organic compounds
3-Acetyl-4-hydroxy-6,7-dimethyl-2H-chromen-2-one
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title coumarin derivative, C13H12O4, the 2H-chromene ring system is essentially planar [maximum deviation = 0.047 (1) Å]. An intramolecular hydrogen bond is observed between the hydroxy and the ketonic O atoms. In the crystal, pairs of intermolecular C—H⋯O hydrogen bonds link inversion-related molecules into dimers. Additional intermolecular C—H⋯O hydrogen bonds further interconnect these dimers into two-dimensional arrays incorporating R22(9) ring motifs.
Related literature
For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953); Franz et al. (1981); Frontiera et al. (2009); Maurer & Arlt (1998). Tamura et al. (1982); Wang et al. (2007). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related coumaric structure, see: Mechi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810045010/rz2512sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045010/rz2512Isup2.hkl
Acetyl chloride (1 ml) was added to a solution of 4-hydroxy-6,7-dimethylcoumarin (5.2 mmol, 1.0 g) in pyridine (10 ml) which contains piperidine (one drop) on ice bath. The reaction mixture was kept at room temperature for 7 days. The solution was then poured into ice-cold water and hydrochloric acid was added to afford the precipitate, which was washed with water, dried and recrystallized from ethanol to get the pure title compound in 70% yield.
Atom H1O2 was located in a difference Fourier map and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to the methyl groups.
We report here a new 4-hydroxycoumarin derivative, which has been synthesized by acetylation process (Eisenhauer & Link, 1953). Recently, coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials (Wang et al., 2007), photosensitizers (Frontiera et al., 2009), pesticides (Franz et al., 1981), in pharmacology (Maurer & Arlt, 1998) and in enzymology as biological probes (Tamura et al., 1982).
In the title coumarin compound, (Fig. 1), the 2H-chromene ring system (C1-C9/O1) is essentially planar, as indicated by the maximum deviation of -0.047 (1) Å at atom C1. Bond length of C10═O3 [1.2590 (16) Å] is longer than normal value due to the delocalization of atom H1O2 between the hydroxyl oxygen atom (O2) and the ketonic oxygen atom (O3), as observed in a related structure (Mechi et al., 2009). However, the bond lengths of O2—H1O2 = 1.277 (18) and O3—H1O2 = 1.183 (18) Å are inconsistent with the respective values observed in Mechi et al., 2009. All other bond lengths (Allen et al., 1987) and angles are within normal ranges. In the (Fig. 2), pairs of intermolecular C12—H12A···O4 hydrogen bonds (Table 1) link inversion-related molecules into dimers, producing R22(16) ring motifs (Bernstein et al., 1995). Intermolecular C6—H16A···O3 and C11—H11B···O2 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional arrays incorporating R22(9) hydrogen bond ring motifs (Bernstein et al., 1995).
For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953); Franz et al. (1981); Frontiera et al. (2009); Maurer & Arlt (1998). Tamura et al. (1982); Wang et al. (2007). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related coumaric structure, see: Mechi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C13H12O4 | F(000) = 488 |
Mr = 232.23 | Dx = 1.456 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5636 reflections |
a = 3.9491 (4) Å | θ = 3.2–30.2° |
b = 12.1359 (11) Å | µ = 0.11 mm−1 |
c = 22.101 (2) Å | T = 100 K |
β = 90.563 (1)° | Block, brown |
V = 1059.16 (17) Å3 | 0.32 × 0.19 × 0.13 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 3139 independent reflections |
Radiation source: fine-focus sealed tube | 2539 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 30.2°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.966, Tmax = 0.986 | k = −17→17 |
13172 measured reflections | l = −29→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0758P)2 + 0.5033P] where P = (Fo2 + 2Fc2)/3 |
3139 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C13H12O4 | V = 1059.16 (17) Å3 |
Mr = 232.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9491 (4) Å | µ = 0.11 mm−1 |
b = 12.1359 (11) Å | T = 100 K |
c = 22.101 (2) Å | 0.32 × 0.19 × 0.13 mm |
β = 90.563 (1)° |
Bruker APEXII DUO CCD area-detector diffractometer | 3139 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2539 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 0.986 | Rint = 0.030 |
13172 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.64 e Å−3 |
3139 reflections | Δρmin = −0.28 e Å−3 |
161 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2856 (2) | 0.47223 (7) | 0.06747 (4) | 0.0226 (2) | |
O2 | 0.8349 (3) | 0.53534 (8) | 0.22188 (4) | 0.0257 (2) | |
O3 | 0.8887 (3) | 0.33852 (8) | 0.23973 (5) | 0.0279 (2) | |
O4 | 0.2728 (3) | 0.29458 (8) | 0.08591 (5) | 0.0282 (2) | |
C1 | 0.3765 (3) | 0.38338 (10) | 0.10303 (6) | 0.0207 (2) | |
C2 | 0.3684 (3) | 0.57902 (10) | 0.08348 (6) | 0.0194 (2) | |
C3 | 0.2653 (3) | 0.66119 (10) | 0.04395 (6) | 0.0203 (2) | |
H3A | 0.1509 | 0.6432 | 0.0083 | 0.024* | |
C4 | 0.3335 (3) | 0.77060 (10) | 0.05780 (6) | 0.0193 (2) | |
C5 | 0.5009 (3) | 0.79852 (10) | 0.11250 (6) | 0.0198 (2) | |
C6 | 0.6079 (3) | 0.71492 (10) | 0.15068 (6) | 0.0203 (2) | |
H6A | 0.7232 | 0.7324 | 0.1863 | 0.024* | |
C7 | 0.5447 (3) | 0.60395 (10) | 0.13639 (6) | 0.0192 (2) | |
C8 | 0.6577 (3) | 0.51334 (10) | 0.17322 (5) | 0.0193 (2) | |
C9 | 0.5807 (3) | 0.40436 (10) | 0.15620 (5) | 0.0184 (2) | |
C10 | 0.7117 (3) | 0.31530 (11) | 0.19379 (6) | 0.0218 (3) | |
C11 | 0.6506 (4) | 0.19714 (11) | 0.18029 (7) | 0.0259 (3) | |
H11B | 0.7690 | 0.1525 | 0.2094 | 0.039* | |
H11C | 0.7309 | 0.1805 | 0.1405 | 0.039* | |
H11D | 0.4124 | 0.1820 | 0.1822 | 0.039* | |
C12 | 0.2309 (3) | 0.85786 (11) | 0.01304 (6) | 0.0249 (3) | |
H12A | 0.0781 | 0.8268 | −0.0164 | 0.037* | |
H12B | 0.4284 | 0.8854 | −0.0069 | 0.037* | |
H12C | 0.1207 | 0.9171 | 0.0338 | 0.037* | |
C13 | 0.5604 (4) | 0.91704 (11) | 0.12989 (7) | 0.0264 (3) | |
H13A | 0.6985 | 0.9200 | 0.1658 | 0.040* | |
H13B | 0.3471 | 0.9522 | 0.1373 | 0.040* | |
H13C | 0.6735 | 0.9544 | 0.0976 | 0.040* | |
H1O2 | 0.886 (4) | 0.4360 (15) | 0.2387 (8) | 0.029 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0297 (5) | 0.0181 (4) | 0.0201 (4) | −0.0013 (3) | −0.0067 (3) | 0.0018 (3) |
O2 | 0.0335 (5) | 0.0222 (5) | 0.0210 (5) | −0.0004 (4) | −0.0084 (4) | −0.0013 (4) |
O3 | 0.0345 (5) | 0.0247 (5) | 0.0244 (5) | 0.0003 (4) | −0.0086 (4) | 0.0041 (4) |
O4 | 0.0363 (5) | 0.0201 (5) | 0.0282 (5) | −0.0049 (4) | −0.0071 (4) | −0.0018 (4) |
C1 | 0.0241 (5) | 0.0180 (5) | 0.0201 (6) | −0.0002 (4) | −0.0010 (4) | 0.0013 (4) |
C2 | 0.0222 (5) | 0.0157 (5) | 0.0203 (6) | 0.0000 (4) | 0.0006 (4) | 0.0000 (4) |
C3 | 0.0235 (5) | 0.0182 (5) | 0.0191 (6) | −0.0003 (4) | −0.0017 (4) | 0.0001 (4) |
C4 | 0.0213 (5) | 0.0169 (5) | 0.0198 (6) | 0.0010 (4) | −0.0008 (4) | 0.0015 (4) |
C5 | 0.0222 (5) | 0.0173 (5) | 0.0197 (6) | 0.0000 (4) | −0.0006 (4) | 0.0000 (4) |
C6 | 0.0225 (5) | 0.0202 (5) | 0.0182 (6) | −0.0002 (4) | −0.0020 (4) | 0.0002 (4) |
C7 | 0.0214 (5) | 0.0182 (5) | 0.0179 (6) | 0.0014 (4) | 0.0000 (4) | 0.0019 (4) |
C8 | 0.0214 (5) | 0.0201 (5) | 0.0163 (5) | −0.0002 (4) | −0.0016 (4) | −0.0002 (4) |
C9 | 0.0211 (5) | 0.0163 (5) | 0.0177 (5) | 0.0004 (4) | −0.0007 (4) | 0.0013 (4) |
C10 | 0.0229 (5) | 0.0214 (6) | 0.0212 (6) | 0.0006 (4) | 0.0000 (4) | 0.0029 (4) |
C11 | 0.0293 (6) | 0.0178 (6) | 0.0304 (7) | 0.0002 (4) | −0.0035 (5) | 0.0051 (5) |
C12 | 0.0304 (6) | 0.0196 (6) | 0.0245 (6) | 0.0015 (5) | −0.0060 (5) | 0.0039 (5) |
C13 | 0.0331 (6) | 0.0182 (6) | 0.0279 (7) | −0.0021 (5) | −0.0050 (5) | −0.0015 (5) |
O1—C1 | 1.3797 (15) | C6—C7 | 1.4050 (17) |
O1—C2 | 1.3819 (15) | C6—H6A | 0.9300 |
O2—C8 | 1.3048 (15) | C7—C8 | 1.4366 (17) |
O2—H1O2 | 1.277 (18) | C8—C9 | 1.4074 (17) |
O3—C10 | 1.2590 (16) | C9—C10 | 1.4550 (17) |
O3—H1O2 | 1.183 (18) | C10—C11 | 1.4840 (18) |
O4—C1 | 1.2121 (15) | C11—H11B | 0.9600 |
C1—C9 | 1.4415 (17) | C11—H11C | 0.9600 |
C2—C3 | 1.3843 (17) | C11—H11D | 0.9600 |
C2—C7 | 1.3884 (17) | C12—H12A | 0.9600 |
C3—C4 | 1.3884 (17) | C12—H12B | 0.9600 |
C3—H3A | 0.9300 | C12—H12C | 0.9600 |
C4—C5 | 1.4133 (17) | C13—H13A | 0.9600 |
C4—C12 | 1.5022 (17) | C13—H13B | 0.9600 |
C5—C6 | 1.3831 (17) | C13—H13C | 0.9600 |
C5—C13 | 1.5066 (17) | ||
C1—O1—C2 | 121.83 (10) | C9—C8—C7 | 120.19 (11) |
C8—O2—H1O2 | 97.4 (8) | C8—C9—C1 | 120.10 (11) |
C10—O3—H1O2 | 101.7 (9) | C8—C9—C10 | 118.09 (11) |
O4—C1—O1 | 115.58 (11) | C1—C9—C10 | 121.82 (11) |
O4—C1—C9 | 126.59 (12) | O3—C10—C9 | 119.06 (12) |
O1—C1—C9 | 117.83 (10) | O3—C10—C11 | 117.79 (11) |
O1—C2—C3 | 116.52 (11) | C9—C10—C11 | 123.15 (11) |
O1—C2—C7 | 122.39 (11) | C10—C11—H11B | 109.5 |
C3—C2—C7 | 121.09 (11) | C10—C11—H11C | 109.5 |
C2—C3—C4 | 119.64 (11) | H11B—C11—H11C | 109.5 |
C2—C3—H3A | 120.2 | C10—C11—H11D | 109.5 |
C4—C3—H3A | 120.2 | H11B—C11—H11D | 109.5 |
C3—C4—C5 | 120.40 (11) | H11C—C11—H11D | 109.5 |
C3—C4—C12 | 118.59 (11) | C4—C12—H12A | 109.5 |
C5—C4—C12 | 121.00 (11) | C4—C12—H12B | 109.5 |
C6—C5—C4 | 118.91 (11) | H12A—C12—H12B | 109.5 |
C6—C5—C13 | 119.92 (11) | C4—C12—H12C | 109.5 |
C4—C5—C13 | 121.17 (11) | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 120.90 (11) | H12B—C12—H12C | 109.5 |
C5—C6—H6A | 119.6 | C5—C13—H13A | 109.5 |
C7—C6—H6A | 119.6 | C5—C13—H13B | 109.5 |
C2—C7—C6 | 118.99 (11) | H13A—C13—H13B | 109.5 |
C2—C7—C8 | 117.43 (11) | C5—C13—H13C | 109.5 |
C6—C7—C8 | 123.57 (11) | H13A—C13—H13C | 109.5 |
O2—C8—C9 | 121.68 (11) | H13B—C13—H13C | 109.5 |
O2—C8—C7 | 118.12 (11) | ||
C2—O1—C1—O4 | 176.00 (11) | C5—C6—C7—C2 | −0.86 (19) |
C2—O1—C1—C9 | −3.75 (17) | C5—C6—C7—C8 | 178.13 (11) |
C1—O1—C2—C3 | 179.59 (11) | C2—C7—C8—O2 | 177.43 (11) |
C1—O1—C2—C7 | −0.62 (18) | C6—C7—C8—O2 | −1.57 (19) |
O1—C2—C3—C4 | 178.64 (11) | C2—C7—C8—C9 | −1.77 (18) |
C7—C2—C3—C4 | −1.15 (19) | C6—C7—C8—C9 | 179.23 (11) |
C2—C3—C4—C5 | −1.35 (18) | O2—C8—C9—C1 | 178.30 (11) |
C2—C3—C4—C12 | 177.66 (11) | C7—C8—C9—C1 | −2.53 (18) |
C3—C4—C5—C6 | 2.68 (18) | O2—C8—C9—C10 | −1.45 (18) |
C12—C4—C5—C6 | −176.30 (11) | C7—C8—C9—C10 | 177.72 (11) |
C3—C4—C5—C13 | −176.65 (12) | O4—C1—C9—C8 | −174.46 (13) |
C12—C4—C5—C13 | 4.36 (19) | O1—C1—C9—C8 | 5.26 (17) |
C4—C5—C6—C7 | −1.57 (19) | O4—C1—C9—C10 | 5.3 (2) |
C13—C5—C6—C7 | 177.78 (11) | O1—C1—C9—C10 | −175.00 (11) |
O1—C2—C7—C6 | −177.53 (11) | C8—C9—C10—O3 | −0.23 (18) |
C3—C2—C7—C6 | 2.25 (19) | C1—C9—C10—O3 | −179.98 (12) |
O1—C2—C7—C8 | 3.42 (18) | C8—C9—C10—C11 | −179.43 (12) |
C3—C2—C7—C8 | −176.80 (11) | C1—C9—C10—C11 | 0.82 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···O3 | 1.277 (18) | 1.183 (18) | 2.4299 (14) | 162.0 (16) |
C6—H6A···O3i | 0.93 | 2.58 | 3.4603 (17) | 159 |
C11—H11B···O2ii | 0.96 | 2.59 | 3.5458 (18) | 172 |
C12—H12A···O4iii | 0.96 | 2.53 | 3.4751 (17) | 168 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C13H12O4 |
Mr | 232.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 3.9491 (4), 12.1359 (11), 22.101 (2) |
β (°) | 90.563 (1) |
V (Å3) | 1059.16 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.32 × 0.19 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.966, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13172, 3139, 2539 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.708 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.148, 1.05 |
No. of reflections | 3139 |
No. of parameters | 161 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −0.28 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···O3 | 1.277 (18) | 1.183 (18) | 2.4299 (14) | 162.0 (16) |
C6—H6A···O3i | 0.93 | 2.58 | 3.4603 (17) | 159 |
C11—H11B···O2ii | 0.96 | 2.59 | 3.5458 (18) | 172 |
C12—H12A···O4iii | 0.96 | 2.53 | 3.4751 (17) | 168 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
Acknowledgements
The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. JHG and HKF also thank USM for the Research University Grant (No. 1001/PFIZIK/811160) and MA also thanks USM for the award of a post doctoral fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Eisenhauer, H. R. & Link, K. P. (1953). J. Am. Chem. Soc. 75, 2044–2045. CrossRef CAS Web of Science Google Scholar
Franz, E., Klauke, E. & Hamann, I. (1981). Ger. Offen. 3012642. Google Scholar
Frontiera, R. R., Dasgupta, J. & Mathies, R. A. (2009). J. Am. Chem. Soc. 131, 15630–15632. Web of Science CrossRef PubMed CAS Google Scholar
Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B, 714, 181–195. CrossRef CAS Google Scholar
Mechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652–o1653. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamura, Y., Fujita, M., Chen, L. C., Ueno, K. & Kita, Y. (1982). J. Heterocycl. Chem. 19, 289–296. CrossRef CAS Google Scholar
Wang, T., Zhao, Y., Shi, M. & Wu, F. (2007). Dyes Pigm. 75, 104–110. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We report here a new 4-hydroxycoumarin derivative, which has been synthesized by acetylation process (Eisenhauer & Link, 1953). Recently, coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials (Wang et al., 2007), photosensitizers (Frontiera et al., 2009), pesticides (Franz et al., 1981), in pharmacology (Maurer & Arlt, 1998) and in enzymology as biological probes (Tamura et al., 1982).
In the title coumarin compound, (Fig. 1), the 2H-chromene ring system (C1-C9/O1) is essentially planar, as indicated by the maximum deviation of -0.047 (1) Å at atom C1. Bond length of C10═O3 [1.2590 (16) Å] is longer than normal value due to the delocalization of atom H1O2 between the hydroxyl oxygen atom (O2) and the ketonic oxygen atom (O3), as observed in a related structure (Mechi et al., 2009). However, the bond lengths of O2—H1O2 = 1.277 (18) and O3—H1O2 = 1.183 (18) Å are inconsistent with the respective values observed in Mechi et al., 2009. All other bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, (Fig. 2), pairs of intermolecular C12—H12A···O4 hydrogen bonds (Table 1) link inversion-related molecules into dimers, producing R22(16) ring motifs (Bernstein et al., 1995). Intermolecular C6—H16A···O3 and C11—H11B···O2 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional arrays incorporating R22(9) hydrogen bond ring motifs (Bernstein et al., 1995).