organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-4-hy­dr­oxy-6,7-di­methyl-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 October 2010; accepted 3 November 2010; online 13 November 2010)

In the title coumarin derivative, C13H12O4, the 2H-chromene ring system is essentially planar [maximum deviation = 0.047 (1) Å]. An intra­molecular hydrogen bond is observed between the hy­droxy and the ketonic O atoms. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers. Additional inter­molecular C—H⋯O hydrogen bonds further inter­connect these dimers into two-dimensional arrays incorporating R22(9) ring motifs.

Related literature

For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953[Eisenhauer, H. R. & Link, K. P. (1953). J. Am. Chem. Soc. 75, 2044-2045.]); Franz et al. (1981[Franz, E., Klauke, E. & Hamann, I. (1981). Ger. Offen. 3012642.]); Frontiera et al. (2009[Frontiera, R. R., Dasgupta, J. & Mathies, R. A. (2009). J. Am. Chem. Soc. 131, 15630-15632.]); Maurer & Arlt (1998[Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B, 714, 181-195.]). Tamura et al. (1982[Tamura, Y., Fujita, M., Chen, L. C., Ueno, K. & Kita, Y. (1982). J. Heterocycl. Chem. 19, 289-296.]); Wang et al. (2007[Wang, T., Zhao, Y., Shi, M. & Wu, F. (2007). Dyes Pigm. 75, 104-110.]). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related coumaric structure, see: Mechi et al. (2009[Mechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652-o1653.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O4

  • Mr = 232.23

  • Monoclinic, P 21 /c

  • a = 3.9491 (4) Å

  • b = 12.1359 (11) Å

  • c = 22.101 (2) Å

  • β = 90.563 (1)°

  • V = 1059.16 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.32 × 0.19 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.986

  • 13172 measured reflections

  • 3139 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.05

  • 3139 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3 1.277 (18) 1.183 (18) 2.4299 (14) 162.0 (16)
C6—H6A⋯O3i 0.93 2.58 3.4603 (17) 159
C11—H11B⋯O2ii 0.96 2.59 3.5458 (18) 172
C12—H12A⋯O4iii 0.96 2.53 3.4751 (17) 168
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We report here a new 4-hydroxycoumarin derivative, which has been synthesized by acetylation process (Eisenhauer & Link, 1953). Recently, coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials (Wang et al., 2007), photosensitizers (Frontiera et al., 2009), pesticides (Franz et al., 1981), in pharmacology (Maurer & Arlt, 1998) and in enzymology as biological probes (Tamura et al., 1982).

In the title coumarin compound, (Fig. 1), the 2H-chromene ring system (C1-C9/O1) is essentially planar, as indicated by the maximum deviation of -0.047 (1) Å at atom C1. Bond length of C10O3 [1.2590 (16) Å] is longer than normal value due to the delocalization of atom H1O2 between the hydroxyl oxygen atom (O2) and the ketonic oxygen atom (O3), as observed in a related structure (Mechi et al., 2009). However, the bond lengths of O2—H1O2 = 1.277 (18) and O3—H1O2 = 1.183 (18) Å are inconsistent with the respective values observed in Mechi et al., 2009. All other bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, (Fig. 2), pairs of intermolecular C12—H12A···O4 hydrogen bonds (Table 1) link inversion-related molecules into dimers, producing R22(16) ring motifs (Bernstein et al., 1995). Intermolecular C6—H16A···O3 and C11—H11B···O2 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional arrays incorporating R22(9) hydrogen bond ring motifs (Bernstein et al., 1995).

Related literature top

For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953); Franz et al. (1981); Frontiera et al. (2009); Maurer & Arlt (1998). Tamura et al. (1982); Wang et al. (2007). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related coumaric structure, see: Mechi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Acetyl chloride (1 ml) was added to a solution of 4-hydroxy-6,7-dimethylcoumarin (5.2 mmol, 1.0 g) in pyridine (10 ml) which contains piperidine (one drop) on ice bath. The reaction mixture was kept at room temperature for 7 days. The solution was then poured into ice-cold water and hydrochloric acid was added to afford the precipitate, which was washed with water, dried and recrystallized from ethanol to get the pure title compound in 70% yield.

Refinement top

Atom H1O2 was located in a difference Fourier map and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to the methyl groups.

Structure description top

We report here a new 4-hydroxycoumarin derivative, which has been synthesized by acetylation process (Eisenhauer & Link, 1953). Recently, coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials (Wang et al., 2007), photosensitizers (Frontiera et al., 2009), pesticides (Franz et al., 1981), in pharmacology (Maurer & Arlt, 1998) and in enzymology as biological probes (Tamura et al., 1982).

In the title coumarin compound, (Fig. 1), the 2H-chromene ring system (C1-C9/O1) is essentially planar, as indicated by the maximum deviation of -0.047 (1) Å at atom C1. Bond length of C10O3 [1.2590 (16) Å] is longer than normal value due to the delocalization of atom H1O2 between the hydroxyl oxygen atom (O2) and the ketonic oxygen atom (O3), as observed in a related structure (Mechi et al., 2009). However, the bond lengths of O2—H1O2 = 1.277 (18) and O3—H1O2 = 1.183 (18) Å are inconsistent with the respective values observed in Mechi et al., 2009. All other bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, (Fig. 2), pairs of intermolecular C12—H12A···O4 hydrogen bonds (Table 1) link inversion-related molecules into dimers, producing R22(16) ring motifs (Bernstein et al., 1995). Intermolecular C6—H16A···O3 and C11—H11B···O2 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional arrays incorporating R22(9) hydrogen bond ring motifs (Bernstein et al., 1995).

For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953); Franz et al. (1981); Frontiera et al. (2009); Maurer & Arlt (1998). Tamura et al. (1982); Wang et al. (2007). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related coumaric structure, see: Mechi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title coumarin compound, showing 50 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title coumarin compound, viewed along an arbitrary axis, showing dimers being linked into a two-dimensional array. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
3-Acetyl-4-hydroxy-6,7-dimethyl-2H-chromen-2-one top
Crystal data top
C13H12O4F(000) = 488
Mr = 232.23Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5636 reflections
a = 3.9491 (4) Åθ = 3.2–30.2°
b = 12.1359 (11) ŵ = 0.11 mm1
c = 22.101 (2) ÅT = 100 K
β = 90.563 (1)°Block, brown
V = 1059.16 (17) Å30.32 × 0.19 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3139 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.966, Tmax = 0.986k = 1717
13172 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.5033P]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H12O4V = 1059.16 (17) Å3
Mr = 232.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9491 (4) ŵ = 0.11 mm1
b = 12.1359 (11) ÅT = 100 K
c = 22.101 (2) Å0.32 × 0.19 × 0.13 mm
β = 90.563 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2539 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.986Rint = 0.030
13172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.64 e Å3
3139 reflectionsΔρmin = 0.28 e Å3
161 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2856 (2)0.47223 (7)0.06747 (4)0.0226 (2)
O20.8349 (3)0.53534 (8)0.22188 (4)0.0257 (2)
O30.8887 (3)0.33852 (8)0.23973 (5)0.0279 (2)
O40.2728 (3)0.29458 (8)0.08591 (5)0.0282 (2)
C10.3765 (3)0.38338 (10)0.10303 (6)0.0207 (2)
C20.3684 (3)0.57902 (10)0.08348 (6)0.0194 (2)
C30.2653 (3)0.66119 (10)0.04395 (6)0.0203 (2)
H3A0.15090.64320.00830.024*
C40.3335 (3)0.77060 (10)0.05780 (6)0.0193 (2)
C50.5009 (3)0.79852 (10)0.11250 (6)0.0198 (2)
C60.6079 (3)0.71492 (10)0.15068 (6)0.0203 (2)
H6A0.72320.73240.18630.024*
C70.5447 (3)0.60395 (10)0.13639 (6)0.0192 (2)
C80.6577 (3)0.51334 (10)0.17322 (5)0.0193 (2)
C90.5807 (3)0.40436 (10)0.15620 (5)0.0184 (2)
C100.7117 (3)0.31530 (11)0.19379 (6)0.0218 (3)
C110.6506 (4)0.19714 (11)0.18029 (7)0.0259 (3)
H11B0.76900.15250.20940.039*
H11C0.73090.18050.14050.039*
H11D0.41240.18200.18220.039*
C120.2309 (3)0.85786 (11)0.01304 (6)0.0249 (3)
H12A0.07810.82680.01640.037*
H12B0.42840.88540.00690.037*
H12C0.12070.91710.03380.037*
C130.5604 (4)0.91704 (11)0.12989 (7)0.0264 (3)
H13A0.69850.92000.16580.040*
H13B0.34710.95220.13730.040*
H13C0.67350.95440.09760.040*
H1O20.886 (4)0.4360 (15)0.2387 (8)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (5)0.0181 (4)0.0201 (4)0.0013 (3)0.0067 (3)0.0018 (3)
O20.0335 (5)0.0222 (5)0.0210 (5)0.0004 (4)0.0084 (4)0.0013 (4)
O30.0345 (5)0.0247 (5)0.0244 (5)0.0003 (4)0.0086 (4)0.0041 (4)
O40.0363 (5)0.0201 (5)0.0282 (5)0.0049 (4)0.0071 (4)0.0018 (4)
C10.0241 (5)0.0180 (5)0.0201 (6)0.0002 (4)0.0010 (4)0.0013 (4)
C20.0222 (5)0.0157 (5)0.0203 (6)0.0000 (4)0.0006 (4)0.0000 (4)
C30.0235 (5)0.0182 (5)0.0191 (6)0.0003 (4)0.0017 (4)0.0001 (4)
C40.0213 (5)0.0169 (5)0.0198 (6)0.0010 (4)0.0008 (4)0.0015 (4)
C50.0222 (5)0.0173 (5)0.0197 (6)0.0000 (4)0.0006 (4)0.0000 (4)
C60.0225 (5)0.0202 (5)0.0182 (6)0.0002 (4)0.0020 (4)0.0002 (4)
C70.0214 (5)0.0182 (5)0.0179 (6)0.0014 (4)0.0000 (4)0.0019 (4)
C80.0214 (5)0.0201 (5)0.0163 (5)0.0002 (4)0.0016 (4)0.0002 (4)
C90.0211 (5)0.0163 (5)0.0177 (5)0.0004 (4)0.0007 (4)0.0013 (4)
C100.0229 (5)0.0214 (6)0.0212 (6)0.0006 (4)0.0000 (4)0.0029 (4)
C110.0293 (6)0.0178 (6)0.0304 (7)0.0002 (4)0.0035 (5)0.0051 (5)
C120.0304 (6)0.0196 (6)0.0245 (6)0.0015 (5)0.0060 (5)0.0039 (5)
C130.0331 (6)0.0182 (6)0.0279 (7)0.0021 (5)0.0050 (5)0.0015 (5)
Geometric parameters (Å, º) top
O1—C11.3797 (15)C6—C71.4050 (17)
O1—C21.3819 (15)C6—H6A0.9300
O2—C81.3048 (15)C7—C81.4366 (17)
O2—H1O21.277 (18)C8—C91.4074 (17)
O3—C101.2590 (16)C9—C101.4550 (17)
O3—H1O21.183 (18)C10—C111.4840 (18)
O4—C11.2121 (15)C11—H11B0.9600
C1—C91.4415 (17)C11—H11C0.9600
C2—C31.3843 (17)C11—H11D0.9600
C2—C71.3884 (17)C12—H12A0.9600
C3—C41.3884 (17)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
C4—C51.4133 (17)C13—H13A0.9600
C4—C121.5022 (17)C13—H13B0.9600
C5—C61.3831 (17)C13—H13C0.9600
C5—C131.5066 (17)
C1—O1—C2121.83 (10)C9—C8—C7120.19 (11)
C8—O2—H1O297.4 (8)C8—C9—C1120.10 (11)
C10—O3—H1O2101.7 (9)C8—C9—C10118.09 (11)
O4—C1—O1115.58 (11)C1—C9—C10121.82 (11)
O4—C1—C9126.59 (12)O3—C10—C9119.06 (12)
O1—C1—C9117.83 (10)O3—C10—C11117.79 (11)
O1—C2—C3116.52 (11)C9—C10—C11123.15 (11)
O1—C2—C7122.39 (11)C10—C11—H11B109.5
C3—C2—C7121.09 (11)C10—C11—H11C109.5
C2—C3—C4119.64 (11)H11B—C11—H11C109.5
C2—C3—H3A120.2C10—C11—H11D109.5
C4—C3—H3A120.2H11B—C11—H11D109.5
C3—C4—C5120.40 (11)H11C—C11—H11D109.5
C3—C4—C12118.59 (11)C4—C12—H12A109.5
C5—C4—C12121.00 (11)C4—C12—H12B109.5
C6—C5—C4118.91 (11)H12A—C12—H12B109.5
C6—C5—C13119.92 (11)C4—C12—H12C109.5
C4—C5—C13121.17 (11)H12A—C12—H12C109.5
C5—C6—C7120.90 (11)H12B—C12—H12C109.5
C5—C6—H6A119.6C5—C13—H13A109.5
C7—C6—H6A119.6C5—C13—H13B109.5
C2—C7—C6118.99 (11)H13A—C13—H13B109.5
C2—C7—C8117.43 (11)C5—C13—H13C109.5
C6—C7—C8123.57 (11)H13A—C13—H13C109.5
O2—C8—C9121.68 (11)H13B—C13—H13C109.5
O2—C8—C7118.12 (11)
C2—O1—C1—O4176.00 (11)C5—C6—C7—C20.86 (19)
C2—O1—C1—C93.75 (17)C5—C6—C7—C8178.13 (11)
C1—O1—C2—C3179.59 (11)C2—C7—C8—O2177.43 (11)
C1—O1—C2—C70.62 (18)C6—C7—C8—O21.57 (19)
O1—C2—C3—C4178.64 (11)C2—C7—C8—C91.77 (18)
C7—C2—C3—C41.15 (19)C6—C7—C8—C9179.23 (11)
C2—C3—C4—C51.35 (18)O2—C8—C9—C1178.30 (11)
C2—C3—C4—C12177.66 (11)C7—C8—C9—C12.53 (18)
C3—C4—C5—C62.68 (18)O2—C8—C9—C101.45 (18)
C12—C4—C5—C6176.30 (11)C7—C8—C9—C10177.72 (11)
C3—C4—C5—C13176.65 (12)O4—C1—C9—C8174.46 (13)
C12—C4—C5—C134.36 (19)O1—C1—C9—C85.26 (17)
C4—C5—C6—C71.57 (19)O4—C1—C9—C105.3 (2)
C13—C5—C6—C7177.78 (11)O1—C1—C9—C10175.00 (11)
O1—C2—C7—C6177.53 (11)C8—C9—C10—O30.23 (18)
C3—C2—C7—C62.25 (19)C1—C9—C10—O3179.98 (12)
O1—C2—C7—C83.42 (18)C8—C9—C10—C11179.43 (12)
C3—C2—C7—C8176.80 (11)C1—C9—C10—C110.82 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O31.277 (18)1.183 (18)2.4299 (14)162.0 (16)
C6—H6A···O3i0.932.583.4603 (17)159
C11—H11B···O2ii0.962.593.5458 (18)172
C12—H12A···O4iii0.962.533.4751 (17)168
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H12O4
Mr232.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)3.9491 (4), 12.1359 (11), 22.101 (2)
β (°) 90.563 (1)
V3)1059.16 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.19 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13172, 3139, 2539
Rint0.030
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.05
No. of reflections3139
No. of parameters161
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O31.277 (18)1.183 (18)2.4299 (14)162.0 (16)
C6—H6A···O3i0.932.583.4603 (17)159
C11—H11B···O2ii0.962.593.5458 (18)172
C12—H12A···O4iii0.962.533.4751 (17)168
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. JHG and HKF also thank USM for the Research University Grant (No. 1001/PFIZIK/811160) and MA also thanks USM for the award of a post doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEisenhauer, H. R. & Link, K. P. (1953). J. Am. Chem. Soc. 75, 2044–2045.  CrossRef CAS Web of Science Google Scholar
First citationFranz, E., Klauke, E. & Hamann, I. (1981). Ger. Offen. 3012642.  Google Scholar
First citationFrontiera, R. R., Dasgupta, J. & Mathies, R. A. (2009). J. Am. Chem. Soc. 131, 15630–15632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B, 714, 181–195.  CrossRef CAS Google Scholar
First citationMechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652–o1653.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamura, Y., Fujita, M., Chen, L. C., Ueno, K. & Kita, Y. (1982). J. Heterocycl. Chem. 19, 289–296.  CrossRef CAS Google Scholar
First citationWang, T., Zhao, Y., Shi, M. & Wu, F. (2007). Dyes Pigm. 75, 104–110.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds