organic compounds
Diacetamidinium sulfate
aInstitute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
*Correspondence e-mail: zdenek.jalovy@upce.cz
In the 2H7N2+·SO42−, which contains four cations and two anions in the the ions are interconnected by an extensive hydrogen-bonding system whereby two of the O atoms of sulfate ion are hydrogen-bonded to the amidinium H atoms of two cations, leading to the formation of two eight-membered rings. The two remaining O atoms interconnect two H atoms of acetamidinium cations, forming an infinite chain. The C⋯N separations within the H2N⋯C⋯NH2 moieties are similar, with an average value of 1.305 (2) Å, which is in good agreement with a delocalization model.
of the title compound, 2CRelated literature
For preparation, reactivity and behaviour of similar compounds, see: Jalový et al. (2005); Latypov et al. (1998); Taylor & Ehrhart (1960). For related structures, see: Calov & Jost (1990); Cannon et al. (1976); Emirdag-Eanes & Ibers (2002); Ferretti et al. (2004); Jalový et al. (2009); Tominey et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810049160/rk2242sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049160/rk2242Isup2.hkl
Acetamidinium acetate (1.50 g, 12.7 mmol; Taylor & Ehrhart, 1960) was dissolved in propan–2–ol (15 ml). Sulfuric acid (100%; 0.62 g, 6.3 mmol) was then slowly added. The precipitated product was filtered and washed with fresh propan–2–ol to give 1.15 g (84.6 %) of white solid, m.p. 483–485 K (484-485 K; Jalový et al., 2005). Elementary analysis calc. for C4H14N4O4S: C, 22.42%; H, 6.58%; N, 26.16%; S, 14.96%. Found: C, 23.16%; H, 6.27%; N, 25.98%; S, 15.26%. Spectral characteristic are the same as described previously by Jalový et al., (2005). The crystals suitable for X–ray were prepared by crystallization from methanol by slow cooling of the hot solution.
All the hydrogens were discernible in the difference
However, all the hydrogens were situated into idealized positions and refined riding on their parent C or N atoms, with N—H = 0.86Å, C—H = 0.96Å for methyl, Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(C) for methyl H atoms, respectively.Acetamidinium sulphate, C4H14N4O4S, (Scheme 1), is a starting material for the synthesis of insensitive explosive 2,2–dinitroethene–1,1–diamine (Latypov et al., 1998; Jalový et al., 2005). It has low hygroscopicity with comparison to commercially available acetamidinium hydrochloride. The title compound was prepared from acetamidinium acetate and equivalent amount of sulfuric acid.
The ═NH2 cationand the literature data, where the range 1.302–1.312Å was found. The comparison of the title compound with the published structures can be made on the bases of two different criteria. The first, all acetamidinium salts reveal the same geometry and structural parameters of the acetamidinium ion. The second criterion is the type of the supramolecular structure formed. There are large differences between the title compound where the two planar layers of acetamidinium ions are interconnected to the infinite double layer. Other 2D structures are found for the acetamidinium formate (Tominey et al., 2006), dinitromethanide (Jalový et al., 2009), amidinium acetate (Ferretti et al., 2004) with the stairs like layered structure and one of the polymorphs of amidinium (2–hydroxyethoxy)acetate (Ferretti et al., 2004). On the other hand, the second polymorph of amidinium (2–hydroxyethoxy)acetate (Ferretti et al., 2004), acetamidinium tetrazolate (Tominey et al., 2006) and acetamidinium chloride (Cannon et al., 1976) reveal 3D structures with large cavities. There are a couple of related acetamidinium ion containing structures which are of interest as for example bis(acetamidinium) hexafluorosilicate (Calov & Jost, 1990) where the multicentered contacts between acetamidinium hydrogen atoms and fluorine atoms were found and the selenium and rhenium containing cluster compound where the hydrogen contacts of acetamidinium ion with cyano group bonded to the rhenium atoms and a short contact between selenium and nitrogen atoms were found (Emirdag-Eanes et al., 2002).
of acetamidinium sulfate has been determined in order to evaluate the of these ionic species. Two crystallographically independent bisacetamidinium sulfates were found in the (Fig. 1). The molecular structure of the title compound is made up of two mutually similar acetamidinium units and one sulfate ion. All these ions are interconnected by extensive hydrogen bonding systems where two of the oxygen atoms of sulfate ion (O1 and O2) are bonded to the exo–amidinium hydrogen atoms of two units which leading to the formation of two 8–membered rings (Fig. 2). The S–O distances for these particular oxygen atoms O1 and O2 are slightly elongated in comparison to remaining two oxygen atoms O3 and O4 which form a chain. On the other hand, two remaining oxygen atoms interconnect two endo–hydrogen atoms of acetamidinium units forming thus an infinite chain. The C–N separations within the H2N···C···NH2 fragments are mutually similar with average value of 1.305 (2)Å which is with a good agreement with a delocalization concept of the double bond in H2N-C(CH3)For preparation, reactivity and behaviour of similar compounds, see: Jalový et al. (2005); Latypov et al. (1998); Taylor & Ehrhart (1960). For related structures, see: Calov & Jost (1990); Cannon et al. (1976); Emirdag-Eanes & Ibers (2002); Ferretti et al. (2004); Jalový et al. (2009); Tominey et al. (2006).
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids are shown on 50% probability level. The H atoms are presented as a spheres of arbitrary radius. | |
Fig. 2. View of the motif of the structure with the hydrogen bonding. |
2C2H7N2+·O4S2− | Z = 4 |
Mr = 214.26 | F(000) = 456 |
Triclinic, P1 | Dx = 1.459 Mg m−3 |
Hall symbol: -P 1 | Melting point = 483–485 K |
a = 8.0961 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1668 (4) Å | Cell parameters from 20921 reflections |
c = 11.8821 (6) Å | θ = 1–27.5° |
α = 96.199 (4)° | µ = 0.33 mm−1 |
β = 105.905 (3)° | T = 150 K |
γ = 105.615 (4)° | Block, colourless |
V = 975.63 (8) Å3 | 0.44 × 0.23 × 0.21 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 4459 independent reflections |
Radiation source: fine–focus sealed tube | 3623 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.4° |
φ– and ω–scans to fill the Ewald sphere | h = −10→10 |
Absorption correction: gaussian (Coppens, 1970) | k = −14→14 |
Tmin = 0.915, Tmax = 0.958 | l = −15→15 |
20866 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.6492P] where P = (Fo2 + 2Fc2)/3 |
4459 reflections | (Δ/σ)max < 0.001 |
239 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
2C2H7N2+·O4S2− | γ = 105.615 (4)° |
Mr = 214.26 | V = 975.63 (8) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.0961 (3) Å | Mo Kα radiation |
b = 11.1668 (4) Å | µ = 0.33 mm−1 |
c = 11.8821 (6) Å | T = 150 K |
α = 96.199 (4)° | 0.44 × 0.23 × 0.21 mm |
β = 105.905 (3)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 4459 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 3623 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 0.958 | Rint = 0.040 |
20866 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.23 e Å−3 |
4459 reflections | Δρmin = −0.46 e Å−3 |
239 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.79775 (6) | 0.46840 (4) | 0.72331 (4) | 0.01727 (12) | |
S2 | 0.19510 (6) | 0.03481 (4) | 0.78098 (4) | 0.01627 (12) | |
O6 | 0.16125 (19) | 0.02135 (13) | 0.89534 (12) | 0.0213 (3) | |
O7 | 0.1162 (2) | −0.08915 (13) | 0.69712 (12) | 0.0239 (3) | |
O3 | 0.71625 (18) | 0.37497 (12) | 0.60982 (12) | 0.0209 (3) | |
O2 | 0.71148 (19) | 0.42348 (14) | 0.81242 (12) | 0.0235 (3) | |
O4 | 0.99312 (18) | 0.48642 (13) | 0.76995 (12) | 0.0219 (3) | |
O5 | 0.11266 (18) | 0.12598 (12) | 0.72686 (12) | 0.0208 (3) | |
N12 | −0.0434 (2) | 0.77755 (16) | 0.91285 (15) | 0.0216 (3) | |
H12A | −0.1251 | 0.7271 | 0.8509 | 0.026* | |
H12B | 0.0103 | 0.8539 | 0.9086 | 0.026* | |
O8 | 0.39298 (18) | 0.07972 (14) | 0.80283 (12) | 0.0240 (3) | |
N18 | 0.4617 (2) | 0.13845 (16) | 0.59125 (15) | 0.0215 (3) | |
H18A | 0.4545 | 0.1115 | 0.6554 | 0.026* | |
H18B | 0.5520 | 0.2017 | 0.5939 | 0.026* | |
N15 | 0.3313 (2) | 0.36087 (16) | 0.70691 (15) | 0.0215 (3) | |
H15A | 0.4408 | 0.3939 | 0.7535 | 0.026* | |
H15B | 0.2610 | 0.2951 | 0.7205 | 0.026* | |
O1 | 0.7676 (2) | 0.59000 (13) | 0.70173 (12) | 0.0242 (3) | |
N16 | 0.3762 (2) | 0.51104 (15) | 0.59222 (15) | 0.0213 (3) | |
H16A | 0.4861 | 0.5455 | 0.6377 | 0.026* | |
H16B | 0.3343 | 0.5421 | 0.5315 | 0.026* | |
N11 | −0.0796 (2) | 0.62260 (16) | 1.02350 (15) | 0.0215 (3) | |
H11A | −0.1618 | 0.5704 | 0.9628 | 0.026* | |
H11B | −0.0493 | 0.5990 | 1.0907 | 0.026* | |
N13 | 0.2530 (2) | 0.72388 (16) | 0.79442 (15) | 0.0225 (4) | |
H13A | 0.2178 | 0.7767 | 0.7537 | 0.027* | |
H13B | 0.1849 | 0.6465 | 0.7801 | 0.027* | |
N14 | 0.5176 (2) | 0.87828 (16) | 0.90289 (15) | 0.0227 (4) | |
H14A | 0.4860 | 0.9332 | 0.8636 | 0.027* | |
H14B | 0.6201 | 0.9001 | 0.9585 | 0.027* | |
C7 | 0.3355 (3) | 0.08310 (17) | 0.48927 (17) | 0.0183 (4) | |
N17 | 0.1957 (2) | −0.01346 (15) | 0.48128 (15) | 0.0215 (3) | |
H17A | 0.1850 | −0.0424 | 0.5440 | 0.026* | |
H17B | 0.1146 | −0.0480 | 0.4132 | 0.026* | |
C3 | 0.4094 (3) | 0.76088 (18) | 0.87780 (17) | 0.0195 (4) | |
C5 | 0.2718 (3) | 0.41071 (17) | 0.61547 (17) | 0.0179 (4) | |
C1 | −0.0009 (3) | 0.73845 (18) | 1.01366 (17) | 0.0182 (4) | |
C6 | 0.0825 (3) | 0.3512 (2) | 0.53533 (19) | 0.0242 (4) | |
H6A | 0.0713 | 0.2708 | 0.4909 | 0.036* | |
H6B | 0.0520 | 0.4056 | 0.4811 | 0.036* | |
H6C | 0.0020 | 0.3390 | 0.5822 | 0.036* | |
C4 | 0.4675 (3) | 0.6675 (2) | 0.9475 (2) | 0.0314 (5) | |
H4A | 0.4360 | 0.6735 | 1.0197 | 0.047* | |
H4B | 0.5960 | 0.6857 | 0.9670 | 0.047* | |
H4C | 0.4079 | 0.5834 | 0.9007 | 0.047* | |
C2 | 0.1430 (3) | 0.82735 (19) | 1.11939 (18) | 0.0235 (4) | |
H2A | 0.2583 | 0.8190 | 1.1205 | 0.035* | |
H2B | 0.1189 | 0.8074 | 1.1911 | 0.035* | |
H2C | 0.1442 | 0.9128 | 1.1146 | 0.035* | |
C8 | 0.3526 (3) | 0.1306 (2) | 0.37894 (18) | 0.0278 (5) | |
H8A | 0.2818 | 0.1869 | 0.3620 | 0.042* | |
H8B | 0.3099 | 0.0602 | 0.3131 | 0.042* | |
H8C | 0.4771 | 0.1753 | 0.3907 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0150 (2) | 0.0162 (2) | 0.0149 (2) | −0.00007 (17) | 0.00017 (17) | 0.00432 (17) |
S2 | 0.0153 (2) | 0.0161 (2) | 0.0141 (2) | 0.00153 (17) | 0.00173 (17) | 0.00533 (16) |
O6 | 0.0210 (7) | 0.0234 (7) | 0.0168 (7) | 0.0018 (5) | 0.0056 (5) | 0.0072 (5) |
O7 | 0.0275 (8) | 0.0182 (7) | 0.0197 (7) | 0.0040 (6) | 0.0012 (6) | 0.0022 (5) |
O3 | 0.0208 (7) | 0.0179 (7) | 0.0167 (6) | 0.0004 (5) | 0.0004 (5) | 0.0026 (5) |
O2 | 0.0189 (7) | 0.0289 (8) | 0.0194 (7) | 0.0017 (6) | 0.0048 (6) | 0.0090 (6) |
O4 | 0.0154 (7) | 0.0233 (7) | 0.0210 (7) | 0.0006 (5) | 0.0008 (5) | 0.0072 (5) |
O5 | 0.0201 (7) | 0.0172 (7) | 0.0211 (7) | 0.0030 (5) | 0.0015 (5) | 0.0079 (5) |
N12 | 0.0230 (9) | 0.0174 (8) | 0.0190 (8) | 0.0015 (6) | 0.0028 (7) | 0.0034 (6) |
O8 | 0.0158 (7) | 0.0305 (8) | 0.0223 (7) | 0.0027 (6) | 0.0035 (6) | 0.0102 (6) |
N18 | 0.0202 (8) | 0.0201 (8) | 0.0193 (8) | −0.0008 (6) | 0.0059 (7) | 0.0036 (6) |
N15 | 0.0186 (8) | 0.0202 (8) | 0.0233 (8) | 0.0024 (6) | 0.0052 (7) | 0.0083 (7) |
O1 | 0.0267 (8) | 0.0163 (7) | 0.0222 (7) | 0.0029 (6) | −0.0001 (6) | 0.0041 (5) |
N16 | 0.0206 (8) | 0.0210 (8) | 0.0187 (8) | 0.0035 (7) | 0.0020 (7) | 0.0081 (6) |
N11 | 0.0203 (8) | 0.0217 (8) | 0.0178 (8) | 0.0029 (7) | 0.0010 (7) | 0.0063 (6) |
N13 | 0.0194 (8) | 0.0176 (8) | 0.0252 (9) | 0.0022 (6) | 0.0026 (7) | 0.0043 (7) |
N14 | 0.0187 (8) | 0.0224 (8) | 0.0209 (8) | 0.0021 (7) | 0.0003 (7) | 0.0049 (7) |
C7 | 0.0184 (9) | 0.0173 (9) | 0.0202 (9) | 0.0067 (7) | 0.0068 (7) | 0.0038 (7) |
N17 | 0.0188 (8) | 0.0229 (8) | 0.0167 (8) | 0.0003 (7) | 0.0022 (6) | 0.0036 (6) |
C3 | 0.0198 (9) | 0.0209 (9) | 0.0186 (9) | 0.0063 (7) | 0.0076 (7) | 0.0035 (7) |
C5 | 0.0192 (9) | 0.0161 (9) | 0.0181 (9) | 0.0058 (7) | 0.0064 (7) | 0.0009 (7) |
C1 | 0.0158 (9) | 0.0203 (9) | 0.0197 (9) | 0.0068 (7) | 0.0064 (7) | 0.0032 (7) |
C6 | 0.0181 (10) | 0.0256 (10) | 0.0255 (10) | 0.0040 (8) | 0.0043 (8) | 0.0049 (8) |
C4 | 0.0303 (12) | 0.0270 (11) | 0.0352 (12) | 0.0107 (9) | 0.0045 (10) | 0.0099 (9) |
C2 | 0.0195 (10) | 0.0243 (10) | 0.0215 (10) | 0.0044 (8) | 0.0028 (8) | −0.0003 (8) |
C8 | 0.0304 (12) | 0.0301 (11) | 0.0216 (10) | 0.0045 (9) | 0.0096 (9) | 0.0083 (8) |
S1—O4 | 1.4743 (14) | N13—H13A | 0.8600 |
S1—O3 | 1.4766 (14) | N13—H13B | 0.8600 |
S1—O1 | 1.4795 (14) | N14—C3 | 1.315 (3) |
S1—O2 | 1.4806 (14) | N14—H14A | 0.8600 |
S2—O5 | 1.4722 (14) | N14—H14B | 0.8600 |
S2—O6 | 1.4732 (13) | C7—N17 | 1.309 (2) |
S2—O7 | 1.4813 (14) | C7—C8 | 1.493 (3) |
S2—O8 | 1.4822 (14) | N17—H17A | 0.8600 |
N12—C1 | 1.308 (3) | N17—H17B | 0.8600 |
N12—H12A | 0.8600 | C3—C4 | 1.494 (3) |
N12—H12B | 0.8600 | C5—C6 | 1.487 (3) |
N18—C7 | 1.309 (3) | C1—C2 | 1.492 (3) |
N18—H18A | 0.8600 | C6—H6A | 0.9600 |
N18—H18B | 0.8600 | C6—H6B | 0.9600 |
N15—C5 | 1.308 (3) | C6—H6C | 0.9600 |
N15—H15A | 0.8600 | C4—H4A | 0.9600 |
N15—H15B | 0.8600 | C4—H4B | 0.9600 |
N16—C5 | 1.316 (2) | C4—H4C | 0.9600 |
N16—H16A | 0.8600 | C2—H2A | 0.9600 |
N16—H16B | 0.8600 | C2—H2B | 0.9600 |
N11—C1 | 1.313 (3) | C2—H2C | 0.9600 |
N11—H11A | 0.8600 | C8—H8A | 0.9600 |
N11—H11B | 0.8600 | C8—H8B | 0.9600 |
N13—C3 | 1.303 (3) | C8—H8C | 0.9600 |
O4—S1—O3 | 110.00 (8) | C7—N17—H17A | 120.1 |
O4—S1—O1 | 110.05 (8) | C7—N17—H17B | 119.9 |
O3—S1—O1 | 108.83 (8) | H17A—N17—H17B | 120.0 |
O4—S1—O2 | 109.08 (8) | N13—C3—N14 | 121.98 (18) |
O3—S1—O2 | 110.04 (8) | N13—C3—C4 | 119.16 (19) |
O1—S1—O2 | 108.83 (9) | N14—C3—C4 | 118.87 (19) |
O5—S2—O6 | 110.39 (8) | N15—C5—N16 | 121.47 (18) |
O5—S2—O7 | 108.65 (8) | N15—C5—C6 | 119.04 (17) |
O6—S2—O7 | 110.07 (8) | N16—C5—C6 | 119.49 (17) |
O5—S2—O8 | 109.79 (8) | N12—C1—N11 | 121.67 (18) |
O6—S2—O8 | 108.87 (8) | N12—C1—C2 | 119.00 (17) |
O7—S2—O8 | 109.07 (9) | N11—C1—C2 | 119.31 (17) |
C1—N12—H12A | 120.1 | C5—C6—H6A | 109.5 |
C1—N12—H12B | 119.9 | C5—C6—H6B | 109.5 |
H12A—N12—H12B | 120.0 | H6A—C6—H6B | 109.5 |
C7—N18—H18A | 120.1 | C5—C6—H6C | 109.5 |
C7—N18—H18B | 119.8 | H6A—C6—H6C | 109.5 |
H18A—N18—H18B | 120.1 | H6B—C6—H6C | 109.5 |
C5—N15—H15A | 120.0 | C3—C4—H4A | 109.5 |
C5—N15—H15B | 120.1 | C3—C4—H4B | 109.5 |
H15A—N15—H15B | 119.9 | H4A—C4—H4B | 109.5 |
C5—N16—H16A | 120.1 | C3—C4—H4C | 109.5 |
C5—N16—H16B | 119.9 | H4A—C4—H4C | 109.5 |
H16A—N16—H16B | 120.0 | H4B—C4—H4C | 109.5 |
C1—N11—H11A | 120.0 | C1—C2—H2A | 109.5 |
C1—N11—H11B | 120.0 | C1—C2—H2B | 109.5 |
H11A—N11—H11B | 120.0 | H2A—C2—H2B | 109.5 |
C3—N13—H13A | 120.1 | C1—C2—H2C | 109.5 |
C3—N13—H13B | 119.9 | H2A—C2—H2C | 109.5 |
H13A—N13—H13B | 120.0 | H2B—C2—H2C | 109.5 |
C3—N14—H14A | 120.0 | C7—C8—H8A | 109.5 |
C3—N14—H14B | 120.0 | C7—C8—H8B | 109.5 |
H14A—N14—H14B | 120.0 | H8A—C8—H8B | 109.5 |
N18—C7—N17 | 121.79 (18) | C7—C8—H8C | 109.5 |
N18—C7—C8 | 119.04 (18) | H8A—C8—H8C | 109.5 |
N17—C7—C8 | 119.17 (18) | H8B—C8—H8C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12A···O1i | 0.86 | 2.02 | 2.838 (2) | 158 |
N12—H12A···S1i | 0.86 | 2.93 | 3.6038 (17) | 136 |
N12—H12B···O6ii | 0.86 | 1.99 | 2.843 (2) | 172 |
N12—H12B···S2ii | 0.86 | 2.98 | 3.7523 (17) | 150 |
N18—H18A···O8 | 0.86 | 1.99 | 2.826 (2) | 164 |
N18—H18A···S2 | 0.86 | 2.90 | 3.6006 (17) | 140 |
N18—H18B···O3 | 0.86 | 1.99 | 2.823 (2) | 164 |
N15—H15A···O2 | 0.86 | 2.03 | 2.841 (2) | 157 |
N15—H15A···S1 | 0.86 | 2.92 | 3.5841 (17) | 136 |
N15—H15B···S2 | 0.86 | 3.01 | 3.7829 (17) | 150 |
N15—H15B···O5 | 0.86 | 1.97 | 2.817 (2) | 169 |
N16—H16A···O1 | 0.86 | 2.09 | 2.915 (2) | 160 |
N16—H16A···S1 | 0.86 | 2.85 | 3.5245 (18) | 137 |
N16—H16B···O3iii | 0.86 | 2.00 | 2.852 (2) | 170 |
N16—H16B···S1iii | 0.86 | 2.90 | 3.6821 (17) | 152 |
N11—H11A···O2i | 0.86 | 2.10 | 2.922 (2) | 161 |
N11—H11A···S1i | 0.86 | 2.84 | 3.5335 (17) | 138 |
N11—H11B···O4iv | 0.86 | 2.01 | 2.856 (2) | 170 |
N11—H11B···S1iv | 0.86 | 2.88 | 3.6657 (17) | 152 |
N13—H13A···O7ii | 0.86 | 1.99 | 2.826 (2) | 165 |
N13—H13A···S2ii | 0.86 | 2.93 | 3.6408 (18) | 142 |
N13—H13B···O4i | 0.86 | 1.99 | 2.835 (2) | 165 |
N14—H14A···O8ii | 0.86 | 2.09 | 2.938 (2) | 167 |
N14—H14A···S2ii | 0.86 | 2.87 | 3.5920 (18) | 143 |
N14—H14B···O6iv | 0.86 | 2.02 | 2.863 (2) | 167 |
N14—H14B···S2iv | 0.86 | 2.96 | 3.6973 (17) | 145 |
N17—H17A···O7 | 0.86 | 2.12 | 2.964 (2) | 167 |
N17—H17B···S2v | 0.86 | 2.95 | 3.7158 (17) | 149 |
N17—H17B···O5v | 0.86 | 2.01 | 2.861 (2) | 168 |
N17—H17B···S2v | 0.86 | 2.95 | 3.7158 (17) | 149 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z+2; (v) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C2H7N2+·O4S2− |
Mr | 214.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 8.0961 (3), 11.1668 (4), 11.8821 (6) |
α, β, γ (°) | 96.199 (4), 105.905 (3), 105.615 (4) |
V (Å3) | 975.63 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.44 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.915, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20866, 4459, 3623 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.105, 1.10 |
No. of reflections | 4459 |
No. of parameters | 239 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.46 |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12A···O1i | 0.86 | 2.02 | 2.838 (2) | 157.8 |
N12—H12A···S1i | 0.86 | 2.93 | 3.6038 (17) | 136.3 |
N12—H12B···O6ii | 0.86 | 1.99 | 2.843 (2) | 172.1 |
N12—H12B···S2ii | 0.86 | 2.98 | 3.7523 (17) | 149.9 |
N18—H18A···O8 | 0.86 | 1.99 | 2.826 (2) | 163.9 |
N18—H18A···S2 | 0.86 | 2.90 | 3.6006 (17) | 140.3 |
N18—H18B···O3 | 0.86 | 1.99 | 2.823 (2) | 164.0 |
N15—H15A···O2 | 0.86 | 2.03 | 2.841 (2) | 156.9 |
N15—H15A···S1 | 0.86 | 2.92 | 3.5841 (17) | 135.8 |
N15—H15B···S2 | 0.86 | 3.01 | 3.7829 (17) | 150.1 |
N15—H15B···O5 | 0.86 | 1.97 | 2.817 (2) | 168.6 |
N16—H16A···O1 | 0.86 | 2.09 | 2.915 (2) | 160.1 |
N16—H16A···S1 | 0.86 | 2.85 | 3.5245 (18) | 137.2 |
N16—H16B···O3iii | 0.86 | 2.00 | 2.852 (2) | 169.5 |
N16—H16B···S1iii | 0.86 | 2.90 | 3.6821 (17) | 152.3 |
N11—H11A···O2i | 0.86 | 2.10 | 2.922 (2) | 160.9 |
N11—H11A···S1i | 0.86 | 2.84 | 3.5335 (17) | 138.3 |
N11—H11B···O4iv | 0.86 | 2.01 | 2.856 (2) | 170.0 |
N11—H11B···S1iv | 0.86 | 2.88 | 3.6657 (17) | 152.0 |
N13—H13A···O7ii | 0.86 | 1.99 | 2.826 (2) | 164.6 |
N13—H13A···S2ii | 0.86 | 2.93 | 3.6408 (18) | 141.8 |
N13—H13B···O4i | 0.86 | 1.99 | 2.835 (2) | 165.4 |
N14—H14A···O8ii | 0.86 | 2.09 | 2.938 (2) | 166.7 |
N14—H14A···S2ii | 0.86 | 2.87 | 3.5920 (18) | 143.3 |
N14—H14B···O6iv | 0.86 | 2.02 | 2.863 (2) | 167.4 |
N14—H14B···S2iv | 0.86 | 2.96 | 3.6973 (17) | 145.4 |
N17—H17A···O7 | 0.86 | 2.12 | 2.964 (2) | 166.7 |
N17—H17B···S2v | 0.86 | 2.95 | 3.7158 (17) | 148.6 |
N17—H17B···O5v | 0.86 | 2.01 | 2.861 (2) | 167.7 |
N17—H17B···S2v | 0.86 | 2.95 | 3.7158 (17) | 148.6 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z+2; (v) −x, −y, −z+1. |
Acknowledgements
The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (within the framework of research project MSM 0021627501) and the Ministry of Industry and Trade of the Czech Republic (within the framework of the research project FR–TI1/127) for financial support of this work.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Calov, U. & Jost, K.–H. (1990). Z. Anorg. Allg. Chem. 589, 199–206. CSD CrossRef CAS Web of Science Google Scholar
Cannon, J. R., White, A. H. & Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271–272. CSD CrossRef Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Emirdag-Eanes, M. & Ibers, J. A. (2002). Inorg. Chem. 41, 6170–6171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ferretti, V., Bertolasi, V. & Pretto, L. (2004). New J. Chem. 28, 646–651. Web of Science CSD CrossRef CAS Google Scholar
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jalový, Z., Mareček, P., Dudek, K., Fohl, O., Latypov, N. V., Ek, S. & Johansson, M. (2005). New Trends in Research of Energetic Materials, Proceedings of the 8th Semimar, Pardubice, Czech Republic, April 19–21, pp. 579–583. Google Scholar
Jalový, Z., Ottis, J., Růžička, A., Lyčka, A. & Latypov, N. V. (2009). Tetrahedron, 65, 7163–7170. Google Scholar
Latypov, N. V., Bergman, J., Langlet, A., Wellmar, U. & Bemm, U. (1998). Tetrahedron, 54, 11525–11536. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, E. C. & Ehrhart, A. W. (1960). J. Am. Chem. Soc. 82, 3138–3141. CrossRef CAS Web of Science Google Scholar
Tominey, A. F., Docherty, P. H., Rosair, G. M., Quenardelle, R. & Kraft, A. (2006). Org. Lett. 8, 1279–1282. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetamidinium sulphate, C4H14N4O4S, (Scheme 1), is a starting material for the synthesis of insensitive explosive 2,2–dinitroethene–1,1–diamine (Latypov et al., 1998; Jalový et al., 2005). It has low hygroscopicity with comparison to commercially available acetamidinium hydrochloride. The title compound was prepared from acetamidinium acetate and equivalent amount of sulfuric acid.
The crystal structure of acetamidinium sulfate has been determined in order to evaluate the degree of association of these ionic species. Two crystallographically independent bisacetamidinium sulfates were found in the unit cell (Fig. 1). The molecular structure of the title compound is made up of two mutually similar acetamidinium units and one sulfate ion. All these ions are interconnected by extensive hydrogen bonding systems where two of the oxygen atoms of sulfate ion (O1 and O2) are bonded to the exo–amidinium hydrogen atoms of two units which leading to the formation of two 8–membered rings (Fig. 2). The S–O distances for these particular oxygen atoms O1 and O2 are slightly elongated in comparison to remaining two oxygen atoms O3 and O4 which form a chain. On the other hand, two remaining oxygen atoms interconnect two endo–hydrogen atoms of acetamidinium units forming thus an infinite chain. The C–N separations within the H2N···C···NH2 fragments are mutually similar with average value of 1.305 (2)Å which is with a good agreement with a delocalization concept of the double bond in H2N-C(CH3)═NH2 cationand the literature data, where the range 1.302–1.312Å was found. The comparison of the title compound with the published structures can be made on the bases of two different criteria. The first, all acetamidinium salts reveal the same geometry and structural parameters of the acetamidinium ion. The second criterion is the type of the supramolecular structure formed. There are large differences between the title compound where the two planar layers of acetamidinium ions are interconnected to the infinite double layer. Other 2D structures are found for the acetamidinium formate (Tominey et al., 2006), dinitromethanide (Jalový et al., 2009), amidinium acetate (Ferretti et al., 2004) with the stairs like layered structure and one of the polymorphs of amidinium (2–hydroxyethoxy)acetate (Ferretti et al., 2004). On the other hand, the second polymorph of amidinium (2–hydroxyethoxy)acetate (Ferretti et al., 2004), acetamidinium tetrazolate (Tominey et al., 2006) and acetamidinium chloride (Cannon et al., 1976) reveal 3D structures with large cavities. There are a couple of related acetamidinium ion containing structures which are of interest as for example bis(acetamidinium) hexafluorosilicate (Calov & Jost, 1990) where the multicentered contacts between acetamidinium hydrogen atoms and fluorine atoms were found and the selenium and rhenium containing cluster compound where the hydrogen contacts of acetamidinium ion with cyano group bonded to the rhenium atoms and a short contact between selenium and nitrogen atoms were found (Emirdag-Eanes et al., 2002).