organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4,6-O-benzyl­­idene-2-de­­oxy-N-phthalimido-1-thio-β-D-gluco­pyran­oside

aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and bDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
*Correspondence e-mail: lars.eriksson@mmk.su.se

(Received 10 October 2010; accepted 13 November 2010; online 20 November 2010)

In the title compound, C23H23NO6S, the plane of the N-phthalimido group makes a dihedral angle of 67.4 (1)° with the least square plane of the sugar ring defined by the C2, C3, C5 and O5 atoms using standard glucose nomenclature. The thio­ethyl group has the exo-anomeric conformation. In the crystal, inter­molecular hydrogen bonds involving the hy­droxy groups and the carbonyl O atoms of adjacent N-phthalimido groups form chains parallel to the b axis. The chains are further stabilized by C—H⋯π inter­actions.

Related literature

For the chemistry and applications of N-acetyl-β-D-glucosa­mine derivatives, see: Tan et al. (2009[Tan, Z., Shang, S., Halkina, T., Yuan, Y. & Danishefsky, S. J. (2009). J. Am. Chem. Soc. 131, 5424-5431.]); Werz et al. (2007[Werz, D. B., Ranzinger, R., Herget, S., Adibekian, A., von der Lieth, C.-W. & Seeberger, P. H. (2007). ACS Chem. Biol. 2, 685-691.]). For the conformation of related compounds, see: Lemieux & Koto (1974[Lemieux, R. U. & Koto, S. (1974). Tetrahedron 30, 1933-1944.]); Färnbäck et al. (2007[Färnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). Acta Cryst. E63, o1581-o1583.]). For the synthesis of the title compound, see: Lönn (1985[Lönn, H. (1985). Carbohydr. Res. 139, 105-113.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23NO6S

  • Mr = 441.48

  • Orthorhombic, P 21 21 21

  • a = 8.6728 (6) Å

  • b = 9.7583 (10) Å

  • c = 25.3102 (15) Å

  • V = 2142.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.12 × 0.05 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 1997)[Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.] Tmin = 0.730, Tmax = 0.933

  • 12985 measured reflections

  • 5120 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 0.83

  • 5120 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1544 Friedel pairs

  • Flack parameter: −0.07 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C23—C28 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O30i 0.82 2.27 3.014 (3) 150
C14—H14⋯Cgi 0.93 2.98 3.613 (3) 126
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: EXPOSE (Stoe & Cie, 1997)[Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]; cell refinement: CELL (Stoe & Cie, 1997)[Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]; data reduction: INTEGRATE (Stoe & Cie, 1997)[Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-acetyl-D-glucosamine (D-GlcNAc) is found in nature in bacteria, crustaceans as well as in mammals. In glycoproteins the β-D-GlcNAc is present in N-linked oligosaccharides and it is of great importance to have access to a large arsenal of different suitably protected synthetic precursors in order to carry out synthesis of a variety of different oligosaccharides (Werz et al. 2007). These can be used as probes in microarray applications or to synthesize N-linked glycoproteins (Tan et al. 2009). In the structure shown in Fig. 1 the least square plane of the N-phthaloyl group makes a dihedral angle of 67.4 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5).

In glycosides the φ torsion angle (H1—C1—S1—C7) is of particular interest and is for the title compound in agreement with the exo-anomeric effect (Lemieux & Koto, 1974). It is, however sligthly shifted away from a staggered conformation, to 25.4°. The Cremer & Pople (1975) parameters for the different rings are for (O5—C5): Q=0.585 (3) Å, θ=8.4 (3)° and φ=329 (2)°, for (O4,C4,C5,C6,O6,C9): Q=0.575 (3) Å, θ=3.4 (3)° and φ=126 (4)°. These Q-values are similar to total puckering amplitudes for previously described pyranosides (Färnbäck et al., 2007).

Intermolecular hydrogen bonding from the hydroxy group is present (Table 1) where one of the carbonyl O atoms in the N-phthaloyl group act as acceptor, making up chains along the [010] direction shown in Fig. 2. In addition to this conventional hydrogen bond the intermolecular packing is stabilized due to interactions between substituents of the sugar rings. There is a salient C—H···π interaction between the center of gravity (Cg) of the ring C23—C28 of the N-phthaloyl group and the meta position (C14) of the phenyl group (C10—C15). Furthermore there are three more π···π interactions present with d(CgCg) < 4.8 Å with dihedral angles between the interacting π systems in the vicinity of 60° indicating a herringbone packing pattern.

Related literature top

For the chemistry and applications of N-acetyl-β-D-glucosamine derivatives, see: Tan et al. (2009); Werz et al. (2007). For the conformation of related compounds, see: Lemieux & Koto (1974); Färnbäck et al. (2007). For the synthesis of the title compound, see: Lönn (1985). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis of the title compound has been described previously (Lönn, 1985). Colourless crystals of the title compound were grown from diethyl ether/pentane (1:1 v/v) at ambient temperature.

Refinement top

The hydrogen atoms were refined in riding mode with C–H = 0.93–0.98 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms.

Structure description top

N-acetyl-D-glucosamine (D-GlcNAc) is found in nature in bacteria, crustaceans as well as in mammals. In glycoproteins the β-D-GlcNAc is present in N-linked oligosaccharides and it is of great importance to have access to a large arsenal of different suitably protected synthetic precursors in order to carry out synthesis of a variety of different oligosaccharides (Werz et al. 2007). These can be used as probes in microarray applications or to synthesize N-linked glycoproteins (Tan et al. 2009). In the structure shown in Fig. 1 the least square plane of the N-phthaloyl group makes a dihedral angle of 67.4 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5).

In glycosides the φ torsion angle (H1—C1—S1—C7) is of particular interest and is for the title compound in agreement with the exo-anomeric effect (Lemieux & Koto, 1974). It is, however sligthly shifted away from a staggered conformation, to 25.4°. The Cremer & Pople (1975) parameters for the different rings are for (O5—C5): Q=0.585 (3) Å, θ=8.4 (3)° and φ=329 (2)°, for (O4,C4,C5,C6,O6,C9): Q=0.575 (3) Å, θ=3.4 (3)° and φ=126 (4)°. These Q-values are similar to total puckering amplitudes for previously described pyranosides (Färnbäck et al., 2007).

Intermolecular hydrogen bonding from the hydroxy group is present (Table 1) where one of the carbonyl O atoms in the N-phthaloyl group act as acceptor, making up chains along the [010] direction shown in Fig. 2. In addition to this conventional hydrogen bond the intermolecular packing is stabilized due to interactions between substituents of the sugar rings. There is a salient C—H···π interaction between the center of gravity (Cg) of the ring C23—C28 of the N-phthaloyl group and the meta position (C14) of the phenyl group (C10—C15). Furthermore there are three more π···π interactions present with d(CgCg) < 4.8 Å with dihedral angles between the interacting π systems in the vicinity of 60° indicating a herringbone packing pattern.

For the chemistry and applications of N-acetyl-β-D-glucosamine derivatives, see: Tan et al. (2009); Werz et al. (2007). For the conformation of related compounds, see: Lemieux & Koto (1974); Färnbäck et al. (2007). For the synthesis of the title compound, see: Lönn (1985). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1997); cell refinement: CELL (Stoe & Cie, 1997); data reduction: INTEGRATE (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Stereoview showing the intermolecular hydrogen bond intercations between molecules forming a chain along the b-direction.
ethyl 4,6-O-benzylidene-2-deoxy-N-(1,3-dioxo-2,3-dihydro- 1H-isoindol-2-yl)-1-thio-β-D-glucopyranoside top
Crystal data top
C23H23NO6SF(000) = 928
Mr = 441.48Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5000 reflections
a = 8.6728 (6) Åθ = 2.4–23.3°
b = 9.7583 (10) ŵ = 0.19 mm1
c = 25.3102 (15) ÅT = 293 K
V = 2142.0 (3) Å3Prism, colourless
Z = 40.30 × 0.12 × 0.05 mm
Data collection top
Stoe IPDS
diffractometer
3734 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 6.7 pixels mm-1θmax = 25.0°, θmin = 2.2°
φ scanh = 1010
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 1111
Tmin = 0.730, Tmax = 0.933l = 2929
5120 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
5120 reflectionsΔρmax = 0.21 e Å3
281 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1544 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (10)
Crystal data top
C23H23NO6SV = 2142.0 (3) Å3
Mr = 441.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6728 (6) ŵ = 0.19 mm1
b = 9.7583 (10) ÅT = 293 K
c = 25.3102 (15) Å0.30 × 0.12 × 0.05 mm
Data collection top
Stoe IPDS
diffractometer
3734 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
2352 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.933Rint = 0.110
5120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.21 e Å3
S = 0.83Δρmin = 0.27 e Å3
5120 reflectionsAbsolute structure: Flack (1983), 1544 Friedel pairs
281 parametersAbsolute structure parameter: 0.07 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32966 (10)0.49384 (9)0.89236 (3)0.0598 (2)
C70.4033 (4)0.6664 (4)0.88601 (16)0.0742 (11)
H7A0.42180.70270.92110.089*
H7B0.50180.66260.86790.089*
C80.2991 (6)0.7648 (4)0.85654 (18)0.0869 (13)
H8A0.34690.85350.85500.130*
H8B0.20210.77190.87460.130*
H8C0.28220.73150.82130.130*
C10.3502 (4)0.4316 (3)0.82624 (11)0.0449 (7)
H10.43270.48260.80850.054*
C20.3910 (3)0.2767 (3)0.82645 (11)0.0438 (7)
H20.30980.22970.84640.053*
C30.3922 (3)0.2146 (3)0.77071 (11)0.0440 (7)
H30.48230.24860.75130.053*
C40.2480 (3)0.2552 (3)0.74190 (11)0.0425 (7)
H40.15910.20980.75820.051*
C50.2252 (4)0.4098 (3)0.74389 (12)0.0475 (8)
H50.31480.45570.72830.057*
O50.2082 (2)0.45149 (19)0.79800 (8)0.0495 (5)
O30.4053 (3)0.0694 (2)0.77736 (10)0.0681 (7)
H3A0.34560.03060.75720.102*
O40.2607 (2)0.21320 (19)0.68835 (8)0.0463 (5)
C90.1286 (4)0.2511 (3)0.65856 (12)0.0504 (8)
H90.03780.20320.67230.061*
O60.1033 (3)0.39409 (19)0.66026 (8)0.0576 (6)
C60.0822 (4)0.4450 (3)0.71277 (13)0.0558 (8)
H6A0.00770.40300.72880.067*
H6B0.06700.54350.71210.067*
C100.1571 (4)0.2085 (3)0.60276 (12)0.0470 (7)
C110.2464 (4)0.2843 (3)0.56915 (14)0.0632 (10)
H110.28420.36870.58040.076*
C120.2818 (5)0.2385 (4)0.51886 (15)0.0731 (10)
H120.34370.29100.49670.088*
C130.2247 (5)0.1146 (3)0.50192 (15)0.0688 (10)
H130.24740.08300.46810.083*
C140.1343 (5)0.0382 (3)0.53503 (15)0.0699 (10)
H140.09570.04580.52370.084*
C150.1001 (4)0.0850 (3)0.58515 (14)0.0594 (9)
H150.03790.03260.60720.071*
N20.5361 (3)0.2509 (2)0.85380 (9)0.0438 (6)
C210.5417 (4)0.1857 (3)0.90323 (12)0.0455 (7)
O220.4289 (3)0.1431 (2)0.92638 (9)0.0658 (7)
C230.7059 (4)0.1797 (3)0.91881 (12)0.0447 (7)
C240.7748 (4)0.1282 (3)0.96358 (13)0.0545 (8)
H240.71670.09160.99110.065*
C250.9354 (4)0.1333 (3)0.96599 (14)0.0589 (9)
H250.98590.09940.99570.071*
C261.0203 (4)0.1878 (4)0.92502 (15)0.0598 (9)
H261.12730.18710.92710.072*
C270.9503 (4)0.2434 (3)0.88077 (12)0.0528 (8)
H271.00770.28300.85370.063*
C280.7922 (3)0.2375 (3)0.87864 (11)0.0446 (7)
C290.6829 (4)0.2885 (3)0.83770 (12)0.0468 (7)
O300.7131 (3)0.3513 (2)0.79655 (9)0.0606 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0730 (6)0.0708 (5)0.0354 (5)0.0043 (4)0.0044 (4)0.0071 (4)
C70.063 (2)0.092 (3)0.068 (3)0.021 (2)0.005 (2)0.033 (2)
C80.114 (4)0.069 (2)0.078 (3)0.014 (2)0.005 (3)0.000 (2)
C10.0474 (19)0.0512 (16)0.0360 (18)0.0038 (13)0.0010 (14)0.0006 (13)
C20.0416 (17)0.0561 (17)0.0338 (18)0.0013 (13)0.0009 (13)0.0043 (13)
C30.0504 (18)0.0451 (16)0.0364 (18)0.0125 (13)0.0011 (13)0.0021 (12)
C40.0486 (17)0.0449 (15)0.0340 (18)0.0057 (13)0.0002 (12)0.0043 (13)
C50.060 (2)0.0466 (16)0.0355 (19)0.0066 (14)0.0006 (15)0.0020 (12)
O50.0534 (13)0.0574 (12)0.0377 (13)0.0118 (9)0.0016 (10)0.0038 (9)
O30.0912 (19)0.0507 (12)0.0624 (18)0.0218 (12)0.0265 (13)0.0069 (10)
O40.0524 (12)0.0512 (11)0.0352 (13)0.0086 (9)0.0091 (9)0.0031 (8)
C90.057 (2)0.0474 (17)0.047 (2)0.0087 (15)0.0077 (15)0.0031 (13)
O60.0801 (16)0.0517 (13)0.0410 (14)0.0189 (11)0.0137 (11)0.0019 (9)
C60.063 (2)0.0601 (19)0.044 (2)0.0174 (16)0.0084 (16)0.0004 (14)
C100.0546 (18)0.0479 (16)0.0385 (19)0.0018 (14)0.0114 (15)0.0027 (13)
C110.089 (3)0.0551 (19)0.046 (2)0.0067 (18)0.0045 (18)0.0008 (15)
C120.096 (3)0.073 (2)0.050 (3)0.008 (2)0.001 (2)0.0095 (18)
C130.095 (3)0.068 (2)0.043 (2)0.011 (2)0.013 (2)0.0061 (17)
C140.096 (3)0.060 (2)0.054 (3)0.0034 (19)0.014 (2)0.0097 (17)
C150.066 (2)0.0569 (19)0.055 (2)0.0103 (17)0.0049 (18)0.0005 (15)
N20.0399 (14)0.0605 (15)0.0311 (15)0.0018 (12)0.0001 (11)0.0039 (11)
C210.0474 (19)0.0567 (17)0.0324 (19)0.0021 (14)0.0028 (14)0.0055 (12)
O220.0535 (14)0.0927 (17)0.0513 (15)0.0082 (12)0.0001 (12)0.0279 (12)
C230.0504 (19)0.0476 (15)0.0361 (18)0.0017 (14)0.0011 (14)0.0023 (13)
C240.059 (2)0.066 (2)0.038 (2)0.0025 (16)0.0042 (16)0.0088 (15)
C250.058 (2)0.072 (2)0.047 (2)0.0102 (17)0.0126 (18)0.0021 (16)
C260.0464 (19)0.074 (2)0.059 (2)0.0033 (17)0.0078 (17)0.0069 (18)
C270.055 (2)0.0589 (19)0.045 (2)0.0040 (16)0.0001 (15)0.0058 (14)
C280.0436 (17)0.0522 (16)0.0379 (19)0.0018 (14)0.0003 (13)0.0043 (13)
C290.0509 (19)0.0556 (18)0.0339 (19)0.0004 (14)0.0025 (14)0.0011 (13)
O300.0596 (14)0.0801 (15)0.0423 (14)0.0080 (11)0.0040 (11)0.0159 (11)
Geometric parameters (Å, º) top
S1—C11.789 (3)C6—H6A0.9700
S1—C71.808 (4)C6—H6B0.9700
C7—C81.515 (6)C10—C111.368 (5)
C7—H7A0.9700C10—C151.376 (4)
C7—H7B0.9700C11—C121.384 (5)
C8—H8A0.9600C11—H110.9300
C8—H8B0.9600C12—C131.374 (5)
C8—H8C0.9600C12—H120.9300
C1—O51.437 (4)C13—C141.369 (5)
C1—C21.553 (4)C13—H130.9300
C1—H10.9800C14—C151.381 (5)
C2—N21.458 (4)C14—H140.9300
C2—C31.535 (4)C15—H150.9300
C2—H20.9800N2—C291.387 (4)
C3—O31.431 (3)N2—C211.404 (4)
C3—C41.501 (4)C21—O221.214 (4)
C3—H30.9800C21—C231.479 (4)
C4—O41.420 (3)C23—C241.376 (4)
C4—C51.523 (4)C23—C281.383 (4)
C4—H40.9800C24—C251.395 (5)
C5—O51.436 (4)C24—H240.9300
C5—C61.509 (4)C25—C261.378 (5)
C5—H50.9800C25—H250.9300
O3—H3A0.8200C26—C271.385 (5)
O4—C91.420 (4)C26—H260.9300
C9—O61.413 (3)C27—C281.373 (5)
C9—C101.493 (4)C27—H270.9300
C9—H90.9800C28—C291.490 (4)
O6—C61.430 (4)C29—O301.236 (4)
C1—S1—C7101.41 (16)C9—O6—C6113.0 (2)
C8—C7—S1115.0 (3)O6—C6—C5107.5 (3)
C8—C7—H7A108.5O6—C6—H6A110.2
S1—C7—H7A108.5C5—C6—H6A110.2
C8—C7—H7B108.5O6—C6—H6B110.2
S1—C7—H7B108.5C5—C6—H6B110.2
H7A—C7—H7B107.5H6A—C6—H6B108.5
C7—C8—H8A109.5C11—C10—C15118.4 (3)
C7—C8—H8B109.5C11—C10—C9122.1 (3)
H8A—C8—H8B109.5C15—C10—C9119.4 (3)
C7—C8—H8C109.5C10—C11—C12121.5 (3)
H8A—C8—H8C109.5C10—C11—H11119.3
H8B—C8—H8C109.5C12—C11—H11119.3
O5—C1—C2109.2 (2)C13—C12—C11119.4 (4)
O5—C1—S1109.53 (19)C13—C12—H12120.3
C2—C1—S1110.5 (2)C11—C12—H12120.3
O5—C1—H1109.2C14—C13—C12119.6 (4)
C2—C1—H1109.2C14—C13—H13120.2
S1—C1—H1109.2C12—C13—H13120.2
N2—C2—C3111.2 (2)C13—C14—C15120.3 (3)
N2—C2—C1111.5 (2)C13—C14—H14119.8
C3—C2—C1112.5 (2)C15—C14—H14119.8
N2—C2—H2107.1C10—C15—C14120.7 (3)
C3—C2—H2107.1C10—C15—H15119.7
C1—C2—H2107.1C14—C15—H15119.7
O3—C3—C4112.6 (2)C29—N2—C21110.5 (2)
O3—C3—C2106.5 (2)C29—N2—C2127.4 (2)
C4—C3—C2109.6 (2)C21—N2—C2122.1 (2)
O3—C3—H3109.4O22—C21—N2123.9 (3)
C4—C3—H3109.4O22—C21—C23129.3 (3)
C2—C3—H3109.4N2—C21—C23106.8 (2)
O4—C4—C3108.8 (2)C24—C23—C28121.3 (3)
O4—C4—C5109.1 (2)C24—C23—C21130.7 (3)
C3—C4—C5110.7 (2)C28—C23—C21108.0 (3)
O4—C4—H4109.4C23—C24—C25117.2 (3)
C3—C4—H4109.4C23—C24—H24121.4
C5—C4—H4109.4C25—C24—H24121.4
O5—C5—C6110.4 (3)C26—C25—C24120.9 (3)
O5—C5—C4109.0 (2)C26—C25—H25119.5
C6—C5—C4108.3 (3)C24—C25—H25119.5
O5—C5—H5109.7C25—C26—C27121.7 (3)
C6—C5—H5109.7C25—C26—H26119.1
C4—C5—H5109.7C27—C26—H26119.1
C5—O5—C1110.4 (2)C28—C27—C26116.9 (3)
C3—O3—H3A109.5C28—C27—H27121.5
C4—O4—C9111.6 (2)C26—C27—H27121.5
O6—C9—O4111.5 (2)C27—C28—C23121.9 (3)
O6—C9—C10109.3 (2)C27—C28—C29130.4 (3)
O4—C9—C10107.2 (2)C23—C28—C29107.6 (3)
O6—C9—H9109.6O30—C29—N2125.0 (3)
O4—C9—H9109.6O30—C29—C28128.1 (3)
C10—C9—H9109.6N2—C29—C28106.9 (2)
C7—S1—C1—H125.4C9—C10—C11—C12174.9 (3)
C1—S1—C7—C872.3 (3)C10—C11—C12—C130.7 (6)
C7—S1—C1—O594.1 (2)C11—C12—C13—C140.3 (6)
C7—S1—C1—C2145.6 (2)C12—C13—C14—C150.2 (6)
O5—C1—C2—N2178.9 (2)C11—C10—C15—C140.9 (5)
S1—C1—C2—N260.6 (3)C9—C10—C15—C14175.1 (3)
O5—C1—C2—C353.1 (3)C13—C14—C15—C100.5 (6)
S1—C1—C2—C3173.7 (2)C3—C2—N2—C2958.1 (4)
N2—C2—C3—O363.6 (3)C1—C2—N2—C2968.4 (4)
C1—C2—C3—O3170.5 (2)C3—C2—N2—C21124.5 (3)
N2—C2—C3—C4174.3 (2)C1—C2—N2—C21109.0 (3)
C1—C2—C3—C448.4 (3)C29—N2—C21—O22179.7 (3)
O3—C3—C4—O469.7 (3)C2—N2—C21—O221.9 (5)
C2—C3—C4—O4172.0 (2)C29—N2—C21—C231.2 (3)
O3—C3—C4—C5170.4 (2)C2—N2—C21—C23179.0 (2)
C2—C3—C4—C552.1 (3)O22—C21—C23—C241.8 (6)
O4—C4—C5—O5178.5 (2)N2—C21—C23—C24179.1 (3)
C3—C4—C5—O561.8 (3)O22—C21—C23—C28177.8 (3)
O4—C4—C5—C658.2 (3)N2—C21—C23—C281.2 (3)
C3—C4—C5—C6178.0 (3)C28—C23—C24—C251.8 (5)
C6—C5—O5—C1173.8 (2)C21—C23—C24—C25177.8 (3)
C4—C5—O5—C167.3 (3)C23—C24—C25—C260.0 (5)
C2—C1—O5—C562.4 (3)C24—C25—C26—C272.1 (5)
S1—C1—O5—C5176.51 (19)C25—C26—C27—C282.3 (5)
C3—C4—O4—C9178.8 (2)C26—C27—C28—C230.4 (5)
C5—C4—O4—C957.9 (3)C26—C27—C28—C29179.1 (3)
C4—O4—C9—O657.8 (3)C24—C23—C28—C271.6 (5)
C4—O4—C9—C10177.3 (2)C21—C23—C28—C27178.1 (3)
O4—C9—O6—C658.9 (3)C24—C23—C28—C29177.3 (3)
C10—C9—O6—C6177.2 (3)C21—C23—C28—C293.0 (3)
C9—O6—C6—C558.9 (3)C21—N2—C29—O30177.7 (3)
O5—C5—C6—O6176.8 (2)C2—N2—C29—O300.0 (5)
C4—C5—C6—O657.5 (3)C21—N2—C29—C283.0 (3)
O6—C9—C10—C1141.1 (4)C2—N2—C29—C28179.4 (3)
O4—C9—C10—C1179.8 (3)C27—C28—C29—O301.9 (5)
O6—C9—C10—C15143.0 (3)C23—C28—C29—O30177.0 (3)
O4—C9—C10—C1596.1 (3)C27—C28—C29—N2177.4 (3)
C15—C10—C11—C121.1 (5)C23—C28—C29—N23.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C23—C28 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O30i0.822.273.014 (3)150
C14—H14···Cgi0.932.983.613 (3)126
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H23NO6S
Mr441.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6728 (6), 9.7583 (10), 25.3102 (15)
V3)2142.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.12 × 0.05
Data collection
DiffractometerStoe IPDS
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.730, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
5120, 3734, 2352
Rint0.110
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 0.83
No. of reflections5120
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27
Absolute structureFlack (1983), 1544 Friedel pairs
Absolute structure parameter0.07 (10)

Computer programs: EXPOSE (Stoe & Cie, 1997), CELL (Stoe & Cie, 1997), INTEGRATE (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C23—C28 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O30i0.822.273.014 (3)150
C14—H14···Cgi0.932.983.613 (3)126
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by a grant from the Swedish Research Council and by the Faculty of Natural Sciences at Stockholm University

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFärnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). Acta Cryst. E63, o1581–o1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLemieux, R. U. & Koto, S. (1974). Tetrahedron 30, 1933–1944.  CrossRef CAS Web of Science Google Scholar
First citationLönn, H. (1985). Carbohydr. Res. 139, 105–113.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, Z., Shang, S., Halkina, T., Yuan, Y. & Danishefsky, S. J. (2009). J. Am. Chem. Soc. 131, 5424–5431.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWerz, D. B., Ranzinger, R., Herget, S., Adibekian, A., von der Lieth, C.-W. & Seeberger, P. H. (2007). ACS Chem. Biol. 2, 685–691.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds