2)
C3—C4—C9—C8177.6 (2)C25—C26—C31—C30173.3 (2)
C5—C4—C9—C82.0 (4)C27—C26—C31—C305.6 (3)
C3—C4—C9—C101.0 (3)C25—C26—C31—C323.4 (3)
C5—C4—C9—C10179.4 (2)C27—C26—C31—C32177.7 (2)
C2—C1—C10—C92.6 (4)C24—C23—C32—C313.4 (4)
C2—C1—C10—C11175.8 (2)C24—C23—C32—C33176.0 (2)
C8—C9—C10—C1175.9 (2)C30—C31—C32—C23171.4 (2)
C4—C9—C10—C12.6 (3)C26—C31—C32—C235.1 (3)
C8—C9—C10—C115.8 (4)C30—C31—C32—C339.3 (3)
C4—C9—C10—C11175.7 (2)C26—C31—C32—C33174.3 (2)
C12—N1—C11—C151.4 (4)C34—N4—C33—C371.9 (3)
C12—N1—C11—C10176.9 (2)C34—N4—C33—C32178.9 (2)
C1—C10—C11—N1123.8 (2)C23—C32—C33—N4131.0 (2)
C9—C10—C11—N154.6 (3)C31—C32—C33—N448.3 (3)
C1—C10—C11—C1554.6 (3)C23—C32—C33—C3748.2 (3)
C9—C10—C11—C15127.1 (3)C31—C32—C33—C37132.4 (2)
C11—N1—C12—N2176.6 (2)C33—N4—C34—N5179.6 (2)
C11—N1—C12—C134.0 (4)C33—N4—C34—C351.4 (4)
N1—C12—C13—C143.4 (4)N4—C34—C35—C363.9 (4)
N2—C12—C13—C14177.2 (2)N5—C34—C35—C36177.1 (2)
N1—C12—C13—C22179.5 (2)N4—C34—C35—C44171.9 (2)
N2—C12—C13—C221.1 (4)N5—C34—C35—C447.1 (4)
C12—C13—C14—C150.1 (3)C34—C35—C36—C373.0 (3)
C22—C13—C14—C15175.9 (2)C44—C35—C36—C37172.5 (2)
C12—C13—C14—C16179.2 (2)C34—C35—C36—C38177.8 (2)
C22—C13—C14—C163.3 (4)C44—C35—C36—C386.7 (4)
C13—C14—C15—C112.4 (3)C35—C36—C37—C330.1 (3)
C16—C14—C15—C11178.4 (2)C38—C36—C37—C33179.1 (2)
N1—C11—C15—C141.8 (4)N4—C33—C37—C362.7 (4)
C10—C11—C15—C14179.9 (2)C32—C33—C37—C36178.2 (2)
C15—C14—C16—C2146.0 (3)C37—C36—C38—C4351.8 (3)
C13—C14—C16—C21133.2 (3)C35—C36—C38—C43127.4 (3)
C15—C14—C16—C17132.4 (3)C37—C36—C38—C39129.1 (3)
C13—C14—C16—C1748.4 (3)C35—C36—C38—C3951.7 (3)
C21—C16—C17—C180.9 (4)C43—C38—C39—C400.2 (4)
C14—C16—C17—C18177.5 (2)C36—C38—C39—C40179.0 (3)
C16—C17—C18—C191.5 (4)C38—C39—C40—F2179.4 (3)
C16—C17—C18—F1178.9 (2)C38—C39—C40—C411.1 (5)
F1—C18—C19—C20179.7 (3)F2—C40—C41—C42178.8 (3)
C17—C18—C19—C200.7 (5)C39—C40—C41—C421.6 (5)
C18—C19—C20—C210.7 (5)C40—C41—C42—C430.9 (5)
C17—C16—C21—C200.5 (4)C39—C38—C43—C420.8 (4)
C14—C16—C21—C20178.8 (3)C36—C38—C43—C42178.3 (3)
C19—C20—C21—C161.3 (4)C41—C42—C43—C380.3 (5)
C14—C13—C22—N3161 (4)C36—C35—C44—N6156 (3)
C12—C13—C22—N315 (4)C34—C35—C44—N619 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.303.108 (3)157
N5—H5B···N1ii0.862.253.031 (3)152
C8—H8A···N10.932.593.094 (3)114
C30—H30A···N40.932.533.017 (3)113
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H14FN3
Mr339.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.750 (2), 12.703 (3), 13.457 (3)
α, β, γ (°)73.33 (3), 86.82 (3), 63.98 (3)
V3)1723.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6662, 6327, 3964
Rint0.021
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.00
No. of reflections6327
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.303.108 (3)157
N5—H5B···N1ii0.862.253.031 (3)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, and the program of Talent Introduction in Yancheng Institute of Technology (XKR2010055) for support.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreau, J. L. & Huber, G. (1999). Brain Res. Rev. 31, 65–82.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds