organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–2-(carb­­oxy­methyl­sulfan­yl)pyridine-3-carb­­oxy­lic acid (1/1)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 7 November 2010; accepted 20 November 2010; online 27 November 2010)

In the title co-crystal, C10H8N2·C8H7NO4S, the formate group is coplanar with the pyridyl ring of the acid [dihedral angle = 6.2 (7)°], while the carb­oxy­methyl­sulfanyl group makes a C—S—C—C torsion angle of 70.2 (1)° with the pyridine ring. The dihedral angle between the pyridyl rings of the 4,4′-bipyridine mol­ecule is 27.4 (1)°. The acid and the 4,4′-bipyridine mol­ecules are involved in hydrogen bonding via carb­oxy­lic O and pyridyl N atoms. The structure is further consolidated by inter­molecular C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For related structures, see: Wang & Feng (2010[Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.]); Zhu et al. (2002[Zhu, J. X., Zhao, Y. J., Hong, M. C., Sun, D. F., Shi, Q. & Chao, R. (2002). Chem. Lett. pp. 484-500.]); Smith & Sagatys (2003[Smith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540-o541.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C8H7NO4S

  • Mr = 369.40

  • Monoclinic, P 21 /c

  • a = 9.3684 (3) Å

  • b = 10.3044 (3) Å

  • c = 18.2264 (5) Å

  • β = 106.494 (2)°

  • V = 1687.09 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.41 × 0.25 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.978

  • 24834 measured reflections

  • 3927 independent reflections

  • 3106 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.144

  • S = 1.08

  • 3927 reflections

  • 241 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2i 0.86 (2) 1.79 (2) 2.6564 (18) 178 (2)
O3—H3B⋯N3ii 0.86 (2) 1.82 (2) 2.6618 (18) 167 (2)
C4—H4A⋯O4iii 0.93 2.55 3.213 (2) 128
C15—H15A⋯O2ii 0.93 2.39 3.0664 (19) 130
C18—H18A⋯o2ii 0.93 2.70 3.232 (2) 117
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of a number of mercaptonicotinic derivatives have been reported, such as 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid monohydrate (Wang et al., 2010), bis(3-carboxypyrid-2-yl)disulfide monohydrate (Zhu et al., 2002) and ammonium 2-mercaptopyridine-3-carboxylate monohydrate (Smith et al., 2003). In an attempt to synthesize a cobalt complex with 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid and 4,4'-bipyridine, we obtained the title compound, (I), unexpectedly. In this article, we report the crystal structure of (I).

The title compound is composed of 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (C8H7NO4S) and 4,4'-bipyridine (C10H8N2) (Fig. 1). In the acid moiety, the formate group is coplanar with the pyridyl ring, while the carboxymethylsulfanyl group is almost vartical to the plane formed by the pyridine ring atoms with torsion angle, C1—S1—C7—C8, 70.2 (1)°. The dihedral angle between the pyridyl rings of the 4,4'-bipyridine molecule is 27.4 (1)°. The acid and the 4,4'-bipyridine molecules are involved in hydrogen bonding via carboxylic O and pyridyl N atoms. The structure is further consolidated by intermolecular hydrogen bonds of type C—H···O (Fig. 2 and Tab. 1).

Related literature top

For related structures, see: Wang et al. (2010); Zhu et al. (2002); Smith et al. (2003)

Experimental top

2-(Carboxymethylsulfanyl)pyridine-3-carboxylic acid was prepared according to the literature method (Wang et al., 2010). A mixture of CoCl2.6H2O (0.2379 g, 1.0 mmol), 4,4'-bipyridine (0.0468 g, 0.3 mmol) and 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (0.2134 g, 1.0 mmol) was dissolved in 10.0 ml of distilled water and 3.0 ml ethanol at 328 K. The resulting solution was stirred and refluxed under basic condition for 2 h, the mixture was cooled to room temperature and filtered. Single crystals suitable for X-ray diffraction were obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model with C—H = 0.93 and 0.97 Å for aryl and methylene H-atoms and Uiso(H) = 1.2Ueq(C). The oxygen-bound H-atoms was located in a difference Fourier map and refined with the O—H distance restrained to 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Structure description top

The crystal structures of a number of mercaptonicotinic derivatives have been reported, such as 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid monohydrate (Wang et al., 2010), bis(3-carboxypyrid-2-yl)disulfide monohydrate (Zhu et al., 2002) and ammonium 2-mercaptopyridine-3-carboxylate monohydrate (Smith et al., 2003). In an attempt to synthesize a cobalt complex with 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid and 4,4'-bipyridine, we obtained the title compound, (I), unexpectedly. In this article, we report the crystal structure of (I).

The title compound is composed of 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (C8H7NO4S) and 4,4'-bipyridine (C10H8N2) (Fig. 1). In the acid moiety, the formate group is coplanar with the pyridyl ring, while the carboxymethylsulfanyl group is almost vartical to the plane formed by the pyridine ring atoms with torsion angle, C1—S1—C7—C8, 70.2 (1)°. The dihedral angle between the pyridyl rings of the 4,4'-bipyridine molecule is 27.4 (1)°. The acid and the 4,4'-bipyridine molecules are involved in hydrogen bonding via carboxylic O and pyridyl N atoms. The structure is further consolidated by intermolecular hydrogen bonds of type C—H···O (Fig. 2 and Tab. 1).

For related structures, see: Wang et al. (2010); Zhu et al. (2002); Smith et al. (2003)

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A unit cell packing of (I); intermolecular hydrogen bonds have been depicted by dashed lines.
4,4'-Bipyridine–2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (1/1) top
Crystal data top
C10H8N2·C8H7NO4SF(000) = 768
Mr = 369.40Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7490 reflections
a = 9.3684 (3) Åθ = 2.3–27.7°
b = 10.3044 (3) ŵ = 0.22 mm1
c = 18.2264 (5) ÅT = 296 K
β = 106.494 (2)°Block, colourless
V = 1687.09 (9) Å30.41 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3927 independent reflections
Radiation source: fine-focus sealed tube3106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.935, Tmax = 0.978k = 1313
24834 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3927 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H8N2·C8H7NO4SV = 1687.09 (9) Å3
Mr = 369.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3684 (3) ŵ = 0.22 mm1
b = 10.3044 (3) ÅT = 296 K
c = 18.2264 (5) Å0.41 × 0.25 × 0.10 mm
β = 106.494 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3106 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.978Rint = 0.028
24834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
3927 reflectionsΔρmin = 0.25 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58161 (5)0.38154 (4)0.14705 (2)0.04516 (16)
O10.80222 (16)0.58013 (13)0.00541 (8)0.0686 (4)
H1B0.837 (2)0.6539 (17)0.0143 (12)0.082*
O20.72352 (16)0.57771 (12)0.09792 (7)0.0640 (4)
O30.70285 (16)0.13228 (12)0.22294 (9)0.0705 (4)
H3B0.740 (2)0.0553 (17)0.2308 (13)0.085*
O40.49171 (15)0.02161 (13)0.18621 (8)0.0722 (4)
N10.52552 (13)0.21214 (12)0.03258 (7)0.0418 (3)
C10.58945 (15)0.32661 (14)0.05633 (7)0.0368 (3)
C20.65886 (15)0.40173 (13)0.01174 (8)0.0382 (3)
C30.65803 (17)0.35450 (15)0.05940 (9)0.0439 (4)
H3A0.70200.40220.09050.053*
C40.59198 (17)0.23668 (16)0.08426 (8)0.0472 (4)
H4A0.59060.20350.13190.057*
C50.52829 (17)0.17006 (15)0.03640 (9)0.0453 (4)
H5A0.48420.09040.05300.054*
C60.73076 (16)0.52758 (14)0.03952 (8)0.0424 (3)
C70.48104 (17)0.25100 (16)0.17466 (8)0.0467 (4)
H7A0.45080.27940.21870.056*
H7B0.39090.23670.13330.056*
C80.5588 (2)0.12241 (15)0.19413 (9)0.0475 (4)
N20.08632 (19)0.19297 (15)0.05293 (10)0.0635 (4)
N30.16287 (17)0.40694 (14)0.23065 (9)0.0560 (4)
C90.0353 (2)0.18397 (18)0.11218 (13)0.0652 (5)
H9A0.08840.25950.12960.078*
C100.1626 (2)0.0845 (2)0.03031 (12)0.0622 (5)
H10A0.24820.08880.01080.075*
C110.08680 (19)0.07012 (17)0.14907 (10)0.0551 (4)
H11A0.17390.06900.18930.066*
C120.12119 (17)0.03452 (18)0.06467 (9)0.0529 (4)
H12A0.17870.10790.04720.064*
C130.00740 (16)0.04348 (15)0.12563 (9)0.0415 (3)
C140.05830 (16)0.16981 (15)0.16269 (8)0.0401 (3)
C150.14430 (19)0.17679 (16)0.23814 (9)0.0500 (4)
H15A0.16830.10180.26750.060*
C160.02397 (18)0.28557 (16)0.12271 (10)0.0513 (4)
H16A0.03520.28590.07220.062*
C170.0788 (2)0.39998 (17)0.15887 (11)0.0584 (5)
H17A0.05540.47680.13130.070*
C180.19387 (19)0.29589 (19)0.26931 (9)0.0558 (4)
H18A0.25200.29900.32000.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0619 (3)0.0338 (2)0.0371 (2)0.00022 (15)0.00974 (18)0.00146 (13)
O10.0904 (9)0.0499 (7)0.0768 (9)0.0340 (7)0.0421 (7)0.0215 (7)
O20.0957 (9)0.0453 (7)0.0505 (7)0.0223 (6)0.0201 (6)0.0118 (5)
O30.0620 (8)0.0418 (7)0.0978 (11)0.0049 (5)0.0069 (7)0.0182 (7)
O40.0866 (9)0.0450 (7)0.0837 (9)0.0169 (6)0.0219 (7)0.0054 (6)
N10.0473 (7)0.0326 (6)0.0419 (6)0.0030 (5)0.0066 (5)0.0008 (5)
C10.0382 (7)0.0311 (7)0.0360 (7)0.0029 (5)0.0021 (5)0.0002 (5)
C20.0377 (7)0.0323 (7)0.0402 (7)0.0007 (5)0.0038 (6)0.0013 (6)
C30.0503 (8)0.0385 (8)0.0432 (8)0.0029 (6)0.0136 (7)0.0021 (6)
C40.0578 (9)0.0420 (9)0.0402 (7)0.0048 (7)0.0113 (6)0.0091 (6)
C50.0513 (8)0.0337 (8)0.0446 (8)0.0048 (6)0.0035 (6)0.0057 (6)
C60.0441 (7)0.0346 (7)0.0441 (8)0.0022 (6)0.0053 (6)0.0012 (6)
C70.0519 (8)0.0475 (9)0.0423 (7)0.0013 (7)0.0159 (6)0.0000 (7)
C80.0648 (10)0.0396 (9)0.0400 (8)0.0031 (7)0.0180 (7)0.0010 (6)
N20.0739 (10)0.0459 (9)0.0798 (11)0.0249 (7)0.0365 (8)0.0189 (8)
N30.0591 (8)0.0457 (8)0.0636 (9)0.0107 (6)0.0180 (7)0.0158 (7)
C90.0743 (12)0.0388 (9)0.0883 (14)0.0044 (8)0.0326 (11)0.0061 (9)
C100.0542 (10)0.0619 (12)0.0694 (12)0.0208 (8)0.0157 (9)0.0180 (10)
C110.0557 (10)0.0412 (9)0.0656 (11)0.0013 (7)0.0129 (8)0.0010 (7)
C120.0454 (8)0.0477 (9)0.0611 (10)0.0055 (7)0.0077 (7)0.0079 (8)
C130.0412 (7)0.0378 (8)0.0466 (7)0.0066 (6)0.0141 (6)0.0018 (6)
C140.0396 (7)0.0361 (8)0.0445 (7)0.0038 (6)0.0114 (6)0.0025 (6)
C150.0582 (9)0.0453 (9)0.0437 (8)0.0038 (7)0.0097 (7)0.0010 (7)
C160.0546 (9)0.0411 (9)0.0513 (8)0.0014 (7)0.0035 (7)0.0008 (7)
C170.0675 (11)0.0355 (9)0.0692 (11)0.0010 (7)0.0143 (9)0.0013 (8)
C180.0603 (10)0.0592 (11)0.0447 (8)0.0069 (8)0.0098 (7)0.0095 (8)
Geometric parameters (Å, º) top
S1—C11.7688 (14)N2—C101.328 (3)
S1—C71.7943 (17)N2—C91.332 (3)
O1—C61.3127 (19)N3—C171.324 (2)
O1—H1B0.864 (16)N3—C181.332 (2)
O2—C61.2023 (19)C9—C111.370 (2)
O3—C81.305 (2)C9—H9A0.9300
O3—H3B0.861 (16)C10—C121.382 (2)
O4—C81.2015 (19)C10—H10A0.9300
N1—C51.3373 (19)C11—C131.388 (2)
N1—C11.3379 (18)C11—H11A0.9300
C1—C21.408 (2)C12—C131.391 (2)
C2—C31.383 (2)C12—H12A0.9300
C2—C61.4827 (19)C13—C141.482 (2)
C3—C41.379 (2)C14—C151.384 (2)
C3—H3A0.9300C14—C161.387 (2)
C4—C51.372 (2)C15—C181.377 (2)
C4—H4A0.9300C15—H15A0.9300
C5—H5A0.9300C16—C171.377 (2)
C7—C81.505 (2)C16—H16A0.9300
C7—H7A0.9700C17—H17A0.9300
C7—H7B0.9700C18—H18A0.9300
C1—S1—C7100.76 (7)C17—N3—C18117.10 (15)
C6—O1—H1B107.7 (15)N2—C9—C11123.95 (18)
C8—O3—H3B108.5 (15)N2—C9—H9A118.0
C5—N1—C1117.62 (13)C11—C9—H9A118.0
N1—C1—C2122.38 (13)N2—C10—C12123.33 (17)
N1—C1—S1116.80 (11)N2—C10—H10A118.3
C2—C1—S1120.81 (11)C12—C10—H10A118.3
C3—C2—C1117.85 (13)C9—C11—C13119.21 (16)
C3—C2—C6120.60 (14)C9—C11—H11A120.4
C1—C2—C6121.55 (13)C13—C11—H11A120.4
C4—C3—C2120.01 (14)C10—C12—C13119.28 (16)
C4—C3—H3A120.0C10—C12—H12A120.4
C2—C3—H3A120.0C13—C12—H12A120.4
C5—C4—C3117.84 (14)C11—C13—C12117.19 (14)
C5—C4—H4A121.1C11—C13—C14121.72 (13)
C3—C4—H4A121.1C12—C13—C14121.08 (14)
N1—C5—C4124.29 (14)C15—C14—C16117.39 (14)
N1—C5—H5A117.9C15—C14—C13121.31 (14)
C4—C5—H5A117.9C16—C14—C13121.29 (13)
O2—C6—O1122.82 (14)C18—C15—C14119.29 (15)
O2—C6—C2122.94 (14)C18—C15—H15A120.4
O1—C6—C2114.24 (13)C14—C15—H15A120.4
C8—C7—S1117.93 (12)C17—C16—C14119.04 (15)
C8—C7—H7A107.8C17—C16—H16A120.5
S1—C7—H7A107.8C14—C16—H16A120.5
C8—C7—H7B107.8N3—C17—C16123.77 (17)
S1—C7—H7B107.8N3—C17—H17A118.1
H7A—C7—H7B107.2C16—C17—H17A118.1
O4—C8—O3124.16 (16)N3—C18—C15123.39 (15)
O4—C8—C7122.06 (17)N3—C18—H18A118.3
O3—C8—C7113.72 (14)C15—C18—H18A118.3
C10—N2—C9117.01 (15)
C5—N1—C1—C20.4 (2)C10—N2—C9—C111.7 (3)
C5—N1—C1—S1178.95 (11)C9—N2—C10—C120.4 (3)
C7—S1—C1—N10.26 (12)N2—C9—C11—C131.7 (3)
C7—S1—C1—C2179.13 (11)N2—C10—C12—C130.7 (3)
N1—C1—C2—C30.8 (2)C9—C11—C13—C120.5 (2)
S1—C1—C2—C3178.52 (11)C9—C11—C13—C14179.32 (15)
N1—C1—C2—C6179.22 (12)C10—C12—C13—C110.6 (2)
S1—C1—C2—C61.43 (18)C10—C12—C13—C14178.20 (15)
C1—C2—C3—C40.7 (2)C11—C13—C14—C1527.4 (2)
C6—C2—C3—C4179.39 (14)C12—C13—C14—C15153.82 (17)
C2—C3—C4—C50.1 (2)C11—C13—C14—C16151.38 (17)
C1—N1—C5—C40.2 (2)C12—C13—C14—C1627.4 (2)
C3—C4—C5—N10.3 (2)C16—C14—C15—C181.3 (2)
C3—C2—C6—O2173.56 (15)C13—C14—C15—C18177.51 (15)
C1—C2—C6—O26.4 (2)C15—C14—C16—C171.3 (2)
C3—C2—C6—O16.0 (2)C13—C14—C16—C17177.48 (15)
C1—C2—C6—O1174.06 (14)C18—N3—C17—C160.6 (3)
C1—S1—C7—C870.16 (12)C14—C16—C17—N30.4 (3)
S1—C7—C8—O4152.53 (14)C17—N3—C18—C150.6 (3)
S1—C7—C8—O330.22 (19)C14—C15—C18—N30.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.86 (2)1.79 (2)2.6564 (18)178 (2)
O3—H3B···N3ii0.86 (2)1.82 (2)2.6618 (18)167 (2)
C4—H4A···O4iii0.932.553.213 (2)128
C15—H15A···O2ii0.932.393.0664 (19)130
C18—H18A···o2ii0.932.703.232 (2)117
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·C8H7NO4S
Mr369.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3684 (3), 10.3044 (3), 18.2264 (5)
β (°) 106.494 (2)
V3)1687.09 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.41 × 0.25 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.935, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
24834, 3927, 3106
Rint0.028
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.144, 1.08
No. of reflections3927
No. of parameters241
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.864 (16)1.792 (16)2.6564 (18)178 (2)
O3—H3B···N3ii0.861 (16)1.816 (16)2.6618 (18)167 (2)
C4—H4A···O4iii0.932.553.213 (2)128.2
C15—H15A···O2ii0.932.393.0664 (19)129.8
C18—H18A···o2ii0.932.703.232 (2)117.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540–o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, J. X., Zhao, Y. J., Hong, M. C., Sun, D. F., Shi, Q. & Chao, R. (2002). Chem. Lett. pp. 484–500.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds