organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1,3,10,12-tetra­phenyl-19,20-dioxa­hexa­cyclo­[10.6.1.13,10.02,11.04,9.013,18]icosa-4(9),5,7,13(18),14,16-hexa­ene-2-carboxyl­ate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 25 October 2010; accepted 8 November 2010; online 13 November 2010)

The title compound, C45H34O4, is the product of a tandem `pincer' Diels–Alder reaction consisting of two consecutive [4 + 2] cyclo­additions between two 2-benzofuran units and ethyl propiolate. The mol­ecule comprises a fused hexa­cyclic system containing four five-membered rings, which are in the usual envelope conformation, and two six-membered rings. In addition, four phenyl rings are attached to the hexa­cyclic system. The packing is stabilized by C—H⋯π inter­actions.

Related literature

For the tandem `pincer' Diels–Alder reaction, see: Lautens & Fillion (1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem., 62, 4418-4427.]). For related structures, see: Gurbanov et al. (2009[Gurbanov, A. V., Nikitina, E. V., Sorokina, E. A., Zubkov, F. I. & Khrustalev, V. N. (2009). Acta Cryst. E65, o3243-o3244.]); Toze et al. (2010[Toze, F. A. A., Ershova, J. D., Obushak, M. D., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o1388-o1389.]).

[Scheme 1]

Experimental

Crystal data
  • C45H34O4

  • Mr = 638.72

  • Orthorhombic, P n a 21

  • a = 17.2498 (4) Å

  • b = 12.5137 (3) Å

  • c = 15.4118 (5) Å

  • V = 3326.77 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.989

  • 19378 measured reflections

  • 5474 independent reflections

  • 4366 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.00

  • 5474 reflections

  • 443 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 and Cg10 are the centroids of the C15–C20 and C28–C33 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg10i 0.93 2.97 3.740 (3) 141
C35—H35⋯Cg8 0.93 2.60 3.446 (2) 151
C44—H44⋯Cg8ii 0.93 2.87 3.671 (3) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The tandem "pincer" Diels–Alder reaction, consisting of two consecutive [4+2] cycloadditions between two dienes and an acetylenic bis–dienophile when furan derivatives are used as the diene components. Where, in our case two benzo(C)furans and ethyl propiolate are used as the diene components and acetylenic bis–dienophile components, respectively as shown in (Fig. 1). (Lautens & Fillion, 1997).

The title compound C45H34O4, comprises a fused hexacyclic system and four phenyl rings attached with this system. The hexacyclic system consists of four 5–membered rings and two phenyl rings. In addition to that, two phenyl rings at the top and bottom of the system and also four phenyl rings are attached on the bothside of the system. The X–ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 2). All four 5–membered rings are in the usual 'envelope' conformation.

The two 6–membered rings C1/C2/C7/C8/C22/C21 and C24/C21/C22/C23/C33/C28 are nearly coplanar having a dihedral angle of 2.76 (12)°. The dihedral angle between the rings C1/C2/C7/C8/O1 and C1/C21/C22/C8/O1; C24/C21/C22/C23/O2 and C24/C28/C33/C23/O2 are 82.87 (13)°; 86.80 (13)°, respectively.

In the 5–membered ring C1/C2/C7/C8/O1, the deviation of atom O1 is -0.3206 (16)Å, the puckering parameters of the ring are Q2 = 0.5070 (19)Å and φ2 = 180.2 (2)°. This ring adopts the 'envelope' conformation on O1. In the 5–membered ring C1/C21/C22/C8/O1, the deviation of atom O1 is 0.3496 (16)Å. the puckering parameters are Q2 = 0.5530 (19)Å and φ2 = 359.5 (2)°. This ring adopts 'envelope' conformation on O1.

In the five membered ring C24/C21/C22/C23/O2, the deviation of atom O2 is -0.3734 (15)Å, the puckering parameters of the ring are Q2 = 0.5914 (19)Å and φ2 = 176.6 (2)°. This ring adopts the envelope conformation on O2. In the five membered ring C24/C28/C33/C23/O2, the deviation of atom O2 is 0.3297 (15)Å. The puckering parameters are Q2 = 0.5216 (19)Å and φ2 = 0.2 (2)°. This ring adopts 'envelope' conformation on O2.

In the six membered ring C1/C2/C7/C8/C22/C21, the deviation of atoms C1 and C8 are -0.581 (2)Å, -0.573 (2)Å respectively.the puckering parameters of the ring are Q2=1.000 (2)Å and φ2=178.94 (12)°.This ring adopts the Boat conformation(B-form). In the six membered ring C24/C21/C22/C23/C33/C28, the deviation of atom C23 and C24 are -0.541 (2)Å, -0.536 (2)Å respectively. The puckering parameters of the ring are Q2=0.933 (2)Å and φ2=118.83 (13)°. This ring adopts the 'boat' conformation(B–form).

The molecular structure is stabilized by C—H···Cg interactions - look Table 1, where Cg8 is center of gravity C15/C16/C17/C18/C19/C20 ring and Cg10 is center of gravity C28/C29/C30/C31/C32/C33 ring. Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) x, y+1, z.

Related literature top

For the tandem `pincer' Diels–Alder reaction, see: Lautens & Fillion (1997). For related structures, see: Gurbanov et al. (2009); Toze et al. (2010).

Experimental top

To a solution of benzo[c]furan (0.5 g, 1.85 mmol) in dry CHCl3 (20 ml), ethyl propiolate (0.20 g, 2.04 mmol) was added and the reaction mixture was stirred for 2 h at reflux under nitrogen atmosphere. The solvent was removed in vacuo to give crude compound which on washing with ethanol gave adduct as a colourless solid. See the (Fig. 1). Yield: 0.53 g (45%). M.P.: 451–453 K. IR (KBr): 1719, 1600, 1505, 755 cm-1.

1H NMR (300 MHz, CDCl3): δ 7.89–7.80 (2H, m), 7.65–7.60 (2H, m), 7.55–7.50 (5H, m), 7.49–7.44 (5H, m), 7.09–7.06 (7H, m), 6.98–6.95 (7H,m), 4.69 (1H, s), 3.76–3.44 (2H, m), 0.90 (3H, t, J = 7.2 Hz);

13C NMR (75 MHz, CDCl3): δ 170.7, 149.9, 147.0, 144.9, 144.8, 137.9, 136.3, 134.6, 134.5, 129.6, 128.8, 128.3, 128.2, 128.1, 127.8, 127.6, 127.5, 127.4, 127.2, 127.1, 127.0, 126.6, 126.5, 126.3, 125.6, 123.0, 122.6, 121.3, 119.0, 90.9, 88.6, 88.3,86.7, 78.7, 67.3, 61.1, 13.6.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.98Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for the other groups.

In the diffraction experiment were measured 1750 Friedel pairs. Because no heavy atoms (Z > Si) in molecule, during refinement by SHELXL97, was used 'MERG 2' instruction and in final CIF descriptors were placed: _refine_ls_abs_structure_Flack "?" and _chemical_absolute_configuration "unk" (Flack, 1983).

Structure description top

The tandem "pincer" Diels–Alder reaction, consisting of two consecutive [4+2] cycloadditions between two dienes and an acetylenic bis–dienophile when furan derivatives are used as the diene components. Where, in our case two benzo(C)furans and ethyl propiolate are used as the diene components and acetylenic bis–dienophile components, respectively as shown in (Fig. 1). (Lautens & Fillion, 1997).

The title compound C45H34O4, comprises a fused hexacyclic system and four phenyl rings attached with this system. The hexacyclic system consists of four 5–membered rings and two phenyl rings. In addition to that, two phenyl rings at the top and bottom of the system and also four phenyl rings are attached on the bothside of the system. The X–ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 2). All four 5–membered rings are in the usual 'envelope' conformation.

The two 6–membered rings C1/C2/C7/C8/C22/C21 and C24/C21/C22/C23/C33/C28 are nearly coplanar having a dihedral angle of 2.76 (12)°. The dihedral angle between the rings C1/C2/C7/C8/O1 and C1/C21/C22/C8/O1; C24/C21/C22/C23/O2 and C24/C28/C33/C23/O2 are 82.87 (13)°; 86.80 (13)°, respectively.

In the 5–membered ring C1/C2/C7/C8/O1, the deviation of atom O1 is -0.3206 (16)Å, the puckering parameters of the ring are Q2 = 0.5070 (19)Å and φ2 = 180.2 (2)°. This ring adopts the 'envelope' conformation on O1. In the 5–membered ring C1/C21/C22/C8/O1, the deviation of atom O1 is 0.3496 (16)Å. the puckering parameters are Q2 = 0.5530 (19)Å and φ2 = 359.5 (2)°. This ring adopts 'envelope' conformation on O1.

In the five membered ring C24/C21/C22/C23/O2, the deviation of atom O2 is -0.3734 (15)Å, the puckering parameters of the ring are Q2 = 0.5914 (19)Å and φ2 = 176.6 (2)°. This ring adopts the envelope conformation on O2. In the five membered ring C24/C28/C33/C23/O2, the deviation of atom O2 is 0.3297 (15)Å. The puckering parameters are Q2 = 0.5216 (19)Å and φ2 = 0.2 (2)°. This ring adopts 'envelope' conformation on O2.

In the six membered ring C1/C2/C7/C8/C22/C21, the deviation of atoms C1 and C8 are -0.581 (2)Å, -0.573 (2)Å respectively.the puckering parameters of the ring are Q2=1.000 (2)Å and φ2=178.94 (12)°.This ring adopts the Boat conformation(B-form). In the six membered ring C24/C21/C22/C23/C33/C28, the deviation of atom C23 and C24 are -0.541 (2)Å, -0.536 (2)Å respectively. The puckering parameters of the ring are Q2=0.933 (2)Å and φ2=118.83 (13)°. This ring adopts the 'boat' conformation(B–form).

The molecular structure is stabilized by C—H···Cg interactions - look Table 1, where Cg8 is center of gravity C15/C16/C17/C18/C19/C20 ring and Cg10 is center of gravity C28/C29/C30/C31/C32/C33 ring. Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) x, y+1, z.

For the tandem `pincer' Diels–Alder reaction, see: Lautens & Fillion (1997). For related structures, see: Gurbanov et al. (2009); Toze et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Construction of the tandem "pincer" Diels-Alder adduct of ethyl propiolate.
[Figure 2] Fig. 2. The molecular structure of the title compound with the atom numbering scheme, Displacement ellipsoids are drawn at 30° probability level. H atoms are present as a small spheres of arbitrary radius.
Ethyl 1,3,10,12-tetraphenyl-19,20- dioxahexacyclo[10.6.1.13,10.02,11.04,9.013,18]icosa- 4(9),5,7,13(18),14,16-hexaene-2-carboxylate top
Crystal data top
C45H34O4Dx = 1.275 Mg m3
Mr = 638.72Melting point = 451–453 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5474 reflections
a = 17.2498 (4) Åθ = 1.0–26.9°
b = 12.5137 (3) ŵ = 0.08 mm1
c = 15.4118 (5) ÅT = 295 K
V = 3326.77 (15) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 1344
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5474 independent reflections
Radiation source: fine–focus sealed tube4366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2120
Tmin = 0.962, Tmax = 0.989k = 1515
19378 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.1034P]
where P = (Fo2 + 2Fc2)/3
5474 reflections(Δ/σ)max < 0.001
443 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C45H34O4V = 3326.77 (15) Å3
Mr = 638.72Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.2498 (4) ŵ = 0.08 mm1
b = 12.5137 (3) ÅT = 295 K
c = 15.4118 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4366 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.989Rint = 0.041
19378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
5474 reflectionsΔρmin = 0.17 e Å3
443 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20543 (10)0.38628 (15)0.29734 (15)0.0333 (4)
C20.19096 (11)0.35324 (15)0.39052 (15)0.0349 (4)
C30.21738 (13)0.27151 (17)0.44218 (17)0.0440 (5)
H30.25270.22160.42110.053*
C40.18998 (15)0.2655 (2)0.52647 (19)0.0574 (7)
H40.20640.21000.56210.069*
C50.13896 (15)0.3400 (2)0.55862 (19)0.0571 (6)
H50.12120.33380.61540.069*
C60.11365 (12)0.42444 (18)0.50730 (17)0.0442 (5)
H60.08050.47640.52930.053*
C70.13913 (11)0.42854 (15)0.42326 (15)0.0356 (5)
C80.12338 (10)0.50524 (14)0.34842 (15)0.0331 (4)
C90.04568 (10)0.55950 (15)0.34911 (16)0.0375 (5)
C100.01251 (11)0.52952 (19)0.29307 (18)0.0487 (6)
H100.00410.47460.25350.058*
C110.08388 (13)0.5812 (2)0.2956 (2)0.0619 (7)
H110.12310.56030.25780.074*
C120.09681 (14)0.6620 (2)0.3526 (2)0.0659 (8)
H120.14420.69740.35300.079*
C130.04019 (15)0.6907 (2)0.4090 (3)0.0740 (10)
H130.04910.74540.44860.089*
C140.03077 (13)0.63902 (19)0.4079 (2)0.0594 (7)
H140.06880.65860.44760.071*
C150.22514 (12)0.30145 (15)0.23155 (15)0.0372 (5)
C160.29011 (13)0.23665 (16)0.24033 (19)0.0489 (6)
H160.32110.24230.28950.059*
C170.30888 (15)0.16377 (18)0.1762 (2)0.0585 (7)
H170.35280.12140.18250.070*
C180.26396 (16)0.15304 (19)0.1038 (2)0.0595 (7)
H180.27800.10530.06030.071*
C190.19801 (15)0.21312 (18)0.09574 (19)0.0564 (7)
H190.16620.20440.04760.068*
C200.17865 (14)0.28670 (16)0.15910 (17)0.0456 (5)
H200.13370.32700.15300.055*
C210.25748 (10)0.49143 (14)0.30407 (15)0.0319 (4)
C220.19772 (10)0.57437 (14)0.33934 (15)0.0313 (4)
H220.21410.60020.39650.038*
C230.20355 (10)0.66599 (14)0.27165 (14)0.0329 (4)
C240.28491 (11)0.54884 (15)0.21709 (15)0.0350 (5)
C250.32570 (11)0.48322 (16)0.36640 (16)0.0381 (5)
C260.44065 (14)0.3879 (2)0.4005 (2)0.0689 (8)
H26A0.42680.37280.46020.083*
H26B0.47080.45340.39920.083*
C270.48667 (16)0.2985 (2)0.3642 (3)0.0871 (11)
H27A0.45610.23440.36480.131*
H27B0.53240.28820.39860.131*
H27C0.50130.31500.30560.131*
C280.21839 (11)0.55562 (14)0.15257 (15)0.0345 (4)
C290.20378 (13)0.51152 (17)0.07231 (17)0.0451 (5)
H290.23720.46110.04860.054*
C300.13833 (16)0.54386 (19)0.02773 (18)0.0552 (6)
H300.12850.51640.02730.066*
C310.08712 (14)0.61661 (19)0.06384 (19)0.0543 (7)
H310.04300.63670.03320.065*
C320.10079 (12)0.65951 (16)0.14468 (17)0.0431 (5)
H320.06590.70710.16970.052*
C330.16744 (11)0.63003 (14)0.18725 (15)0.0343 (5)
C340.36412 (12)0.52056 (16)0.18220 (16)0.0406 (5)
C350.37622 (13)0.42842 (18)0.13515 (18)0.0508 (6)
H350.33470.38310.12360.061*
C360.44885 (15)0.4026 (2)0.1051 (2)0.0671 (8)
H360.45630.33940.07440.080*
C370.51000 (16)0.4690 (2)0.1199 (3)0.0912 (13)
H370.55890.45250.09830.109*
C380.49869 (14)0.5601 (2)0.1669 (3)0.0967 (15)
H380.54050.60510.17770.116*
C390.42635 (13)0.58658 (18)0.1986 (2)0.0661 (9)
H390.41960.64870.23080.079*
C400.18919 (10)0.78078 (15)0.29744 (16)0.0359 (5)
C410.17398 (14)0.81397 (17)0.38066 (18)0.0511 (6)
H410.17210.76420.42540.061*
C420.16133 (16)0.92160 (19)0.3985 (2)0.0619 (7)
H420.14920.94280.45470.074*
C430.16647 (15)0.99565 (18)0.3347 (2)0.0625 (8)
H430.15781.06740.34690.075*
C440.18442 (15)0.96424 (18)0.2525 (2)0.0646 (8)
H440.18951.01510.20890.078*
C450.19522 (13)0.85747 (16)0.23348 (19)0.0513 (6)
H450.20670.83700.17690.062*
O10.13122 (7)0.43327 (10)0.27592 (10)0.0339 (3)
O20.28543 (7)0.65724 (9)0.24881 (10)0.0350 (3)
O30.33920 (10)0.54448 (14)0.42352 (14)0.0626 (5)
O40.37114 (8)0.40007 (11)0.34821 (12)0.0474 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (10)0.0329 (9)0.0376 (12)0.0013 (7)0.0052 (9)0.0027 (9)
C20.0337 (10)0.0327 (9)0.0381 (12)0.0041 (8)0.0040 (9)0.0019 (9)
C30.0464 (12)0.0394 (11)0.0460 (15)0.0039 (9)0.0069 (11)0.0074 (11)
C40.0713 (17)0.0524 (13)0.0486 (16)0.0041 (12)0.0116 (14)0.0182 (13)
C50.0709 (16)0.0634 (15)0.0371 (14)0.0021 (13)0.0034 (12)0.0091 (13)
C60.0453 (13)0.0455 (12)0.0418 (14)0.0011 (9)0.0029 (10)0.0020 (11)
C70.0307 (10)0.0356 (10)0.0405 (13)0.0029 (8)0.0040 (9)0.0040 (10)
C80.0299 (9)0.0324 (9)0.0371 (12)0.0023 (7)0.0034 (9)0.0002 (10)
C90.0303 (9)0.0372 (9)0.0450 (13)0.0005 (7)0.0022 (10)0.0097 (10)
C100.0358 (12)0.0577 (13)0.0527 (16)0.0003 (9)0.0044 (11)0.0093 (12)
C110.0353 (12)0.0826 (18)0.068 (2)0.0032 (11)0.0080 (12)0.0181 (17)
C120.0339 (13)0.0700 (16)0.094 (2)0.0146 (11)0.0082 (15)0.0281 (18)
C130.0465 (15)0.0631 (15)0.112 (3)0.0139 (11)0.0137 (16)0.0142 (18)
C140.0324 (12)0.0625 (14)0.083 (2)0.0039 (10)0.0013 (12)0.0182 (15)
C150.0400 (11)0.0315 (9)0.0400 (13)0.0053 (8)0.0004 (9)0.0015 (9)
C160.0499 (12)0.0406 (11)0.0561 (16)0.0033 (9)0.0044 (12)0.0026 (12)
C170.0645 (16)0.0429 (12)0.068 (2)0.0084 (11)0.0081 (14)0.0046 (13)
C180.0860 (19)0.0405 (12)0.0519 (17)0.0016 (12)0.0135 (15)0.0092 (12)
C190.0799 (18)0.0442 (12)0.0452 (16)0.0080 (12)0.0051 (13)0.0051 (12)
C200.0567 (14)0.0352 (10)0.0447 (14)0.0033 (9)0.0053 (11)0.0012 (11)
C210.0290 (10)0.0312 (9)0.0355 (12)0.0008 (7)0.0040 (8)0.0013 (9)
C220.0300 (9)0.0306 (9)0.0334 (11)0.0006 (7)0.0035 (9)0.0004 (9)
C230.0238 (9)0.0336 (9)0.0411 (12)0.0001 (7)0.0011 (8)0.0036 (9)
C240.0316 (10)0.0328 (9)0.0405 (13)0.0010 (7)0.0000 (9)0.0017 (9)
C250.0314 (10)0.0399 (10)0.0431 (14)0.0018 (8)0.0049 (9)0.0003 (10)
C260.0469 (14)0.0709 (16)0.089 (2)0.0162 (12)0.0281 (15)0.0003 (17)
C270.0543 (16)0.0868 (19)0.120 (3)0.0309 (14)0.0158 (18)0.004 (2)
C280.0354 (10)0.0343 (9)0.0339 (12)0.0073 (8)0.0003 (9)0.0066 (10)
C290.0539 (14)0.0430 (11)0.0385 (13)0.0052 (9)0.0007 (11)0.0014 (11)
C300.0707 (17)0.0522 (13)0.0427 (15)0.0120 (12)0.0160 (13)0.0031 (12)
C310.0523 (14)0.0559 (14)0.0548 (17)0.0090 (11)0.0204 (12)0.0107 (13)
C320.0385 (11)0.0414 (10)0.0496 (15)0.0031 (9)0.0088 (11)0.0099 (11)
C330.0321 (10)0.0317 (9)0.0390 (12)0.0050 (7)0.0013 (9)0.0088 (9)
C340.0346 (11)0.0398 (10)0.0475 (14)0.0021 (8)0.0060 (10)0.0099 (11)
C350.0484 (13)0.0518 (13)0.0520 (17)0.0032 (10)0.0081 (11)0.0020 (12)
C360.0620 (17)0.0616 (15)0.078 (2)0.0172 (13)0.0226 (15)0.0008 (15)
C370.0488 (16)0.0731 (19)0.152 (4)0.0151 (14)0.041 (2)0.015 (2)
C380.0384 (14)0.0567 (16)0.195 (5)0.0017 (11)0.027 (2)0.005 (2)
C390.0354 (12)0.0439 (12)0.119 (3)0.0022 (10)0.0095 (14)0.0018 (15)
C400.0273 (9)0.0345 (9)0.0459 (14)0.0023 (7)0.0055 (9)0.0026 (10)
C410.0608 (15)0.0427 (12)0.0500 (16)0.0003 (10)0.0029 (12)0.0011 (12)
C420.0714 (17)0.0532 (14)0.0612 (19)0.0038 (12)0.0058 (14)0.0173 (14)
C430.0637 (15)0.0354 (12)0.088 (2)0.0008 (10)0.0147 (16)0.0093 (15)
C440.0728 (18)0.0367 (12)0.084 (2)0.0056 (11)0.0084 (17)0.0140 (15)
C450.0575 (14)0.0410 (11)0.0555 (16)0.0058 (9)0.0024 (12)0.0048 (12)
O10.0302 (7)0.0346 (7)0.0368 (9)0.0016 (5)0.0061 (6)0.0017 (6)
O20.0280 (6)0.0325 (6)0.0445 (9)0.0022 (5)0.0013 (6)0.0001 (7)
O30.0529 (10)0.0678 (10)0.0670 (13)0.0154 (8)0.0274 (9)0.0264 (10)
O40.0386 (8)0.0463 (7)0.0574 (11)0.0109 (6)0.0137 (8)0.0016 (8)
Geometric parameters (Å, º) top
C1—O11.447 (2)C23—C401.511 (3)
C1—C151.507 (3)C23—C331.511 (3)
C1—C21.515 (3)C24—O21.442 (2)
C1—C211.596 (2)C24—C341.510 (3)
C2—C31.374 (3)C24—C281.521 (3)
C2—C71.394 (3)C25—O31.190 (3)
C3—C41.385 (4)C25—O41.333 (2)
C3—H30.9300C26—O41.453 (3)
C4—C51.374 (4)C26—C271.482 (4)
C4—H40.9300C26—H26A0.9700
C5—C61.391 (3)C26—H26B0.9700
C5—H50.9300C27—H27A0.9600
C6—C71.369 (3)C27—H27B0.9600
C6—H60.9300C27—H27C0.9600
C7—C81.525 (3)C28—C291.378 (3)
C8—O11.441 (3)C28—C331.387 (3)
C8—C91.503 (3)C29—C301.382 (3)
C8—C221.553 (2)C29—H290.9300
C9—C141.370 (3)C30—C311.385 (4)
C9—C101.376 (3)C30—H300.9300
C10—C111.391 (3)C31—C321.377 (4)
C10—H100.9300C31—H310.9300
C11—C121.357 (4)C32—C331.374 (3)
C11—H110.9300C32—H320.9300
C12—C131.356 (5)C34—C391.378 (3)
C12—H120.9300C34—C351.378 (3)
C13—C141.384 (3)C35—C361.374 (3)
C13—H130.9300C35—H350.9300
C14—H140.9300C36—C371.362 (4)
C15—C201.387 (3)C36—H360.9300
C15—C161.390 (3)C37—C381.363 (5)
C16—C171.383 (4)C37—H370.9300
C16—H160.9300C38—C391.381 (4)
C17—C181.365 (4)C38—H380.9300
C17—H170.9300C39—H390.9300
C18—C191.369 (4)C40—C411.373 (3)
C18—H180.9300C40—C451.380 (3)
C19—C201.383 (4)C41—C421.392 (3)
C19—H190.9300C41—H410.9300
C20—H200.9300C42—C431.354 (4)
C21—C251.523 (3)C42—H420.9300
C21—C221.561 (3)C43—C441.361 (4)
C21—C241.593 (3)C43—H430.9300
C22—C231.553 (3)C44—C451.381 (3)
C22—H220.9800C44—H440.9300
C23—O21.460 (2)C45—H450.9300
O1—C1—C15109.42 (16)O2—C23—C2299.75 (13)
O1—C1—C2100.46 (15)C40—C23—C22120.96 (18)
C15—C1—C2118.86 (16)C33—C23—C22109.37 (14)
O1—C1—C21100.22 (13)O2—C24—C34109.60 (15)
C15—C1—C21119.83 (17)O2—C24—C28100.02 (14)
C2—C1—C21104.83 (17)C34—C24—C28117.57 (19)
C3—C2—C7120.4 (2)O2—C24—C2198.09 (15)
C3—C2—C1134.3 (2)C34—C24—C21117.56 (16)
C7—C2—C1105.33 (17)C28—C24—C21110.57 (15)
C2—C3—C4118.1 (2)O3—C25—O4122.92 (19)
C2—C3—H3121.0O3—C25—C21125.05 (18)
C4—C3—H3121.0O4—C25—C21112.00 (18)
C5—C4—C3121.4 (2)O4—C26—C27108.2 (3)
C5—C4—H4119.3O4—C26—H26A110.1
C3—C4—H4119.3C27—C26—H26A110.1
C4—C5—C6120.8 (3)O4—C26—H26B110.1
C4—C5—H5119.6C27—C26—H26B110.1
C6—C5—H5119.6H26A—C26—H26B108.4
C7—C6—C5117.8 (2)C26—C27—H27A109.5
C7—C6—H6121.1C26—C27—H27B109.5
C5—C6—H6121.1H27A—C27—H27B109.5
C6—C7—C2121.56 (19)C26—C27—H27C109.5
C6—C7—C8133.01 (19)H27A—C27—H27C109.5
C2—C7—C8105.43 (19)H27B—C27—H27C109.5
O1—C8—C9111.80 (17)C29—C28—C33119.9 (2)
O1—C8—C7100.16 (13)C29—C28—C24134.64 (19)
C9—C8—C7115.98 (18)C33—C28—C24105.28 (18)
O1—C8—C22101.58 (16)C28—C29—C30118.6 (2)
C9—C8—C22119.04 (14)C28—C29—H29120.7
C7—C8—C22105.76 (16)C30—C29—H29120.7
C14—C9—C10118.42 (19)C29—C30—C31120.9 (2)
C14—C9—C8120.0 (2)C29—C30—H30119.5
C10—C9—C8121.5 (2)C31—C30—H30119.5
C9—C10—C11120.1 (3)C32—C31—C30120.7 (2)
C9—C10—H10120.0C32—C31—H31119.6
C11—C10—H10120.0C30—C31—H31119.6
C12—C11—C10120.6 (3)C33—C32—C31118.1 (2)
C12—C11—H11119.7C33—C32—H32121.0
C10—C11—H11119.7C31—C32—H32121.0
C13—C12—C11119.6 (2)C32—C33—C28121.8 (2)
C13—C12—H12120.2C32—C33—C23132.54 (19)
C11—C12—H12120.2C28—C33—C23105.68 (16)
C12—C13—C14120.4 (3)C39—C34—C35118.7 (2)
C12—C13—H13119.8C39—C34—C24119.9 (2)
C14—C13—H13119.8C35—C34—C24121.36 (19)
C9—C14—C13120.9 (3)C36—C35—C34120.8 (2)
C9—C14—H14119.6C36—C35—H35119.6
C13—C14—H14119.6C34—C35—H35119.6
C20—C15—C16117.8 (2)C37—C36—C35120.4 (3)
C20—C15—C1120.32 (19)C37—C36—H36119.8
C16—C15—C1121.8 (2)C35—C36—H36119.8
C17—C16—C15120.3 (2)C36—C37—C38119.2 (2)
C17—C16—H16119.9C36—C37—H37120.4
C15—C16—H16119.9C38—C37—H37120.4
C18—C17—C16121.1 (2)C37—C38—C39121.2 (3)
C18—C17—H17119.5C37—C38—H38119.4
C16—C17—H17119.5C39—C38—H38119.4
C17—C18—C19119.5 (2)C34—C39—C38119.7 (3)
C17—C18—H18120.3C34—C39—H39120.2
C19—C18—H18120.3C38—C39—H39120.2
C18—C19—C20120.1 (2)C41—C40—C45118.1 (2)
C18—C19—H19119.9C41—C40—C23124.4 (2)
C20—C19—H19119.9C45—C40—C23117.5 (2)
C19—C20—C15121.2 (2)C40—C41—C42120.4 (2)
C19—C20—H20119.4C40—C41—H41119.8
C15—C20—H20119.4C42—C41—H41119.8
C25—C21—C22109.61 (17)C43—C42—C41120.6 (3)
C25—C21—C24109.38 (15)C43—C42—H42119.7
C22—C21—C24100.92 (14)C41—C42—H42119.7
C25—C21—C1114.84 (16)C42—C43—C44119.5 (2)
C22—C21—C1101.49 (14)C42—C43—H43120.2
C24—C21—C1118.96 (17)C44—C43—H43120.2
C8—C22—C23121.68 (16)C43—C44—C45120.5 (3)
C8—C22—C21101.91 (14)C43—C44—H44119.7
C23—C22—C21102.37 (16)C45—C44—H44119.7
C8—C22—H22110.0C40—C45—C44120.7 (3)
C23—C22—H22110.0C40—C45—H45119.6
C21—C22—H22110.0C44—C45—H45119.6
O2—C23—C40107.06 (14)C8—O1—C199.21 (14)
O2—C23—C3399.73 (16)C24—O2—C2398.41 (13)
C40—C23—C33116.23 (16)C25—O4—C26116.77 (19)
O1—C1—C2—C3148.7 (2)C1—C21—C24—O2147.77 (15)
C15—C1—C2—C329.5 (3)C25—C21—C24—C3439.6 (2)
C21—C1—C2—C3107.7 (2)C22—C21—C24—C34155.13 (17)
O1—C1—C2—C731.59 (18)C1—C21—C24—C3495.1 (2)
C15—C1—C2—C7150.79 (17)C25—C21—C24—C28178.55 (16)
C21—C1—C2—C772.03 (17)C22—C21—C24—C2865.97 (18)
C7—C2—C3—C41.1 (3)C1—C21—C24—C2843.8 (2)
C1—C2—C3—C4179.2 (2)C22—C21—C25—O313.6 (3)
C2—C3—C4—C51.2 (4)C24—C21—C25—O396.2 (3)
C3—C4—C5—C60.5 (4)C1—C21—C25—O3127.1 (2)
C4—C5—C6—C72.2 (4)C22—C21—C25—O4168.36 (16)
C5—C6—C7—C22.3 (3)C24—C21—C25—O481.9 (2)
C5—C6—C7—C8178.6 (2)C1—C21—C25—O454.9 (2)
C3—C2—C7—C60.7 (3)O2—C24—C28—C29143.1 (2)
C1—C2—C7—C6179.10 (18)C34—C24—C28—C2924.6 (3)
C3—C2—C7—C8179.99 (18)C21—C24—C28—C29114.3 (3)
C1—C2—C7—C80.20 (19)O2—C24—C28—C3332.20 (18)
C6—C7—C8—O1149.5 (2)C34—C24—C28—C33150.66 (17)
C2—C7—C8—O131.36 (17)C21—C24—C28—C3370.45 (18)
C6—C7—C8—C929.0 (3)C33—C28—C29—C300.6 (3)
C2—C7—C8—C9151.83 (17)C24—C28—C29—C30174.1 (2)
C6—C7—C8—C22105.3 (3)C28—C29—C30—C311.9 (3)
C2—C7—C8—C2273.85 (19)C29—C30—C31—C320.9 (4)
O1—C8—C9—C14173.1 (2)C30—C31—C32—C331.5 (3)
C7—C8—C9—C1472.9 (3)C31—C32—C33—C282.9 (3)
C22—C8—C9—C1455.1 (3)C31—C32—C33—C23174.9 (2)
O1—C8—C9—C108.5 (3)C29—C28—C33—C321.8 (3)
C7—C8—C9—C10105.4 (2)C24—C28—C33—C32177.97 (18)
C22—C8—C9—C10126.5 (2)C29—C28—C33—C23176.49 (18)
C14—C9—C10—C111.4 (4)C24—C28—C33—C230.36 (19)
C8—C9—C10—C11179.8 (2)O2—C23—C33—C32145.7 (2)
C9—C10—C11—C120.4 (4)C40—C23—C33—C3231.1 (3)
C10—C11—C12—C131.6 (4)C22—C23—C33—C32110.2 (2)
C11—C12—C13—C140.8 (5)O2—C23—C33—C2832.33 (17)
C10—C9—C14—C132.2 (4)C40—C23—C33—C28146.94 (16)
C8—C9—C14—C13179.4 (2)C22—C23—C33—C2871.69 (18)
C12—C13—C14—C91.2 (5)O2—C24—C34—C3912.0 (3)
O1—C1—C15—C206.4 (3)C28—C24—C34—C39125.2 (2)
C2—C1—C15—C20120.9 (2)C21—C24—C34—C3998.7 (3)
C21—C1—C15—C20108.4 (2)O2—C24—C34—C35169.2 (2)
O1—C1—C15—C16174.34 (18)C28—C24—C34—C3555.9 (3)
C2—C1—C15—C1659.9 (3)C21—C24—C34—C3580.1 (3)
C21—C1—C15—C1670.9 (3)C39—C34—C35—C360.0 (4)
C20—C15—C16—C173.0 (3)C24—C34—C35—C36178.8 (2)
C1—C15—C16—C17176.3 (2)C34—C35—C36—C371.3 (5)
C15—C16—C17—C180.7 (4)C35—C36—C37—C381.6 (6)
C16—C17—C18—C192.0 (4)C36—C37—C38—C390.8 (6)
C17—C18—C19—C202.2 (4)C35—C34—C39—C380.8 (4)
C18—C19—C20—C150.1 (4)C24—C34—C39—C38179.7 (3)
C16—C15—C20—C192.7 (3)C37—C38—C39—C340.5 (6)
C1—C15—C20—C19176.6 (2)O2—C23—C40—C41109.8 (2)
O1—C1—C21—C25150.94 (17)C33—C23—C40—C41139.8 (2)
C15—C1—C21—C2589.5 (2)C22—C23—C40—C413.2 (3)
C2—C1—C21—C2547.1 (2)O2—C23—C40—C4567.2 (2)
O1—C1—C21—C2232.8 (2)C33—C23—C40—C4543.2 (2)
C15—C1—C21—C22152.33 (18)C22—C23—C40—C45179.77 (17)
C2—C1—C21—C2271.00 (18)C45—C40—C41—C423.1 (3)
O1—C1—C21—C2476.68 (19)C23—C40—C41—C42179.9 (2)
C15—C1—C21—C2442.9 (2)C40—C41—C42—C432.3 (4)
C2—C1—C21—C24179.53 (15)C41—C42—C43—C440.2 (4)
O1—C8—C22—C2378.17 (19)C42—C43—C44—C451.8 (4)
C9—C8—C22—C2345.0 (3)C41—C40—C45—C441.5 (3)
C7—C8—C22—C23177.65 (17)C23—C40—C45—C44178.7 (2)
O1—C8—C22—C2134.62 (19)C43—C44—C45—C401.0 (4)
C9—C8—C22—C21157.8 (2)C9—C8—O1—C1174.22 (15)
C7—C8—C22—C2169.6 (2)C7—C8—O1—C150.79 (15)
C25—C21—C22—C8120.98 (18)C22—C8—O1—C157.78 (16)
C24—C21—C22—C8123.71 (16)C15—C1—O1—C8177.00 (15)
C1—C21—C22—C80.9 (2)C2—C1—O1—C851.16 (15)
C25—C21—C22—C23112.46 (18)C21—C1—O1—C856.16 (17)
C24—C21—C22—C232.85 (17)C34—C24—O2—C23176.01 (18)
C1—C21—C22—C23125.70 (16)C28—C24—O2—C2351.83 (17)
C8—C22—C23—O2145.34 (18)C21—C24—O2—C2360.84 (15)
C21—C22—C23—O232.79 (17)C40—C23—O2—C24173.51 (17)
C8—C22—C23—C4097.9 (2)C33—C23—O2—C2452.06 (16)
C21—C22—C23—C40149.55 (16)C22—C23—O2—C2459.70 (17)
C8—C22—C23—C3341.3 (2)O3—C25—O4—C261.5 (3)
C21—C22—C23—C3371.22 (17)C21—C25—O4—C26176.5 (2)
C25—C21—C24—O277.51 (17)C27—C26—O4—C25174.2 (2)
C22—C21—C24—O237.98 (16)
Hydrogen-bond geometry (Å, º) top
Cg8 and Cg10 are the centroids of the C15–C20 and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg10i0.932.973.740 (3)141
C35—H35···Cg80.932.603.446 (2)151
C44—H44···Cg8ii0.932.873.671 (3)145
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC45H34O4
Mr638.72
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)17.2498 (4), 12.5137 (3), 15.4118 (5)
V3)3326.77 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19378, 5474, 4366
Rint0.041
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.00
No. of reflections5474
No. of parameters443
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg8 and Cg10 are the centroids of the C15–C20 and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg10i0.932.973.740 (3)141
C35—H35···Cg80.932.603.446 (2)151
C44—H44···Cg8ii0.932.873.671 (3)145
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Nikitina, E. V., Sorokina, E. A., Zubkov, F. I. & Khrustalev, V. N. (2009). Acta Cryst. E65, o3243–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLautens, M. & Fillion, E. (1997). J. Org. Chem., 62, 4418–4427.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToze, F. A. A., Ershova, J. D., Obushak, M. D., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o1388–o1389.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds