organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-6-butyl-5-propyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one

aInstitute of Medicinal Chemistry, Hubei Medical Univesity, Shiyan 442000, People's Republic of China, and bCenter of Oncology, People's Hospital affiliated with Hubei Medical University, Shiyan 442000, People's Republic of China
*Correspondence e-mail: meirwang@126.com

(Received 23 October 2010; accepted 6 November 2010; online 13 November 2010)

In the title compound, C18H23N5O2, the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.032 (2) Å, and forms a dihedral angle of 87.59 (15)° with the phenyl ring. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions into chains parallel to the c axis.

Related literature

For the biological activity of 8-aza­guanine derivatives, see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.]); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]); Zeng et al. (2010[Zeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453-1460.]). For related structures, see: Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Li et al. (2004[Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11-14.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Xiao & Shi (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zeng et al. (2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.], 2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N5O2

  • Mr = 341.41

  • Orthorhombic, P b c n

  • a = 28.328 (6) Å

  • b = 14.818 (3) Å

  • c = 8.7995 (16) Å

  • V = 3693.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.992

  • 18673 measured reflections

  • 3346 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.173

  • S = 1.21

  • 3346 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.43 3.259 (4) 148
C15—H15BCg1i 0.97 2.94 3.711 (3) 137
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of heterocycles containing the 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004; Zeng et al., 2010), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, Ding's group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of β-ethoxycarbonyl iminophosphoranes with aromatic isocyanates (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from β-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone system are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006, 2008; Xiao & Shi, 2007; Chen & Shi, 2006), the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.032 (2) Å for atom N4, and forms dihedral angles of 87.59 (15)° with the C1–C6 phenyl ring. In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 1) into chains parallel to the c axis.

Related literature top

For the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975); Zeng et al. (2010). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao & Shi (2007); Wang et al. (2006, 2008); Zeng et al. (2006, 2009).

Experimental top

To the solution of carbodiimide prepared according to Zeng et al. (2006) in a mixed solvent (CH2Cl2/PrOH,1:4 v/v, 15 ml) was added a fresh prepared solution of Na/PrOH (0.1 g/2 ml). After stirring the reaction mixture for 6 h, the solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound in 75% yield (m. p. 464 K). Elemental analysis: calculated for C14H15N5O2: C, 63.32; H, 6.79; N, 20.51%. Found: C, 62.75; H, 6.98; N, 20.22%. Crystals suitable for X-ray diffraction study were obtained by recrystallization from EtOH and dichloromethane (1:3 v/v) at room temperature.

Refinement top

All H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

The derivatives of heterocycles containing the 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004; Zeng et al., 2010), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, Ding's group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of β-ethoxycarbonyl iminophosphoranes with aromatic isocyanates (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from β-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone system are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006, 2008; Xiao & Shi, 2007; Chen & Shi, 2006), the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.032 (2) Å for atom N4, and forms dihedral angles of 87.59 (15)° with the C1–C6 phenyl ring. In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 1) into chains parallel to the c axis.

For the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975); Zeng et al. (2010). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao & Shi (2007); Wang et al. (2006, 2008); Zeng et al. (2006, 2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are represented by circles of arbitrary size.
3-Benzyl-6-butyl-5-propyl-3H-1,2,3-triazolo[4,5-d]pyrimidin- 7(6H)-one top
Crystal data top
C18H23N5O2Dx = 1.228 Mg m3
Mr = 341.41Melting point: 364 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3955 reflections
a = 28.328 (6) Åθ = 2.6–23.4°
b = 14.818 (3) ŵ = 0.08 mm1
c = 8.7995 (16) ÅT = 298 K
V = 3693.7 (12) Å3Block, colourless
Z = 80.19 × 0.15 × 0.10 mm
F(000) = 1456
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Radiation source: fine-focus sealed tube2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3429
Tmin = 0.984, Tmax = 0.992k = 1717
18673 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0532P)2 + 2.6669P]
where P = (Fo2 + 2Fc2)/3
3346 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H23N5O2V = 3693.7 (12) Å3
Mr = 341.41Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 28.328 (6) ŵ = 0.08 mm1
b = 14.818 (3) ÅT = 298 K
c = 8.7995 (16) Å0.19 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3346 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2842 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.041
18673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.21Δρmax = 0.30 e Å3
3346 reflectionsΔρmin = 0.15 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13547 (10)0.44798 (18)0.0088 (3)0.0454 (7)
C20.11879 (15)0.3707 (2)0.0781 (4)0.0689 (10)
H20.13880.33630.13870.083*
C30.07250 (19)0.3444 (3)0.0577 (5)0.0900 (14)
H30.06130.29290.10620.108*
C40.04300 (15)0.3936 (4)0.0333 (6)0.0967 (15)
H40.01200.37520.04870.116*
C50.05947 (13)0.4692 (3)0.1007 (5)0.0814 (12)
H50.03940.50330.16160.098*
C60.10505 (11)0.4963 (2)0.0807 (4)0.0581 (8)
H60.11570.54850.12860.070*
C70.18567 (11)0.4789 (2)0.0285 (4)0.0674 (10)
H7A0.19020.53520.02590.081*
H7B0.19170.49020.13540.081*
C80.25650 (9)0.37249 (17)0.0422 (3)0.0413 (6)
C90.27483 (10)0.31471 (18)0.0642 (3)0.0424 (6)
C100.31511 (10)0.26037 (18)0.0287 (3)0.0443 (7)
C110.30961 (10)0.33995 (18)0.2144 (3)0.0420 (6)
C120.30873 (12)0.4007 (2)0.4643 (3)0.0628 (9)
H12A0.27810.37610.49150.075*
H12B0.30420.46160.42630.075*
C130.34015 (14)0.4018 (3)0.5988 (4)0.0742 (10)
H13A0.32450.43510.67920.089*
H13B0.34410.34020.63390.089*
C140.38675 (18)0.4409 (4)0.5757 (6)0.131 (2)
H14A0.40450.40350.50760.197*
H14B0.40290.44490.67140.197*
H14C0.38360.50020.53300.197*
C150.37466 (10)0.2295 (2)0.1713 (3)0.0516 (8)
H15A0.37750.17450.11230.062*
H15B0.37050.21270.27690.062*
C160.42007 (11)0.2843 (3)0.1552 (4)0.0685 (10)
H16A0.41630.34030.21080.082*
H16B0.44550.25090.20310.082*
C170.43453 (13)0.3064 (3)0.0027 (5)0.0896 (13)
H17A0.40920.33910.05250.108*
H17B0.43970.25090.05860.108*
C180.47925 (15)0.3631 (4)0.0072 (7)0.1249 (19)
H18A0.47410.41850.04670.187*
H18B0.48730.37620.11090.187*
H18C0.50460.33040.03960.187*
N10.21950 (8)0.41208 (15)0.0277 (3)0.0508 (6)
N20.21576 (10)0.37955 (17)0.1729 (3)0.0577 (7)
N30.24886 (9)0.32053 (17)0.1946 (3)0.0537 (7)
N40.33234 (8)0.28021 (15)0.1193 (2)0.0417 (6)
N50.27266 (8)0.38784 (15)0.1849 (3)0.0430 (6)
O10.33434 (8)0.20431 (16)0.1081 (2)0.0664 (7)
O20.33084 (7)0.34506 (14)0.3490 (2)0.0531 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0575 (18)0.0412 (15)0.0375 (15)0.0103 (13)0.0086 (13)0.0097 (12)
C20.108 (3)0.053 (2)0.0456 (18)0.009 (2)0.0091 (19)0.0024 (15)
C30.115 (4)0.068 (3)0.087 (3)0.027 (3)0.036 (3)0.010 (2)
C40.058 (2)0.099 (3)0.133 (4)0.009 (2)0.016 (3)0.038 (3)
C50.055 (2)0.085 (3)0.105 (3)0.015 (2)0.020 (2)0.006 (2)
C60.0590 (19)0.0582 (18)0.0572 (19)0.0091 (16)0.0092 (16)0.0052 (15)
C70.066 (2)0.0520 (19)0.085 (2)0.0146 (16)0.0294 (19)0.0257 (18)
C80.0412 (15)0.0374 (14)0.0452 (16)0.0057 (12)0.0025 (12)0.0010 (12)
C90.0454 (16)0.0429 (15)0.0390 (15)0.0034 (13)0.0016 (12)0.0010 (12)
C100.0472 (16)0.0444 (15)0.0413 (16)0.0007 (13)0.0087 (13)0.0003 (13)
C110.0429 (15)0.0421 (14)0.0409 (15)0.0011 (13)0.0029 (12)0.0021 (12)
C120.068 (2)0.076 (2)0.0448 (18)0.0197 (18)0.0019 (15)0.0107 (16)
C130.089 (3)0.081 (2)0.053 (2)0.009 (2)0.0058 (19)0.0148 (18)
C140.098 (4)0.184 (6)0.112 (4)0.033 (4)0.004 (3)0.051 (4)
C150.0522 (18)0.0529 (17)0.0495 (17)0.0156 (14)0.0040 (14)0.0069 (14)
C160.0506 (19)0.086 (2)0.069 (2)0.0180 (18)0.0039 (16)0.0131 (19)
C170.067 (2)0.113 (3)0.089 (3)0.002 (2)0.017 (2)0.018 (3)
C180.079 (3)0.148 (5)0.148 (5)0.014 (3)0.030 (3)0.038 (4)
N10.0492 (14)0.0432 (13)0.0601 (16)0.0056 (11)0.0176 (12)0.0115 (12)
N20.0653 (17)0.0535 (15)0.0543 (16)0.0024 (14)0.0215 (13)0.0074 (13)
N30.0568 (15)0.0554 (15)0.0489 (15)0.0000 (13)0.0086 (12)0.0075 (12)
N40.0414 (13)0.0439 (12)0.0397 (12)0.0042 (10)0.0042 (10)0.0027 (10)
N50.0430 (13)0.0439 (13)0.0423 (13)0.0047 (11)0.0054 (10)0.0054 (10)
O10.0752 (15)0.0695 (14)0.0544 (13)0.0225 (12)0.0036 (11)0.0173 (12)
O20.0539 (12)0.0661 (13)0.0393 (11)0.0165 (10)0.0054 (9)0.0067 (9)
Geometric parameters (Å, º) top
C1—C61.370 (4)C12—O21.450 (3)
C1—C21.381 (4)C12—C131.481 (5)
C1—C71.504 (4)C12—H12A0.9700
C2—C31.380 (6)C12—H12B0.9700
C2—H20.9300C13—C141.456 (6)
C3—C41.368 (6)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.350 (6)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.364 (5)C14—H14C0.9600
C5—H50.9300C15—N41.486 (3)
C6—H60.9300C15—C161.528 (4)
C7—N11.464 (4)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—C171.485 (5)
C8—N11.350 (3)C16—H16A0.9700
C8—N51.356 (3)C16—H16B0.9700
C8—C91.371 (4)C17—C181.521 (6)
C9—N31.366 (4)C17—H17A0.9700
C9—C101.431 (4)C17—H17B0.9700
C10—O11.215 (3)C18—H18A0.9600
C10—N41.421 (3)C18—H18B0.9600
C11—N51.291 (3)C18—H18C0.9600
C11—O21.331 (3)N1—N21.369 (3)
C11—N41.378 (3)N2—N31.296 (3)
C6—C1—C2118.2 (3)C12—C13—H13A108.3
C6—C1—C7120.1 (3)C14—C13—H13B108.3
C2—C1—C7121.7 (3)C12—C13—H13B108.3
C3—C2—C1120.1 (4)H13A—C13—H13B107.4
C3—C2—H2119.9C13—C14—H14A109.5
C1—C2—H2119.9C13—C14—H14B109.5
C4—C3—C2120.4 (4)H14A—C14—H14B109.5
C4—C3—H3119.8C13—C14—H14C109.5
C2—C3—H3119.8H14A—C14—H14C109.5
C5—C4—C3119.2 (4)H14B—C14—H14C109.5
C5—C4—H4120.4N4—C15—C16112.5 (2)
C3—C4—H4120.4N4—C15—H15A109.1
C4—C5—C6121.0 (4)C16—C15—H15A109.1
C4—C5—H5119.5N4—C15—H15B109.1
C6—C5—H5119.5C16—C15—H15B109.1
C5—C6—C1121.0 (3)H15A—C15—H15B107.8
C5—C6—H6119.5C17—C16—C15115.9 (3)
C1—C6—H6119.5C17—C16—H16A108.3
N1—C7—C1111.9 (2)C15—C16—H16A108.3
N1—C7—H7A109.2C17—C16—H16B108.3
C1—C7—H7A109.2C15—C16—H16B108.3
N1—C7—H7B109.2H16A—C16—H16B107.4
C1—C7—H7B109.2C16—C17—C18112.1 (4)
H7A—C7—H7B107.9C16—C17—H17A109.2
N1—C8—N5127.7 (2)C18—C17—H17A109.2
N1—C8—C9104.8 (2)C16—C17—H17B109.2
N5—C8—C9127.5 (3)C18—C17—H17B109.2
N3—C9—C8109.3 (2)H17A—C17—H17B107.9
N3—C9—C10130.4 (3)C17—C18—H18A109.5
C8—C9—C10120.3 (2)C17—C18—H18B109.5
O1—C10—N4121.0 (3)H18A—C18—H18B109.5
O1—C10—C9128.1 (3)C17—C18—H18C109.5
N4—C10—C9110.9 (2)H18A—C18—H18C109.5
N5—C11—O2120.9 (2)H18B—C18—H18C109.5
N5—C11—N4127.6 (2)C8—N1—N2109.4 (2)
O2—C11—N4111.5 (2)C8—N1—C7130.4 (3)
O2—C12—C13107.8 (3)N2—N1—C7120.2 (2)
O2—C12—H12A110.1N3—N2—N1108.6 (2)
C13—C12—H12A110.1N2—N3—C9108.0 (2)
O2—C12—H12B110.1C11—N4—C10121.9 (2)
C13—C12—H12B110.1C11—N4—C15121.0 (2)
H12A—C12—H12B108.5C10—N4—C15117.0 (2)
C14—C13—C12116.0 (4)C11—N5—C8111.6 (2)
C14—C13—H13A108.3C11—O2—C12117.4 (2)
C6—C1—C2—C30.7 (5)C1—C7—N1—C8125.7 (3)
C7—C1—C2—C3179.9 (3)C1—C7—N1—N253.6 (4)
C1—C2—C3—C41.2 (6)C8—N1—N2—N30.7 (3)
C2—C3—C4—C51.3 (6)C7—N1—N2—N3178.8 (3)
C3—C4—C5—C60.8 (7)N1—N2—N3—C90.6 (3)
C4—C5—C6—C10.3 (6)C8—C9—N3—N20.4 (3)
C2—C1—C6—C50.2 (5)C10—C9—N3—N2179.7 (3)
C7—C1—C6—C5179.7 (3)N5—C11—N4—C103.3 (4)
C6—C1—C7—N1118.6 (3)O2—C11—N4—C10177.3 (2)
C2—C1—C7—N160.9 (4)N5—C11—N4—C15179.7 (3)
N1—C8—C9—N30.0 (3)O2—C11—N4—C150.9 (3)
N5—C8—C9—N3178.7 (3)O1—C10—N4—C11176.4 (3)
N1—C8—C9—C10179.9 (2)C9—C10—N4—C114.2 (3)
N5—C8—C9—C101.4 (4)O1—C10—N4—C150.1 (4)
N3—C9—C10—O12.5 (5)C9—C10—N4—C15179.2 (2)
C8—C9—C10—O1177.3 (3)C16—C15—N4—C1183.6 (3)
N3—C9—C10—N4176.8 (3)C16—C15—N4—C1099.8 (3)
C8—C9—C10—N43.4 (3)O2—C11—N5—C8179.8 (2)
O2—C12—C13—C1462.4 (5)N4—C11—N5—C80.8 (4)
N4—C15—C16—C1765.6 (4)N1—C8—N5—C11178.3 (3)
C15—C16—C17—C18178.4 (3)C9—C8—N5—C110.1 (4)
N5—C8—N1—N2178.3 (3)N5—C11—O2—C124.8 (4)
C9—C8—N1—N20.4 (3)N4—C11—O2—C12175.8 (2)
N5—C8—N1—C72.4 (5)C13—C12—O2—C11175.7 (3)
C9—C8—N1—C7179.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.433.259 (4)148
C15—H15B···Cg1i0.972.943.711 (3)137
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H23N5O2
Mr341.41
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)28.328 (6), 14.818 (3), 8.7995 (16)
V3)3693.7 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
18673, 3346, 2842
Rint0.041
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.173, 1.21
No. of reflections3346
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.433.259 (4)148.4
C15—H15B···Cg1i0.972.943.711 (3)137
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the financial support for this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant Nos. B200624004, B20092412, B20102103) and the Shiyan Municipal Science and Technology Bureau (grant No. 20061835).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269–272.  CrossRef CAS Google Scholar
First citationLi, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14.  Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453–1460.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds