organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-But­­oxy-N-[2-(di­ethyl­amino)­eth­yl]quinoline-4-carboxamide (dibucaine)

aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000, Leuven, Belgium, and cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
*Correspondence e-mail: lstaylor@purdue.edu

(Received 5 October 2010; accepted 5 November 2010; online 17 November 2010)

The mol­ecular conformation of the title compound, C20H29N3O2, is stabilized by an intra­molecular C—H⋯O hydrogen bond. The orientation of the amide group to the ring system is characterized by a C—C—C—O dihedral angle of 137.5 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds between the amide groups form C(4) chains running parallel to the a axis.

Related literature

For a monograph on dibucaine, see: Sweetman (2009[Sweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: Pharmaceutical Press.]). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985[Willatts, D. G. & Reynolds, F. (1985). Br. J. Anaesth. 57, 1006-1011.]). For the initial crystal structure determination of dibucaine hydro­chloride monohydrate, see: Hayward & Donohue (1977[Hayward, B. S. & Donohue, J. (1977). J. Cryst. Mol. Struct. 7, 275-294.]). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980[Donohue, J. & Hayward, B. S. (1980). J. Cryst. Mol. Struct. 10, 157-161.]). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983[Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407-410.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29N3O2

  • Mr = 343.47

  • Triclinic, [P \overline 1]

  • a = 4.9323 (1) Å

  • b = 7.2044 (1) Å

  • c = 26.9914 (19) Å

  • α = 94.080 (7)°

  • β = 90.611 (6)°

  • γ = 94.728 (7)°

  • V = 953.30 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.06 mm

Data collection
  • Rigaku Rapid II diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.845, Tmax = 0.966

  • 22671 measured reflections

  • 2786 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.168

  • S = 1.05

  • 2786 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O11 0.95 2.43 3.015 (3) 119
N12—H12⋯O11i 0.93 (2) 1.93 (2) 2.857 (3) 171 (2)
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

Dibucaine is an amide local anaesthetic that is now generally only used for surface anaesthesia. It is one of the most potent and toxic of the long-acting local anaesthetics and its parenteral use was restricted to spinal anaesthesia (Sweetman, 2009). Although the single-crystal structure of dibucaine hydrochloride monohydrate has been published (Hayward & Donohue, 1977; Donohue & Hayward, 1980), that of the free base has not been reported.

The molecular structure of the title compound is shown in Figure 1. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into chains running parallel to the a axis. These hydrogen bonds, formed between the carbonyl oxygen and the amide nitrogen, have a O11···N12 distance of 2.857 (3)Å and a N12—H12···O11 angle of 171 (2)°. In the published structure of dibucaine hydrochloride monohydrate, the hydrogen bonds between the amide groups are disrupted due to hydrogen bonding with chloride and water molecules (Hayward & Donohue, 1977; Donohue & Hayward, 1980).

Related literature top

For a monograph on dibucaine, see: Sweetman (2009). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985). For the initial crystal structure determination of dibucaine hydrochloride monohydrate, see: Hayward & Donohue (1977). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983).

Experimental top

A non-saturated solution of the title compound was prepared by dissolving the powder to 20 ml of a 1/1 (v/v) ethanol/water mixture in 20 ml scintillation vials (Research Products International Corp., Mt. Prospect, IL, USA). The open vial was allowed to stand at room temperature to let the liquid slowly evaporate. After one week, the liquid had partly evaporated and crystals of the title compound were obtained. Subsequent to decanting the majority of the remaining liquid and prior to crystal structure determination, the crystals were allowed to dry overnight.

Refinement top

The H atom bound to nitrogen N12 was located in a difference Fourier map and refined freely with isotropic displacement parameters. Other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 0.99 Å (aliphatic CH2), 0.98 Å (aliphatic CH3) and with Uiso(H) = 1.2Ueq(C).

Structure description top

Dibucaine is an amide local anaesthetic that is now generally only used for surface anaesthesia. It is one of the most potent and toxic of the long-acting local anaesthetics and its parenteral use was restricted to spinal anaesthesia (Sweetman, 2009). Although the single-crystal structure of dibucaine hydrochloride monohydrate has been published (Hayward & Donohue, 1977; Donohue & Hayward, 1980), that of the free base has not been reported.

The molecular structure of the title compound is shown in Figure 1. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into chains running parallel to the a axis. These hydrogen bonds, formed between the carbonyl oxygen and the amide nitrogen, have a O11···N12 distance of 2.857 (3)Å and a N12—H12···O11 angle of 171 (2)°. In the published structure of dibucaine hydrochloride monohydrate, the hydrogen bonds between the amide groups are disrupted due to hydrogen bonding with chloride and water molecules (Hayward & Donohue, 1977; Donohue & Hayward, 1980).

For a monograph on dibucaine, see: Sweetman (2009). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985). For the initial crystal structure determination of dibucaine hydrochloride monohydrate, see: Hayward & Donohue (1977). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius.
2-Butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide top
Crystal data top
C20H29N3O2Z = 2
Mr = 343.47F(000) = 372
Triclinic, P1Dx = 1.197 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 4.9323 (1) ÅCell parameters from 22671 reflections
b = 7.2044 (1) Åθ = 6–66°
c = 26.9914 (19) ŵ = 0.62 mm1
α = 94.080 (7)°T = 150 K
β = 90.611 (6)°Plate, colourless
γ = 94.728 (7)°0.20 × 0.20 × 0.06 mm
V = 953.30 (7) Å3
Data collection top
Rigaku Rapid II
diffractometer
1829 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.096
ω scansθmax = 66.6°, θmin = 6.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
h = 55
Tmin = 0.845, Tmax = 0.966k = 88
22671 measured reflectionsl = 3232
2786 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0819P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.064(Δ/σ)max < 0.001
wR(F2) = 0.168Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.22 e Å3
2786 reflectionsExtinction correction: (SHELXL97; Sheldrick 2008)
234 parametersExtinction coefficient: 0.32E-02
0 restraints
Crystal data top
C20H29N3O2γ = 94.728 (7)°
Mr = 343.47V = 953.30 (7) Å3
Triclinic, P1Z = 2
a = 4.9323 (1) ÅCu Kα radiation
b = 7.2044 (1) ŵ = 0.62 mm1
c = 26.9914 (19) ÅT = 150 K
α = 94.080 (7)°0.20 × 0.20 × 0.06 mm
β = 90.611 (6)°
Data collection top
Rigaku Rapid II
diffractometer
2786 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
1829 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.966Rint = 0.096
22671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
2786 reflectionsΔρmin = 0.22 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson (1983).

Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.7912 (3)0.4509 (2)0.20477 (6)0.0463 (5)
O310.0013 (3)0.4421 (2)0.36166 (6)0.0469 (5)
N40.2537 (4)0.1888 (3)0.34861 (7)0.0416 (6)
N120.3625 (5)0.5263 (3)0.19137 (7)0.0382 (6)
N150.2615 (4)0.8145 (3)0.08439 (7)0.0409 (6)
C10.4443 (5)0.3476 (3)0.26107 (8)0.0362 (7)
C20.2628 (5)0.4293 (3)0.29099 (8)0.0388 (7)
C30.1742 (5)0.3452 (3)0.33440 (9)0.0399 (7)
C50.4357 (5)0.1009 (3)0.31830 (8)0.0392 (7)
C60.5198 (5)0.0696 (3)0.33278 (9)0.0460 (8)
C70.7017 (5)0.1636 (3)0.30513 (9)0.0484 (8)
C80.8064 (5)0.0917 (3)0.26159 (9)0.0473 (8)
C90.7263 (5)0.0726 (3)0.24632 (8)0.0430 (7)
C100.5402 (5)0.1733 (3)0.27428 (8)0.0370 (7)
C110.5499 (6)0.4428 (3)0.21690 (9)0.0384 (7)
C130.4394 (4)0.6311 (3)0.14897 (8)0.0392 (7)
C140.1956 (5)0.7230 (3)0.13009 (8)0.0447 (8)
C160.2090 (5)0.6808 (3)0.04102 (8)0.0456 (8)
C170.3601 (5)0.7366 (4)0.00472 (8)0.0515 (8)
C180.1034 (5)0.9769 (3)0.08026 (8)0.0489 (8)
C190.2050 (6)1.1414 (3)0.11548 (9)0.0644 (9)
C320.0885 (5)0.3722 (4)0.40823 (8)0.0475 (8)
C330.2632 (5)0.5140 (4)0.43239 (9)0.0491 (8)
C340.1155 (5)0.7061 (4)0.44398 (9)0.0528 (8)
C350.2952 (5)0.8435 (4)0.47007 (9)0.0603 (9)
H20.19510.54310.28280.047*
H60.44920.11970.36210.055*
H70.75760.27820.31540.058*
H80.93370.15760.24260.057*
H90.79670.11930.21660.052*
H120.180 (5)0.502 (3)0.1994 (7)0.043 (8)*
H13A0.50620.54610.12220.047*
H13B0.58830.72780.15880.047*
H14A0.04100.62740.12350.054*
H14B0.14010.81650.15580.054*
H16A0.01130.66790.03330.055*
H16B0.26190.55710.04950.055*
H17A0.30990.85930.01330.077*
H17B0.31200.64410.03250.077*
H17C0.55650.74270.00190.077*
H18A0.08950.94090.08730.059*
H18B0.11261.01500.04580.059*
H19A0.18851.10640.14980.097*
H19B0.09611.24670.11070.097*
H19C0.39621.17760.10870.097*
H32A0.07080.35710.42980.057*
H32B0.19430.24950.40240.057*
H33A0.33490.46700.46370.059*
H33B0.42050.52640.41010.059*
H34A0.05020.75620.41260.063*
H34B0.04560.69400.46530.063*
H35A0.46210.84850.45040.090*
H35B0.19720.96780.47360.090*
H35C0.34190.80260.50300.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0350 (13)0.0471 (12)0.0590 (11)0.0077 (10)0.0081 (9)0.0141 (9)
O310.0541 (13)0.0469 (12)0.0426 (10)0.0170 (10)0.0117 (9)0.0061 (8)
N40.0475 (16)0.0351 (13)0.0434 (13)0.0079 (12)0.0037 (10)0.0048 (10)
N120.0306 (15)0.0407 (14)0.0451 (13)0.0037 (12)0.0073 (11)0.0138 (10)
N150.0500 (16)0.0332 (13)0.0413 (12)0.0107 (11)0.0057 (10)0.0062 (10)
C10.0364 (18)0.0312 (15)0.0414 (14)0.0040 (13)0.0002 (12)0.0035 (12)
C20.0416 (19)0.0334 (16)0.0425 (15)0.0088 (14)0.0002 (13)0.0038 (12)
C30.0433 (18)0.0366 (16)0.0405 (15)0.0098 (14)0.0054 (12)0.0001 (12)
C50.0443 (19)0.0334 (16)0.0402 (15)0.0069 (14)0.0013 (13)0.0022 (12)
C60.058 (2)0.0334 (16)0.0485 (16)0.0103 (15)0.0027 (14)0.0082 (13)
C70.056 (2)0.0331 (16)0.0567 (18)0.0077 (15)0.0021 (14)0.0067 (13)
C80.051 (2)0.0371 (17)0.0542 (17)0.0118 (15)0.0030 (14)0.0003 (13)
C90.0460 (19)0.0375 (16)0.0471 (16)0.0110 (14)0.0042 (13)0.0054 (13)
C100.0361 (18)0.0312 (15)0.0439 (15)0.0059 (13)0.0032 (12)0.0014 (12)
C110.0392 (19)0.0321 (16)0.0449 (15)0.0077 (14)0.0025 (13)0.0029 (12)
C130.0326 (17)0.0407 (16)0.0457 (15)0.0032 (13)0.0047 (12)0.0115 (13)
C140.0450 (19)0.0412 (16)0.0509 (16)0.0121 (14)0.0054 (13)0.0128 (13)
C160.051 (2)0.0357 (16)0.0503 (17)0.0066 (15)0.0008 (14)0.0038 (13)
C170.064 (2)0.0452 (18)0.0468 (16)0.0125 (16)0.0016 (14)0.0019 (13)
C180.058 (2)0.0378 (17)0.0535 (17)0.0161 (16)0.0037 (14)0.0078 (14)
C190.095 (3)0.0378 (18)0.0614 (19)0.0118 (18)0.0086 (17)0.0013 (15)
C320.054 (2)0.0491 (18)0.0405 (15)0.0085 (16)0.0092 (13)0.0054 (13)
C330.050 (2)0.0524 (19)0.0454 (16)0.0082 (16)0.0104 (13)0.0003 (14)
C340.052 (2)0.0502 (19)0.0555 (18)0.0071 (17)0.0013 (14)0.0036 (15)
C350.061 (2)0.056 (2)0.0640 (18)0.0135 (17)0.0046 (15)0.0045 (15)
Geometric parameters (Å, º) top
O11—C111.236 (2)C13—H13B0.9900
O31—C31.348 (2)C14—H14A0.9900
O31—C321.444 (2)C14—H14B0.9900
N4—C31.304 (3)C16—C171.511 (3)
N4—C51.383 (3)C16—H16A0.9900
N12—C111.352 (3)C16—H16B0.9900
N12—C131.452 (3)C17—H17A0.9800
N12—H120.94 (2)C17—H17B0.9800
N15—C141.466 (3)C17—H17C0.9800
N15—C181.469 (2)C18—C191.513 (3)
N15—C161.469 (3)C18—H18A0.9900
C1—C21.354 (3)C18—H18B0.9900
C1—C101.444 (3)C19—H19A0.9800
C1—C111.494 (3)C19—H19B0.9800
C2—C31.414 (3)C19—H19C0.9800
C2—H20.9500C32—C331.508 (3)
C5—C61.408 (3)C32—H32A0.9900
C5—C101.417 (3)C32—H32B0.9900
C6—C71.365 (3)C33—C341.520 (3)
C6—H60.9500C33—H33A0.9900
C7—C81.404 (3)C33—H33B0.9900
C7—H70.9500C34—C351.523 (3)
C8—C91.368 (3)C34—H34A0.9900
C8—H80.9500C34—H34B0.9900
C9—C101.409 (3)C35—H35A0.9800
C9—H90.9500C35—H35B0.9800
C13—C141.520 (3)C35—H35C0.9800
C13—H13A0.9900
C3—O31—C32117.98 (18)H14A—C14—H14B108.10
C3—N4—C5116.6 (2)N15—C16—C17113.6 (2)
C11—N12—C13120.9 (2)N15—C16—H16A108.90
C11—N12—H12117.6 (13)C17—C16—H16A108.90
C13—N12—H12121.0 (13)N15—C16—H16B108.90
C14—N15—C18110.81 (18)C17—C16—H16B108.90
C14—N15—C16109.95 (18)H16A—C16—H16B107.70
C18—N15—C16110.41 (18)C16—C17—H17A109.50
C2—C1—C10118.5 (2)C16—C17—H17B109.50
C2—C1—C11119.8 (2)H17A—C17—H17B109.50
C10—C1—C11121.6 (2)C16—C17—H17C109.50
C1—C2—C3120.0 (2)H17A—C17—H17C109.50
C1—C2—H2120.00H17B—C17—H17C109.50
C3—C2—H2120.00N15—C18—C19112.7 (2)
N4—C3—O31121.0 (2)N15—C18—H18A109.10
N4—C3—C2124.6 (2)C19—C18—H18A109.10
O31—C3—C2114.4 (2)N15—C18—H18B109.10
N4—C5—C6117.2 (2)C19—C18—H18B109.10
N4—C5—C10123.7 (2)H18A—C18—H18B107.80
C6—C5—C10119.2 (2)C18—C19—H19A109.50
C7—C6—C5120.6 (2)C18—C19—H19B109.50
C7—C6—H6119.70H19A—C19—H19B109.50
C5—C6—H6119.70C18—C19—H19C109.50
C6—C7—C8120.3 (2)H19A—C19—H19C109.50
C6—C7—H7119.90H19B—C19—H19C109.50
C8—C7—H7119.90O31—C32—C33106.61 (19)
C9—C8—C7120.4 (2)O31—C32—H32A110.40
C9—C8—H8119.80C33—C32—H32A110.40
C7—C8—H8119.80O31—C32—H32B110.40
C8—C9—C10120.6 (2)C33—C32—H32B110.40
C8—C9—H9119.70H32A—C32—H32B108.60
C10—C9—H9119.70C32—C33—C34114.2 (2)
C9—C10—C5118.9 (2)C32—C33—H33A108.70
C9—C10—C1124.4 (2)C34—C33—H33A108.70
C5—C10—C1116.6 (2)C32—C33—H33B108.70
O11—C11—N12121.4 (2)C34—C33—H33B108.70
O11—C11—C1123.5 (2)H33A—C33—H33B107.60
N12—C11—C1115.1 (2)C33—C34—C35112.7 (2)
N12—C13—C14109.85 (19)C33—C34—H34A109.10
N12—C13—H13A109.70C35—C34—H34A109.10
C14—C13—H13A109.70C33—C34—H34B109.10
N12—C13—H13B109.70C35—C34—H34B109.10
C14—C13—H13B109.70H34A—C34—H34B107.80
H13A—C13—H13B108.20C34—C35—H35A109.50
N15—C14—C13110.76 (19)C34—C35—H35B109.50
N15—C14—H14A109.50H35A—C35—H35B109.50
C13—C14—H14A109.50C34—C35—H35C109.50
N15—C14—H14B109.50H35A—C35—H35C109.50
C13—C14—H14B109.50H35B—C35—H35C109.50
C10—C1—C2—C30.8 (4)C2—C1—C10—C9179.3 (2)
C11—C1—C2—C3176.4 (2)C11—C1—C10—C93.5 (4)
C5—N4—C3—O31179.5 (2)C2—C1—C10—C50.2 (3)
C5—N4—C3—C20.5 (4)C11—C1—C10—C5176.9 (2)
C32—O31—C3—N42.9 (4)C13—N12—C11—O110.8 (4)
C32—O31—C3—C2176.12 (19)C13—N12—C11—C1177.23 (19)
C1—C2—C3—N40.5 (4)C2—C1—C11—O11137.5 (3)
C1—C2—C3—O31178.5 (2)C10—C1—C11—O1139.6 (4)
C3—N4—C5—C6179.0 (2)C2—C1—C11—N1240.5 (3)
C3—N4—C5—C101.2 (4)C10—C1—C11—N12142.4 (2)
N4—C5—C6—C7179.2 (2)C11—N12—C13—C14175.3 (2)
C10—C5—C6—C70.6 (4)C18—N15—C14—C13149.9 (2)
C5—C6—C7—C80.4 (4)C16—N15—C14—C1387.7 (2)
C6—C7—C8—C90.3 (4)N12—C13—C14—N15174.54 (18)
C7—C8—C9—C100.8 (4)C14—N15—C16—C17159.16 (19)
C8—C9—C10—C50.5 (4)C18—N15—C16—C1778.3 (2)
C8—C9—C10—C1180.0 (2)C14—N15—C18—C1974.0 (3)
N4—C5—C10—C9179.6 (2)C16—N15—C18—C19164.0 (2)
C6—C5—C10—C90.2 (4)C3—O31—C32—C33175.6 (2)
N4—C5—C10—C10.8 (4)O31—C32—C33—C3461.5 (3)
C6—C5—C10—C1179.4 (2)C32—C33—C34—C35177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O110.952.433.015 (3)119
N12—H12···O11i0.93 (2)1.93 (2)2.857 (3)171 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H29N3O2
Mr343.47
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)4.9323 (1), 7.2044 (1), 26.9914 (19)
α, β, γ (°)94.080 (7), 90.611 (6), 94.728 (7)
V3)953.30 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.20 × 0.20 × 0.06
Data collection
DiffractometerRigaku Rapid II
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.845, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
22671, 2786, 1829
Rint0.096
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.168, 1.05
No. of reflections2786
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CrystalClear (Rigaku, 2001), SIR2004 (Burla et al., 2005), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O110.952.433.015 (3)119
N12—H12···O11i0.93 (2)1.93 (2)2.857 (3)170.9 (17)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS)(EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research, for financial support (NSF MPS-DMR)(DMR-0804609). BVE is a Postdoctoral Researcher of the `Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonohue, J. & Hayward, B. S. (1980). J. Cryst. Mol. Struct. 10, 157–161.  CrossRef CAS Web of Science Google Scholar
First citationHayward, B. S. & Donohue, J. (1977). J. Cryst. Mol. Struct. 7, 275–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPrince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: Pharmaceutical Press.  Google Scholar
First citationWillatts, D. G. & Reynolds, F. (1985). Br. J. Anaesth. 57, 1006–1011.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds