organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl­pyridin-2-amine

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 26 October 2010; accepted 31 October 2010; online 6 November 2010)

In the crystal of the title compound, C12H12N2, inter­molecular N—H⋯N hydrogen bonds form rings of graph-set motif R22(8) and C—H⋯π inter­actions further consolidate the dimers. Neighbouring dimers are further connected into a three-dimensional network by C—H⋯π inter­actions. The benzyl and pyridyl rings form a dihedral angle of 67.2 (1)°

Related literature

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002[Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.]). For related structures, see: Davies et al. (2001[Davies, R. P., Linton, D. J., Schooler, P., Snaith, R. & Wheatley, A. E. H. (2001). Chem. Eur. J. 7, 3696-3704.]); Wan et al. (2004[Wan, C.-Q., Li, Q.-S., Song, H.-B., Xu, F.-B. & Zhang, Z.-Z. (2004). Acta Cryst. E60, m1973-m1975.]); Zhou & Richeson (1995[Zhou, Y. & Richeson, D. S. (1995). Organometallics, 14, 3558-3561.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For another report on the structure of N-benzyl­pyridin-2-amine, see: Wang & Zhao (2010[Wang, G. G. & Zhao, H. (2010). Acta Cryst. E66, o3077.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2

  • Mr = 184.24

  • Triclinic, [P \overline 1]

  • a = 5.9014 (16) Å

  • b = 8.025 (2) Å

  • c = 10.561 (3) Å

  • α = 95.471 (4)°

  • β = 91.244 (4)°

  • γ = 94.779 (3)°

  • V = 495.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 2551 measured reflections

  • 1762 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.07

  • 1762 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and N1/C8–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.24 3.0518 (19) 157
C12—H12⋯Cg1i 0.93 2.72 3.536 (2) 147
C4—H4⋯Cg2ii 0.93 3.14 3.804 (2) 130
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of metal-organic frameworks (MOFs) is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The 2-benzylaminopyridine ligand possessing two nitrogen donors to coordinate to metal ions, provides unique opportunities for the construction of various coordination networks. Recently, some complexes based on this ligand have been reported (Davies et al., 2001; Wan et al., 2004; Zhou & Richeson, 1995). When reacted with Ce(NO3)3 under hydrothermal condition, we isolated single crystals of the 2-benzylaminopyridine ligand, whose structure is reported herein.

The structure of the title compound is depicted in Fig. 1. The benzyl and the pyridyl rings are not coplanar and form a dihedral angle of 67.2 (1)°. The C—C and C—N bond lengths show normal values (Allen et al., 1987). Intermolecular N—H···N hydrogen bonds (graph set motif R22(8); Bernstein et al., 1995) involving a centrosymmetrically related pair of molecules gives rise to a dimer, which is also stabilized by C—H···π stacking interactions (Table 1). C—H···π stacking interactions between neighbouring dimers further extend the structure to form a three-dimensional supramolecular network (Fig. 2).

Related literature top

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Davies et al. (2001); Wan et al. (2004); Zhou & Richeson (1995). For bond-length data, see: Allen et al. (1987). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of Ce(NO3)3.6H2O (0.163 g, 0.5 mmol), 2-benzylaminopyridine (0.092 g, 0.5 mmol), and H2O (10 mL) was sealed in a 15 mL Teflon-lined reactor, which was heated in an oven to 423 K for 24 h and then cooled to room temperature at a rate of 5 Kh-1. Colourless crystals were obtained in a yield of 58% based on 2-benzylaminopyridine.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93-0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The design and construction of metal-organic frameworks (MOFs) is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The 2-benzylaminopyridine ligand possessing two nitrogen donors to coordinate to metal ions, provides unique opportunities for the construction of various coordination networks. Recently, some complexes based on this ligand have been reported (Davies et al., 2001; Wan et al., 2004; Zhou & Richeson, 1995). When reacted with Ce(NO3)3 under hydrothermal condition, we isolated single crystals of the 2-benzylaminopyridine ligand, whose structure is reported herein.

The structure of the title compound is depicted in Fig. 1. The benzyl and the pyridyl rings are not coplanar and form a dihedral angle of 67.2 (1)°. The C—C and C—N bond lengths show normal values (Allen et al., 1987). Intermolecular N—H···N hydrogen bonds (graph set motif R22(8); Bernstein et al., 1995) involving a centrosymmetrically related pair of molecules gives rise to a dimer, which is also stabilized by C—H···π stacking interactions (Table 1). C—H···π stacking interactions between neighbouring dimers further extend the structure to form a three-dimensional supramolecular network (Fig. 2).

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Davies et al. (2001); Wan et al. (2004); Zhou & Richeson (1995). For bond-length data, see: Allen et al. (1987). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound. Hydrogen bonds and C—H···π interactions are shown as dased lines.
N-Benzylpyridin-2-amine top
Crystal data top
C12H12N2Z = 2
Mr = 184.24F(000) = 196
Triclinic, P1Dx = 1.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9014 (16) ÅCell parameters from 3415 reflections
b = 8.025 (2) Åθ = 1.2–28.0°
c = 10.561 (3) ŵ = 0.07 mm1
α = 95.471 (4)°T = 296 K
β = 91.244 (4)°Block, colourless
γ = 94.779 (3)°0.23 × 0.20 × 0.19 mm
V = 495.9 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
φ and ω scansh = 67
2551 measured reflectionsk = 99
1762 independent reflectionsl = 912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.0854P]
where P = (Fo2 + 2Fc2)/3
1762 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H12N2γ = 94.779 (3)°
Mr = 184.24V = 495.9 (2) Å3
Triclinic, P1Z = 2
a = 5.9014 (16) ÅMo Kα radiation
b = 8.025 (2) ŵ = 0.07 mm1
c = 10.561 (3) ÅT = 296 K
α = 95.471 (4)°0.23 × 0.20 × 0.19 mm
β = 91.244 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
1387 reflections with I > 2σ(I)
2551 measured reflectionsRint = 0.012
1762 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
1762 reflectionsΔρmin = 0.24 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1362 (3)0.24905 (19)0.36541 (15)0.0350 (4)
H10.24270.19090.41220.042*
C20.0725 (3)0.30933 (18)0.42172 (14)0.0308 (4)
C30.2280 (3)0.39773 (19)0.34991 (15)0.0357 (4)
H30.36890.43960.38600.043*
C40.1748 (3)0.4236 (2)0.22596 (16)0.0397 (4)
H40.27980.48320.17930.048*
C50.0331 (3)0.3616 (2)0.17061 (16)0.0408 (4)
H50.06800.37880.08680.049*
C60.1889 (3)0.2740 (2)0.24050 (16)0.0403 (4)
H60.32920.23170.20380.048*
C70.1283 (3)0.2820 (2)0.55703 (15)0.0359 (4)
H7A0.16170.38970.60650.043*
H7B0.00220.22420.59320.043*
C80.4265 (3)0.15939 (18)0.67594 (14)0.0301 (4)
C90.3600 (3)0.23242 (19)0.79450 (14)0.0353 (4)
H90.23600.29680.79980.042*
C100.4814 (3)0.2067 (2)0.90146 (15)0.0412 (4)
H100.44060.25450.98050.049*
C110.6648 (3)0.1099 (2)0.89304 (15)0.0397 (4)
H110.75070.09300.96490.048*
C120.7150 (3)0.03973 (19)0.77449 (15)0.0359 (4)
H120.83670.02690.76830.043*
N10.6010 (2)0.06064 (16)0.66736 (12)0.0334 (3)
N20.3221 (2)0.18353 (16)0.56430 (12)0.0355 (3)
H20.37340.13840.49470.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (9)0.0302 (8)0.0414 (9)0.0009 (6)0.0061 (7)0.0020 (7)
C20.0328 (8)0.0249 (7)0.0354 (8)0.0081 (6)0.0040 (6)0.0010 (6)
C30.0314 (9)0.0348 (9)0.0405 (9)0.0005 (7)0.0013 (7)0.0026 (7)
C40.0443 (10)0.0352 (9)0.0403 (9)0.0000 (7)0.0100 (7)0.0075 (7)
C50.0503 (11)0.0386 (9)0.0340 (9)0.0075 (8)0.0017 (7)0.0041 (7)
C60.0358 (9)0.0403 (9)0.0431 (10)0.0021 (7)0.0041 (7)0.0020 (7)
C70.0355 (9)0.0356 (8)0.0378 (9)0.0096 (7)0.0050 (7)0.0037 (7)
C80.0329 (9)0.0249 (7)0.0326 (8)0.0010 (6)0.0036 (6)0.0033 (6)
C90.0410 (10)0.0312 (8)0.0343 (9)0.0064 (7)0.0064 (7)0.0015 (6)
C100.0544 (11)0.0388 (9)0.0301 (9)0.0045 (8)0.0067 (7)0.0003 (7)
C110.0481 (10)0.0382 (9)0.0323 (9)0.0022 (8)0.0039 (7)0.0043 (7)
C120.0355 (9)0.0336 (8)0.0389 (9)0.0032 (7)0.0014 (7)0.0055 (7)
N10.0357 (8)0.0328 (7)0.0322 (7)0.0068 (6)0.0009 (6)0.0022 (5)
N20.0416 (8)0.0377 (7)0.0286 (7)0.0147 (6)0.0023 (6)0.0012 (6)
Geometric parameters (Å, º) top
C1—C21.385 (2)C7—H7B0.9700
C1—C61.386 (2)C8—N11.3502 (19)
C1—H10.9300C8—N21.3559 (19)
C2—C31.395 (2)C8—C91.409 (2)
C2—C71.500 (2)C9—C101.366 (2)
C3—C41.378 (2)C9—H90.9300
C3—H30.9300C10—C111.383 (2)
C4—C51.381 (2)C10—H100.9300
C4—H40.9300C11—C121.372 (2)
C5—C61.380 (2)C11—H110.9300
C5—H50.9300C12—N11.3353 (19)
C6—H60.9300C12—H120.9300
C7—N21.448 (2)N2—H20.8600
C7—H7A0.9700
C2—C1—C6121.05 (15)C2—C7—H7B109.5
C2—C1—H1119.5H7A—C7—H7B108.0
C6—C1—H1119.5N1—C8—N2115.92 (13)
C1—C2—C3118.30 (14)N1—C8—C9121.27 (14)
C1—C2—C7120.76 (14)N2—C8—C9122.81 (14)
C3—C2—C7120.94 (14)C10—C9—C8118.62 (15)
C4—C3—C2120.63 (15)C10—C9—H9120.7
C4—C3—H3119.7C8—C9—H9120.7
C2—C3—H3119.7C9—C10—C11120.44 (15)
C3—C4—C5120.50 (16)C9—C10—H10119.8
C3—C4—H4119.8C11—C10—H10119.8
C5—C4—H4119.8C12—C11—C10117.34 (15)
C6—C5—C4119.57 (15)C12—C11—H11121.3
C6—C5—H5120.2C10—C11—H11121.3
C4—C5—H5120.2N1—C12—C11124.42 (15)
C5—C6—C1119.96 (15)N1—C12—H12117.8
C5—C6—H6120.0C11—C12—H12117.8
C1—C6—H6120.0C12—N1—C8117.85 (13)
N2—C7—C2110.93 (13)C8—N2—C7122.91 (13)
N2—C7—H7A109.5C8—N2—H2118.5
C2—C7—H7A109.5C7—N2—H2118.5
N2—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1/C8–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.243.0518 (19)157
C12—H12···Cg1i0.932.723.536 (2)147
C4—H4···Cg2ii0.933.143.804 (2)130
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N2
Mr184.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.9014 (16), 8.025 (2), 10.561 (3)
α, β, γ (°)95.471 (4), 91.244 (4), 94.779 (3)
V3)495.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2551, 1762, 1387
Rint0.012
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.07
No. of reflections1762
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1/C8–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.243.0518 (19)156.5
C12—H12···Cg1i0.932.723.536 (2)147
C4—H4···Cg2ii0.933.143.804 (2)130
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge Zhongshan Polytechnic for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBenelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369–2388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDavies, R. P., Linton, D. J., Schooler, P., Snaith, R. & Wheatley, A. E. H. (2001). Chem. Eur. J. 7, 3696–3704.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, C.-Q., Li, Q.-S., Song, H.-B., Xu, F.-B. & Zhang, Z.-Z. (2004). Acta Cryst. E60, m1973–m1975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G. G. & Zhao, H. (2010). Acta Cryst. E66, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y. & Richeson, D. S. (1995). Organometallics, 14, 3558–3561.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds