organic compounds
2-Butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide (dibucaine)
aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000, Leuven, Belgium, and cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
*Correspondence e-mail: lstaylor@purdue.edu
The molecular conformation of the title compound, C20H29N3O2, is stabilized by an intramolecular C—H⋯O hydrogen bond. The orientation of the amide group to the ring system is characterized by a C—C—C—O dihedral angle of 137.5 (3)°. In the crystal, intermolecular N—H⋯O hydrogen bonds between the amide groups form C(4) chains running parallel to the a axis.
Related literature
For a monograph on dibucaine, see: Sweetman (2009). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985). For the initial determination of dibucaine hydrochloride monohydrate, see: Hayward & Donohue (1977). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and local programs.
Supporting information
https://doi.org/10.1107/S1600536810045460/rz2498sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045460/rz2498Isup2.hkl
A non-saturated solution of the title compound was prepared by dissolving the powder to 20 ml of a 1/1 (v/v) ethanol/water mixture in 20 ml scintillation vials (Research Products International Corp., Mt. Prospect, IL, USA). The open vial was allowed to stand at room temperature to let the liquid slowly evaporate. After one week, the liquid had partly evaporated and crystals of the title compound were obtained. Subsequent to decanting the majority of the remaining liquid and prior to
determination, the crystals were allowed to dry overnight.The H atom bound to nitrogen N12 was located in a difference Fourier map and refined freely with isotropic displacement parameters. Other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 0.99 Å (aliphatic CH2), 0.98 Å (aliphatic CH3) and with Uiso(H) = 1.2Ueq(C).
Dibucaine is an amide local anaesthetic that is now generally only used for surface anaesthesia. It is one of the most potent and toxic of the long-acting local anaesthetics and its parenteral use was restricted to spinal anaesthesia (Sweetman, 2009). Although the single-crystal structure of dibucaine hydrochloride monohydrate has been published (Hayward & Donohue, 1977; Donohue & Hayward, 1980), that of the free base has not been reported.
The molecular structure of the title compound is shown in Figure 1. The
is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the molecules are linked by intermolecular N—H···O hydrogen bonds into chains running parallel to the a axis. These hydrogen bonds, formed between the carbonyl oxygen and the amide nitrogen, have a O11···N12 distance of 2.857 (3)Å and a N12—H12···O11 angle of 171 (2)°. In the published structure of dibucaine hydrochloride monohydrate, the hydrogen bonds between the amide groups are disrupted due to hydrogen bonding with chloride and water molecules (Hayward & Donohue, 1977; Donohue & Hayward, 1980).For a monograph on dibucaine, see: Sweetman (2009). For a comparison of the vasoactivity of dibucaine with other amide and ester local anaesthetics, see: Willatts & Reynolds (1985). For the initial
determination of dibucaine hydrochloride monohydrate, see: Hayward & Donohue (1977). For the subsequent revision of parameters, bond distances and bond angles, see Donohue & Hayward (1980). Outlier data were removed using a local program based on the method of Prince & Nicholson (1983).Data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius. |
C20H29N3O2 | Z = 2 |
Mr = 343.47 | F(000) = 372 |
Triclinic, P1 | Dx = 1.197 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 4.9323 (1) Å | Cell parameters from 22671 reflections |
b = 7.2044 (1) Å | θ = 6–66° |
c = 26.9914 (19) Å | µ = 0.62 mm−1 |
α = 94.080 (7)° | T = 150 K |
β = 90.611 (6)° | Plate, colourless |
γ = 94.728 (7)° | 0.20 × 0.20 × 0.06 mm |
V = 953.30 (7) Å3 |
Rigaku Rapid II diffractometer | 1829 reflections with I > 2σ(I) |
Confocal optics monochromator | Rint = 0.096 |
ω scans | θmax = 66.6°, θmin = 6.5° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) | h = −5→5 |
Tmin = 0.845, Tmax = 0.966 | k = −8→8 |
22671 measured reflections | l = −32→32 |
2786 independent reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0819P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.064 | (Δ/σ)max < 0.001 |
wR(F2) = 0.168 | Δρmax = 0.28 e Å−3 |
S = 1.05 | Δρmin = −0.22 e Å−3 |
2786 reflections | Extinction correction: (SHELXL97; Sheldrick 2008) |
234 parameters | Extinction coefficient: 0.32E-02 |
0 restraints |
C20H29N3O2 | γ = 94.728 (7)° |
Mr = 343.47 | V = 953.30 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.9323 (1) Å | Cu Kα radiation |
b = 7.2044 (1) Å | µ = 0.62 mm−1 |
c = 26.9914 (19) Å | T = 150 K |
α = 94.080 (7)° | 0.20 × 0.20 × 0.06 mm |
β = 90.611 (6)° |
Rigaku Rapid II diffractometer | 2786 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) | 1829 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.966 | Rint = 0.096 |
22671 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.28 e Å−3 |
2786 reflections | Δρmin = −0.22 e Å−3 |
234 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson (1983). Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11 | 0.7912 (3) | 0.4509 (2) | 0.20477 (6) | 0.0463 (5) | |
O31 | −0.0013 (3) | 0.4421 (2) | 0.36166 (6) | 0.0469 (5) | |
N4 | 0.2537 (4) | 0.1888 (3) | 0.34861 (7) | 0.0416 (6) | |
N12 | 0.3625 (5) | 0.5263 (3) | 0.19137 (7) | 0.0382 (6) | |
N15 | 0.2615 (4) | 0.8145 (3) | 0.08439 (7) | 0.0409 (6) | |
C1 | 0.4443 (5) | 0.3476 (3) | 0.26107 (8) | 0.0362 (7) | |
C2 | 0.2628 (5) | 0.4293 (3) | 0.29099 (8) | 0.0388 (7) | |
C3 | 0.1742 (5) | 0.3452 (3) | 0.33440 (9) | 0.0399 (7) | |
C5 | 0.4357 (5) | 0.1009 (3) | 0.31830 (8) | 0.0392 (7) | |
C6 | 0.5198 (5) | −0.0696 (3) | 0.33278 (9) | 0.0460 (8) | |
C7 | 0.7017 (5) | −0.1636 (3) | 0.30513 (9) | 0.0484 (8) | |
C8 | 0.8064 (5) | −0.0917 (3) | 0.26159 (9) | 0.0473 (8) | |
C9 | 0.7263 (5) | 0.0726 (3) | 0.24632 (8) | 0.0430 (7) | |
C10 | 0.5402 (5) | 0.1733 (3) | 0.27428 (8) | 0.0370 (7) | |
C11 | 0.5499 (6) | 0.4428 (3) | 0.21690 (9) | 0.0384 (7) | |
C13 | 0.4394 (4) | 0.6311 (3) | 0.14897 (8) | 0.0392 (7) | |
C14 | 0.1956 (5) | 0.7230 (3) | 0.13009 (8) | 0.0447 (8) | |
C16 | 0.2090 (5) | 0.6808 (3) | 0.04102 (8) | 0.0456 (8) | |
C17 | 0.3601 (5) | 0.7366 (4) | −0.00472 (8) | 0.0515 (8) | |
C18 | 0.1034 (5) | 0.9769 (3) | 0.08026 (8) | 0.0489 (8) | |
C19 | 0.2050 (6) | 1.1414 (3) | 0.11548 (9) | 0.0644 (9) | |
C32 | −0.0885 (5) | 0.3722 (4) | 0.40823 (8) | 0.0475 (8) | |
C33 | −0.2632 (5) | 0.5140 (4) | 0.43239 (9) | 0.0491 (8) | |
C34 | −0.1155 (5) | 0.7061 (4) | 0.44398 (9) | 0.0528 (8) | |
C35 | −0.2952 (5) | 0.8435 (4) | 0.47007 (9) | 0.0603 (9) | |
H2 | 0.1951 | 0.5431 | 0.2828 | 0.047* | |
H6 | 0.4492 | −0.1197 | 0.3621 | 0.055* | |
H7 | 0.7576 | −0.2782 | 0.3154 | 0.058* | |
H8 | 0.9337 | −0.1576 | 0.2426 | 0.057* | |
H9 | 0.7967 | 0.1193 | 0.2166 | 0.052* | |
H12 | 0.180 (5) | 0.502 (3) | 0.1994 (7) | 0.043 (8)* | |
H13A | 0.5062 | 0.5461 | 0.1222 | 0.047* | |
H13B | 0.5883 | 0.7278 | 0.1588 | 0.047* | |
H14A | 0.0410 | 0.6274 | 0.1235 | 0.054* | |
H14B | 0.1401 | 0.8165 | 0.1558 | 0.054* | |
H16A | 0.0113 | 0.6679 | 0.0333 | 0.055* | |
H16B | 0.2619 | 0.5571 | 0.0495 | 0.055* | |
H17A | 0.3099 | 0.8593 | −0.0133 | 0.077* | |
H17B | 0.3120 | 0.6441 | −0.0325 | 0.077* | |
H17C | 0.5565 | 0.7427 | 0.0019 | 0.077* | |
H18A | −0.0895 | 0.9409 | 0.0873 | 0.059* | |
H18B | 0.1126 | 1.0150 | 0.0458 | 0.059* | |
H19A | 0.1885 | 1.1064 | 0.1498 | 0.097* | |
H19B | 0.0961 | 1.2467 | 0.1107 | 0.097* | |
H19C | 0.3962 | 1.1776 | 0.1087 | 0.097* | |
H32A | 0.0708 | 0.3571 | 0.4298 | 0.057* | |
H32B | −0.1943 | 0.2495 | 0.4024 | 0.057* | |
H33A | −0.3349 | 0.4670 | 0.4637 | 0.059* | |
H33B | −0.4205 | 0.5264 | 0.4101 | 0.059* | |
H34A | −0.0502 | 0.7562 | 0.4126 | 0.063* | |
H34B | 0.0456 | 0.6940 | 0.4653 | 0.063* | |
H35A | −0.4621 | 0.8485 | 0.4504 | 0.090* | |
H35B | −0.1972 | 0.9678 | 0.4736 | 0.090* | |
H35C | −0.3419 | 0.8026 | 0.5030 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0350 (13) | 0.0471 (12) | 0.0590 (11) | 0.0077 (10) | 0.0081 (9) | 0.0141 (9) |
O31 | 0.0541 (13) | 0.0469 (12) | 0.0426 (10) | 0.0170 (10) | 0.0117 (9) | 0.0061 (8) |
N4 | 0.0475 (16) | 0.0351 (13) | 0.0434 (13) | 0.0079 (12) | 0.0037 (10) | 0.0048 (10) |
N12 | 0.0306 (15) | 0.0407 (14) | 0.0451 (13) | 0.0037 (12) | 0.0073 (11) | 0.0138 (10) |
N15 | 0.0500 (16) | 0.0332 (13) | 0.0413 (12) | 0.0107 (11) | 0.0057 (10) | 0.0062 (10) |
C1 | 0.0364 (18) | 0.0312 (15) | 0.0414 (14) | 0.0040 (13) | 0.0002 (12) | 0.0035 (12) |
C2 | 0.0416 (19) | 0.0334 (16) | 0.0425 (15) | 0.0088 (14) | 0.0002 (13) | 0.0038 (12) |
C3 | 0.0433 (18) | 0.0366 (16) | 0.0405 (15) | 0.0098 (14) | 0.0054 (12) | −0.0001 (12) |
C5 | 0.0443 (19) | 0.0334 (16) | 0.0402 (15) | 0.0069 (14) | −0.0013 (13) | 0.0022 (12) |
C6 | 0.058 (2) | 0.0334 (16) | 0.0485 (16) | 0.0103 (15) | 0.0027 (14) | 0.0082 (13) |
C7 | 0.056 (2) | 0.0331 (16) | 0.0567 (18) | 0.0077 (15) | −0.0021 (14) | 0.0067 (13) |
C8 | 0.051 (2) | 0.0371 (17) | 0.0542 (17) | 0.0118 (15) | 0.0030 (14) | −0.0003 (13) |
C9 | 0.0460 (19) | 0.0375 (16) | 0.0471 (16) | 0.0110 (14) | 0.0042 (13) | 0.0054 (13) |
C10 | 0.0361 (18) | 0.0312 (15) | 0.0439 (15) | 0.0059 (13) | −0.0032 (12) | 0.0014 (12) |
C11 | 0.0392 (19) | 0.0321 (16) | 0.0449 (15) | 0.0077 (14) | 0.0025 (13) | 0.0029 (12) |
C13 | 0.0326 (17) | 0.0407 (16) | 0.0457 (15) | 0.0032 (13) | 0.0047 (12) | 0.0115 (13) |
C14 | 0.0450 (19) | 0.0412 (16) | 0.0509 (16) | 0.0121 (14) | 0.0054 (13) | 0.0128 (13) |
C16 | 0.051 (2) | 0.0357 (16) | 0.0503 (17) | 0.0066 (15) | 0.0008 (14) | 0.0038 (13) |
C17 | 0.064 (2) | 0.0452 (18) | 0.0468 (16) | 0.0125 (16) | 0.0016 (14) | 0.0019 (13) |
C18 | 0.058 (2) | 0.0378 (17) | 0.0535 (17) | 0.0161 (16) | 0.0037 (14) | 0.0078 (14) |
C19 | 0.095 (3) | 0.0378 (18) | 0.0614 (19) | 0.0118 (18) | 0.0086 (17) | −0.0013 (15) |
C32 | 0.054 (2) | 0.0491 (18) | 0.0405 (15) | 0.0085 (16) | 0.0092 (13) | 0.0054 (13) |
C33 | 0.050 (2) | 0.0524 (19) | 0.0454 (16) | 0.0082 (16) | 0.0104 (13) | −0.0003 (14) |
C34 | 0.052 (2) | 0.0502 (19) | 0.0555 (18) | 0.0071 (17) | 0.0013 (14) | −0.0036 (15) |
C35 | 0.061 (2) | 0.056 (2) | 0.0640 (18) | 0.0135 (17) | 0.0046 (15) | −0.0045 (15) |
O11—C11 | 1.236 (2) | C13—H13B | 0.9900 |
O31—C3 | 1.348 (2) | C14—H14A | 0.9900 |
O31—C32 | 1.444 (2) | C14—H14B | 0.9900 |
N4—C3 | 1.304 (3) | C16—C17 | 1.511 (3) |
N4—C5 | 1.383 (3) | C16—H16A | 0.9900 |
N12—C11 | 1.352 (3) | C16—H16B | 0.9900 |
N12—C13 | 1.452 (3) | C17—H17A | 0.9800 |
N12—H12 | 0.94 (2) | C17—H17B | 0.9800 |
N15—C14 | 1.466 (3) | C17—H17C | 0.9800 |
N15—C18 | 1.469 (2) | C18—C19 | 1.513 (3) |
N15—C16 | 1.469 (3) | C18—H18A | 0.9900 |
C1—C2 | 1.354 (3) | C18—H18B | 0.9900 |
C1—C10 | 1.444 (3) | C19—H19A | 0.9800 |
C1—C11 | 1.494 (3) | C19—H19B | 0.9800 |
C2—C3 | 1.414 (3) | C19—H19C | 0.9800 |
C2—H2 | 0.9500 | C32—C33 | 1.508 (3) |
C5—C6 | 1.408 (3) | C32—H32A | 0.9900 |
C5—C10 | 1.417 (3) | C32—H32B | 0.9900 |
C6—C7 | 1.365 (3) | C33—C34 | 1.520 (3) |
C6—H6 | 0.9500 | C33—H33A | 0.9900 |
C7—C8 | 1.404 (3) | C33—H33B | 0.9900 |
C7—H7 | 0.9500 | C34—C35 | 1.523 (3) |
C8—C9 | 1.368 (3) | C34—H34A | 0.9900 |
C8—H8 | 0.9500 | C34—H34B | 0.9900 |
C9—C10 | 1.409 (3) | C35—H35A | 0.9800 |
C9—H9 | 0.9500 | C35—H35B | 0.9800 |
C13—C14 | 1.520 (3) | C35—H35C | 0.9800 |
C13—H13A | 0.9900 | ||
C3—O31—C32 | 117.98 (18) | H14A—C14—H14B | 108.10 |
C3—N4—C5 | 116.6 (2) | N15—C16—C17 | 113.6 (2) |
C11—N12—C13 | 120.9 (2) | N15—C16—H16A | 108.90 |
C11—N12—H12 | 117.6 (13) | C17—C16—H16A | 108.90 |
C13—N12—H12 | 121.0 (13) | N15—C16—H16B | 108.90 |
C14—N15—C18 | 110.81 (18) | C17—C16—H16B | 108.90 |
C14—N15—C16 | 109.95 (18) | H16A—C16—H16B | 107.70 |
C18—N15—C16 | 110.41 (18) | C16—C17—H17A | 109.50 |
C2—C1—C10 | 118.5 (2) | C16—C17—H17B | 109.50 |
C2—C1—C11 | 119.8 (2) | H17A—C17—H17B | 109.50 |
C10—C1—C11 | 121.6 (2) | C16—C17—H17C | 109.50 |
C1—C2—C3 | 120.0 (2) | H17A—C17—H17C | 109.50 |
C1—C2—H2 | 120.00 | H17B—C17—H17C | 109.50 |
C3—C2—H2 | 120.00 | N15—C18—C19 | 112.7 (2) |
N4—C3—O31 | 121.0 (2) | N15—C18—H18A | 109.10 |
N4—C3—C2 | 124.6 (2) | C19—C18—H18A | 109.10 |
O31—C3—C2 | 114.4 (2) | N15—C18—H18B | 109.10 |
N4—C5—C6 | 117.2 (2) | C19—C18—H18B | 109.10 |
N4—C5—C10 | 123.7 (2) | H18A—C18—H18B | 107.80 |
C6—C5—C10 | 119.2 (2) | C18—C19—H19A | 109.50 |
C7—C6—C5 | 120.6 (2) | C18—C19—H19B | 109.50 |
C7—C6—H6 | 119.70 | H19A—C19—H19B | 109.50 |
C5—C6—H6 | 119.70 | C18—C19—H19C | 109.50 |
C6—C7—C8 | 120.3 (2) | H19A—C19—H19C | 109.50 |
C6—C7—H7 | 119.90 | H19B—C19—H19C | 109.50 |
C8—C7—H7 | 119.90 | O31—C32—C33 | 106.61 (19) |
C9—C8—C7 | 120.4 (2) | O31—C32—H32A | 110.40 |
C9—C8—H8 | 119.80 | C33—C32—H32A | 110.40 |
C7—C8—H8 | 119.80 | O31—C32—H32B | 110.40 |
C8—C9—C10 | 120.6 (2) | C33—C32—H32B | 110.40 |
C8—C9—H9 | 119.70 | H32A—C32—H32B | 108.60 |
C10—C9—H9 | 119.70 | C32—C33—C34 | 114.2 (2) |
C9—C10—C5 | 118.9 (2) | C32—C33—H33A | 108.70 |
C9—C10—C1 | 124.4 (2) | C34—C33—H33A | 108.70 |
C5—C10—C1 | 116.6 (2) | C32—C33—H33B | 108.70 |
O11—C11—N12 | 121.4 (2) | C34—C33—H33B | 108.70 |
O11—C11—C1 | 123.5 (2) | H33A—C33—H33B | 107.60 |
N12—C11—C1 | 115.1 (2) | C33—C34—C35 | 112.7 (2) |
N12—C13—C14 | 109.85 (19) | C33—C34—H34A | 109.10 |
N12—C13—H13A | 109.70 | C35—C34—H34A | 109.10 |
C14—C13—H13A | 109.70 | C33—C34—H34B | 109.10 |
N12—C13—H13B | 109.70 | C35—C34—H34B | 109.10 |
C14—C13—H13B | 109.70 | H34A—C34—H34B | 107.80 |
H13A—C13—H13B | 108.20 | C34—C35—H35A | 109.50 |
N15—C14—C13 | 110.76 (19) | C34—C35—H35B | 109.50 |
N15—C14—H14A | 109.50 | H35A—C35—H35B | 109.50 |
C13—C14—H14A | 109.50 | C34—C35—H35C | 109.50 |
N15—C14—H14B | 109.50 | H35A—C35—H35C | 109.50 |
C13—C14—H14B | 109.50 | H35B—C35—H35C | 109.50 |
C10—C1—C2—C3 | 0.8 (4) | C2—C1—C10—C9 | 179.3 (2) |
C11—C1—C2—C3 | −176.4 (2) | C11—C1—C10—C9 | −3.5 (4) |
C5—N4—C3—O31 | −179.5 (2) | C2—C1—C10—C5 | −0.2 (3) |
C5—N4—C3—C2 | −0.5 (4) | C11—C1—C10—C5 | 176.9 (2) |
C32—O31—C3—N4 | 2.9 (4) | C13—N12—C11—O11 | −0.8 (4) |
C32—O31—C3—C2 | −176.12 (19) | C13—N12—C11—C1 | 177.23 (19) |
C1—C2—C3—N4 | −0.5 (4) | C2—C1—C11—O11 | 137.5 (3) |
C1—C2—C3—O31 | 178.5 (2) | C10—C1—C11—O11 | −39.6 (4) |
C3—N4—C5—C6 | −179.0 (2) | C2—C1—C11—N12 | −40.5 (3) |
C3—N4—C5—C10 | 1.2 (4) | C10—C1—C11—N12 | 142.4 (2) |
N4—C5—C6—C7 | −179.2 (2) | C11—N12—C13—C14 | −175.3 (2) |
C10—C5—C6—C7 | 0.6 (4) | C18—N15—C14—C13 | −149.9 (2) |
C5—C6—C7—C8 | −0.4 (4) | C16—N15—C14—C13 | 87.7 (2) |
C6—C7—C8—C9 | −0.3 (4) | N12—C13—C14—N15 | −174.54 (18) |
C7—C8—C9—C10 | 0.8 (4) | C14—N15—C16—C17 | −159.16 (19) |
C8—C9—C10—C5 | −0.5 (4) | C18—N15—C16—C17 | 78.3 (2) |
C8—C9—C10—C1 | 180.0 (2) | C14—N15—C18—C19 | 74.0 (3) |
N4—C5—C10—C9 | 179.6 (2) | C16—N15—C18—C19 | −164.0 (2) |
C6—C5—C10—C9 | −0.2 (4) | C3—O31—C32—C33 | 175.6 (2) |
N4—C5—C10—C1 | −0.8 (4) | O31—C32—C33—C34 | −61.5 (3) |
C6—C5—C10—C1 | 179.4 (2) | C32—C33—C34—C35 | −177.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O11 | 0.95 | 2.43 | 3.015 (3) | 119 |
N12—H12···O11i | 0.93 (2) | 1.93 (2) | 2.857 (3) | 171 (2) |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H29N3O2 |
Mr | 343.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 4.9323 (1), 7.2044 (1), 26.9914 (19) |
α, β, γ (°) | 94.080 (7), 90.611 (6), 94.728 (7) |
V (Å3) | 953.30 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.20 × 0.20 × 0.06 |
Data collection | |
Diffractometer | Rigaku Rapid II |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2001) |
Tmin, Tmax | 0.845, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22671, 2786, 1829 |
Rint | 0.096 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.168, 1.05 |
No. of reflections | 2786 |
No. of parameters | 234 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.22 |
Computer programs: CrystalClear (Rigaku, 2001), SIR2004 (Burla et al., 2005), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O11 | 0.95 | 2.43 | 3.015 (3) | 119 |
N12—H12···O11i | 0.93 (2) | 1.93 (2) | 2.857 (3) | 170.9 (17) |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS)(EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research, for financial support (NSF MPS-DMR)(DMR-0804609). BVE is a Postdoctoral Researcher of the `Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Donohue, J. & Hayward, B. S. (1980). J. Cryst. Mol. Struct. 10, 157–161. CrossRef CAS Web of Science Google Scholar
Hayward, B. S. & Donohue, J. (1977). J. Cryst. Mol. Struct. 7, 275–294. CSD CrossRef CAS Web of Science Google Scholar
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sweetman, S. C. (2009). Editor. Martindale: The Complete Drug Reference, 36th ed. London: Pharmaceutical Press. Google Scholar
Willatts, D. G. & Reynolds, F. (1985). Br. J. Anaesth. 57, 1006–1011. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dibucaine is an amide local anaesthetic that is now generally only used for surface anaesthesia. It is one of the most potent and toxic of the long-acting local anaesthetics and its parenteral use was restricted to spinal anaesthesia (Sweetman, 2009). Although the single-crystal structure of dibucaine hydrochloride monohydrate has been published (Hayward & Donohue, 1977; Donohue & Hayward, 1980), that of the free base has not been reported.
The molecular structure of the title compound is shown in Figure 1. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into chains running parallel to the a axis. These hydrogen bonds, formed between the carbonyl oxygen and the amide nitrogen, have a O11···N12 distance of 2.857 (3)Å and a N12—H12···O11 angle of 171 (2)°. In the published structure of dibucaine hydrochloride monohydrate, the hydrogen bonds between the amide groups are disrupted due to hydrogen bonding with chloride and water molecules (Hayward & Donohue, 1977; Donohue & Hayward, 1980).