metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­tris­­(pyridine-κN)nickel(II)]-μ-2,3,5,6-tetra­chloro­benzene-1,4-di­carboxyl­ato-κ2O1:O4] pyridine monosolvate]

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: lanse19860111@163.com

(Received 28 October 2010; accepted 8 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, {[Ni(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N}n, contains two independent nickel(II) cations displaying a distorted octa­hedral coordination geometry provided by the N atoms of three pyridine mol­ecules, the O atom of a water mol­ecule, and O atoms of two monodentate μ2-bridging tetra­chloro­terephthalate dianions. The metal atoms are linked by the dianions into zigzag chains running parallel to [11[\overline{1}]]. The crystal packing is stabilized by O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the modelling of hydrogen adsorption in metal-organic frameworks, see: Mulder et al. (2005[Mulder, F. M., Dingemans, T. J., Wagemake, M. & Kearley, G. J. (2005). Chem. Phys. 317, 113-118.]); Zheng et al. (2009[Zheng, C. G., Li, S., Zhang, P. P. & Wang, W. X. (2009). Transition Met. Chem. 34, 815-820.]). For related structures, see: Kim et al. (2003[Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474-477.]); Go et al. (2004[Go, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360-5367.]); Wang et al. (2003[Wang, L. Y., Liu, Z. L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. Commun. 6, 630-633.]); Li et al. (2003[Li, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C. J. (2003). Inorg. Chem. 42, 3119-3124.]); Zheng et al. (2008[Zheng, C.-G., Zhang, J., Hong, J.-Q. & Li, S. (2008). Acta Cryst. E64, m965.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N

  • Mr = 1390.01

  • Triclinic, [P \overline 1]

  • a = 8.6148 (6) Å

  • b = 17.6879 (10) Å

  • c = 21.0617 (10) Å

  • α = 68.279 (5)°

  • β = 79.750 (6)°

  • γ = 84.853 (6)°

  • V = 2932.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 1.000

  • 26508 measured reflections

  • 11670 independent reflections

  • 8092 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.151

  • S = 1.07

  • 11670 reflections

  • 757 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2 0.85 2.02 2.751 (4) 143
O9—H9B⋯N7 0.85 1.89 2.699 (6) 159
O10—H10A⋯N8i 0.85 1.97 2.783 (6) 161
O10—H10B⋯O3ii 0.85 1.83 2.677 (4) 174
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y-1, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes have attracted considerable interest, owning to their elegant framework topologies as well as their potential applications in gas sorption, catalysis and optoelectronic devices, and a considerable amount of research work has been done on this type of complexes. However, there are few reports on polyhalogenated benzene-1,4-dicarboxylic ligands, especially tetrachloroterephthalic acid. Computer calculations have suggested that halogens such as chlorine can enhance the adsorption of hydrogen molecules in metal organic frameworks (Mulder et al., 2005; Zheng et al., 2009), so the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists two independent nickel(II) cations having distorted octahedral coordination geometry, where the equatorial plane is provided by the N atoms of three pyridine molecules and the O atom of a water molecule, and the axial positions are occupied by the O atoms of two monodentate µ2-bridging tetrachloroterephthalate dianions. The bridging role of the dianions results in the formation of one-dimensional neutral zigzag chains running parallel to the [111] direction. The Ni—O bond lengths lie in the range 2.065 (3)–2.095 (3) Å, and agree well with the values reported in the literature for related compounds (Kim et al., 2003; Go et al., 2004). The Ni—N bond lengths lie in the range of 2.094 (4)–2.124 (4) Å, and are also comparable with those reported for the similar complexes (Wang et al., 2003; Li et al., 2003; Zheng et al., 2008). The crystal packing is stabilized by O—H···N and O—H···O hydrogen interactions (Table 1).

Related literature top

For the modelling of hydrogen absorption in metal-organic frameworks, see: Mulder et al. (2005); Zheng et al. (2009). For related structures, see: Kim et al. (2003); Go et al. (2004); Wang et al. (2003); Li et al. (2003); Zheng et al. (2008).

Experimental top

All the reagents and solvents empolyed were commercially available. Tetrachloroterephthalic acid was purified by recrystallization. The title compound was synthesized by slow vapour diffusion at room temperature of pyridine (3 ml) in to a methanol solution (3 ml) containing a mixture of tetrachloroterephthalic acid (0.0304 g, 0.10 mmol) and NiCl2.6H2O (0.0476 g, 0.20 mmol) diluted with deionized water (2 ml). After ten days, green block-shaped crystals were obtained.The green block-shaped crystals were collected by filtration, washed with methanol (3 ml), and air dried to give the title complex (0.09 g, 65% yield). Elemental analysis (%) calcd. for C56H44Cl8N8Ni2: C, 48.34%; H, 3.17%; N, 8.06%; Found: C,48.14%; H, 2.98%; N, 7.94%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(O).

Structure description top

Transition metal complexes have attracted considerable interest, owning to their elegant framework topologies as well as their potential applications in gas sorption, catalysis and optoelectronic devices, and a considerable amount of research work has been done on this type of complexes. However, there are few reports on polyhalogenated benzene-1,4-dicarboxylic ligands, especially tetrachloroterephthalic acid. Computer calculations have suggested that halogens such as chlorine can enhance the adsorption of hydrogen molecules in metal organic frameworks (Mulder et al., 2005; Zheng et al., 2009), so the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists two independent nickel(II) cations having distorted octahedral coordination geometry, where the equatorial plane is provided by the N atoms of three pyridine molecules and the O atom of a water molecule, and the axial positions are occupied by the O atoms of two monodentate µ2-bridging tetrachloroterephthalate dianions. The bridging role of the dianions results in the formation of one-dimensional neutral zigzag chains running parallel to the [111] direction. The Ni—O bond lengths lie in the range 2.065 (3)–2.095 (3) Å, and agree well with the values reported in the literature for related compounds (Kim et al., 2003; Go et al., 2004). The Ni—N bond lengths lie in the range of 2.094 (4)–2.124 (4) Å, and are also comparable with those reported for the similar complexes (Wang et al., 2003; Li et al., 2003; Zheng et al., 2008). The crystal packing is stabilized by O—H···N and O—H···O hydrogen interactions (Table 1).

For the modelling of hydrogen absorption in metal-organic frameworks, see: Mulder et al. (2005); Zheng et al. (2009). For related structures, see: Kim et al. (2003); Go et al. (2004); Wang et al. (2003); Li et al. (2003); Zheng et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme.
catena-Poly[[[aquatris(pyridine-κN)nickel(II)]- µ-2,3,5,6-tetrachlorobenzene-1,4-dicarboxylato-κ2O1:O4] pyridine monosolvate] top
Crystal data top
[Ni(C8Cl4O4)(C5H5N)3(H2O)]·C5H5NZ = 2
Mr = 1390.01F(000) = 1416
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6148 (6) ÅCell parameters from 11475 reflections
b = 17.6879 (10) Åθ = 3.0–27.5°
c = 21.0617 (10) ŵ = 1.07 mm1
α = 68.279 (5)°T = 293 K
β = 79.750 (6)°Block, green
γ = 84.853 (6)°0.26 × 0.21 × 0.10 mm
V = 2932.9 (3) Å3
Data collection top
Bruker APEXII
diffractometer
11670 independent reflections
Radiation source: fine-focus sealed tube8092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 28.5714 pixels mm-1θmax = 26.2°, θmin = 3.0°
dtprofit.ref scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 2118
Tmin = 0.688, Tmax = 1.000l = 2625
26508 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.048P)2 + 1.8P]
where P = (Fo2 + 2Fc2)/3
11670 reflections(Δ/σ)max < 0.001
757 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C8Cl4O4)(C5H5N)3(H2O)]·C5H5Nγ = 84.853 (6)°
Mr = 1390.01V = 2932.9 (3) Å3
Triclinic, P1Z = 2
a = 8.6148 (6) ÅMo Kα radiation
b = 17.6879 (10) ŵ = 1.07 mm1
c = 21.0617 (10) ÅT = 293 K
α = 68.279 (5)°0.26 × 0.21 × 0.10 mm
β = 79.750 (6)°
Data collection top
Bruker APEXII
diffractometer
11670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
8092 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 1.000Rint = 0.060
26508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
11670 reflectionsΔρmin = 0.36 e Å3
757 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.46067 (7)0.47947 (3)0.23768 (3)0.02446 (16)
Ni20.00680 (7)0.00952 (3)0.76709 (3)0.02428 (16)
Cl10.96838 (15)0.62945 (8)0.09662 (6)0.0431 (3)
Cl21.09020 (14)0.74578 (8)0.05442 (6)0.0412 (3)
Cl30.37903 (14)0.75032 (8)0.06981 (6)0.0417 (3)
Cl40.50078 (15)0.86514 (8)0.08212 (7)0.0456 (4)
Cl50.09677 (17)0.28669 (9)0.57970 (7)0.0513 (4)
Cl60.01812 (17)0.37233 (9)0.41947 (7)0.0502 (4)
Cl70.53227 (16)0.20335 (9)0.42029 (7)0.0493 (4)
Cl80.46070 (16)0.12525 (9)0.58077 (7)0.0472 (4)
O10.5606 (4)0.57825 (18)0.15395 (15)0.0304 (8)
O20.6420 (4)0.66386 (19)0.19776 (15)0.0333 (8)
O30.8211 (4)0.8264 (2)0.18049 (15)0.0354 (8)
O40.9117 (4)0.91544 (18)0.14307 (15)0.0303 (8)
O50.3744 (4)0.38525 (19)0.32687 (15)0.0325 (8)
O60.2378 (5)0.2903 (2)0.31443 (17)0.0510 (11)
O70.1898 (6)0.2018 (3)0.68576 (19)0.0683 (14)
O80.0846 (4)0.09826 (19)0.67262 (15)0.0334 (8)
O90.5614 (4)0.51792 (19)0.30244 (15)0.0322 (8)
H9A0.57960.56850.28650.048*
H9B0.52090.51570.34290.048*
O100.0918 (4)0.04115 (19)0.70833 (14)0.0299 (8)
H10A0.04990.04790.67100.045*
H10B0.12030.08480.74180.045*
N10.2520 (4)0.5464 (2)0.25037 (18)0.0282 (9)
N20.3805 (4)0.4496 (2)0.16131 (19)0.0294 (9)
N30.6745 (5)0.4151 (2)0.2259 (2)0.0321 (10)
N40.2190 (4)0.0563 (2)0.75740 (18)0.0252 (9)
N50.0898 (4)0.0484 (2)0.83883 (18)0.0280 (9)
N60.2077 (4)0.0743 (2)0.7758 (2)0.0320 (10)
N70.4136 (7)0.4726 (3)0.4346 (2)0.0546 (14)
N80.1032 (6)0.0804 (3)0.3961 (2)0.0498 (12)
C10.6234 (5)0.6413 (3)0.1504 (2)0.0263 (11)
C20.6812 (5)0.6979 (3)0.0762 (2)0.0251 (10)
C30.8388 (5)0.6961 (3)0.0472 (2)0.0265 (11)
C40.8924 (5)0.7469 (3)0.0203 (2)0.0260 (10)
C50.7873 (5)0.7984 (3)0.0605 (2)0.0251 (10)
C60.6309 (5)0.7999 (3)0.0318 (2)0.0268 (11)
C70.5768 (5)0.7495 (3)0.0357 (2)0.0254 (10)
C80.8435 (5)0.8513 (3)0.1355 (2)0.0258 (10)
C90.2918 (6)0.3232 (3)0.3475 (2)0.0324 (12)
C100.2531 (5)0.2835 (3)0.4270 (2)0.0276 (11)
C110.1141 (5)0.3009 (3)0.4637 (2)0.0289 (11)
C120.0784 (6)0.2628 (3)0.5353 (2)0.0306 (11)
C130.1823 (6)0.2071 (3)0.5724 (2)0.0289 (11)
C140.3229 (6)0.1906 (3)0.5358 (2)0.0326 (12)
C150.3575 (5)0.2272 (3)0.4644 (2)0.0293 (11)
C160.1491 (6)0.1666 (3)0.6518 (2)0.0347 (12)
C170.2511 (6)0.6220 (3)0.2509 (2)0.0341 (12)
H17A0.34720.64600.24440.041*
C180.1151 (6)0.6655 (3)0.2606 (3)0.0418 (13)
H18A0.11950.71730.26170.050*
C190.0277 (6)0.6317 (4)0.2687 (3)0.0437 (14)
H19A0.12140.66090.27390.052*
C200.0297 (6)0.5538 (4)0.2689 (2)0.0437 (14)
H20A0.12470.52890.27520.052*
C210.1122 (6)0.5135 (3)0.2595 (2)0.0337 (12)
H21A0.11050.46100.25960.040*
C220.3325 (6)0.5079 (3)0.1062 (2)0.0360 (12)
H22A0.31880.56060.10630.043*
C230.3022 (7)0.4942 (4)0.0492 (3)0.0518 (16)
H23A0.26990.53680.01190.062*
C240.3207 (7)0.4170 (4)0.0488 (3)0.0579 (18)
H24A0.30320.40580.01090.070*
C250.3658 (7)0.3562 (4)0.1059 (3)0.0552 (17)
H25A0.37830.30300.10710.066*
C260.3921 (6)0.3738 (3)0.1606 (3)0.0382 (13)
H26A0.41940.33140.19930.046*
C270.7585 (7)0.4243 (3)0.1639 (3)0.0450 (14)
H27A0.71830.45840.12460.054*
C280.9025 (7)0.3853 (4)0.1559 (3)0.0559 (16)
H28A0.95890.39360.11200.067*
C290.9613 (7)0.3341 (3)0.2137 (4)0.0533 (16)
H29A1.05730.30630.20960.064*
C300.8770 (7)0.3243 (3)0.2773 (3)0.0500 (15)
H30A0.91520.29060.31720.060*
C310.7346 (6)0.3652 (3)0.2813 (3)0.0391 (13)
H31A0.67710.35770.32490.047*
C320.2256 (6)0.1339 (3)0.7609 (2)0.0317 (11)
H32A0.13180.16120.77130.038*
C330.3659 (6)0.1747 (3)0.7497 (3)0.0430 (14)
H33A0.36500.22830.75230.052*
C340.5064 (6)0.1364 (3)0.7350 (3)0.0419 (13)
H34A0.60200.16290.72710.050*
C350.5007 (6)0.0571 (3)0.7322 (2)0.0370 (13)
H35A0.59350.02930.72330.044*
C360.3577 (6)0.0196 (3)0.7427 (2)0.0302 (11)
H36A0.35650.03430.73950.036*
C370.1480 (5)0.0066 (3)0.8924 (2)0.0326 (11)
H37A0.16470.05970.89350.039*
C380.1849 (6)0.0113 (4)0.9465 (3)0.0470 (15)
H38A0.22620.02880.98280.056*
C390.1598 (7)0.0884 (4)0.9456 (3)0.0600 (18)
H39A0.18150.10200.98170.072*
C400.1015 (8)0.1465 (4)0.8899 (3)0.0565 (17)
H40A0.08340.20000.88770.068*
C410.0708 (6)0.1239 (3)0.8381 (3)0.0394 (13)
H41A0.03450.16370.80020.047*
C420.2697 (6)0.1214 (3)0.7192 (3)0.0379 (13)
H42A0.21600.12440.67600.046*
C430.4082 (7)0.1651 (4)0.7225 (3)0.0515 (16)
H43A0.44660.19740.68210.062*
C440.4900 (8)0.1609 (4)0.7858 (4)0.0615 (18)
H44A0.58390.19060.78900.074*
C450.4310 (7)0.1123 (4)0.8442 (4)0.0597 (17)
H45A0.48450.10770.88780.072*
C460.2898 (7)0.0702 (3)0.8368 (3)0.0460 (14)
H46A0.25000.03720.87660.055*
C470.2758 (9)0.4882 (4)0.4682 (4)0.076 (2)
H47A0.21220.53110.44460.091*
C480.2239 (11)0.4431 (6)0.5367 (5)0.099 (3)
H48A0.12760.45580.55910.119*
C490.3167 (14)0.3790 (6)0.5716 (4)0.098 (3)
H49A0.28350.34710.61760.118*
C500.4554 (11)0.3634 (4)0.5381 (4)0.082 (2)
H50A0.52080.32080.56060.098*
C510.4999 (9)0.4109 (4)0.4702 (3)0.0661 (19)
H51A0.59680.39920.44770.079*
C520.0476 (7)0.1167 (4)0.4325 (3)0.0565 (16)
H52A0.02740.15650.40960.068*
C530.0963 (9)0.0979 (4)0.5028 (4)0.0683 (19)
H53A0.05470.12440.52650.082*
C540.2085 (8)0.0388 (5)0.5370 (3)0.068 (2)
H54A0.24050.02310.58450.081*
C550.2708 (7)0.0041 (4)0.4994 (3)0.0587 (17)
H55A0.34970.03390.52050.070*
C560.2150 (7)0.0263 (4)0.4302 (3)0.0510 (15)
H56A0.25810.00190.40530.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0270 (3)0.0217 (3)0.0212 (3)0.0014 (3)0.0008 (2)0.0049 (2)
Ni20.0281 (3)0.0216 (3)0.0199 (3)0.0018 (3)0.0014 (2)0.0046 (2)
Cl10.0371 (7)0.0439 (8)0.0326 (7)0.0084 (6)0.0079 (6)0.0031 (6)
Cl20.0268 (7)0.0482 (8)0.0355 (7)0.0012 (6)0.0020 (5)0.0035 (6)
Cl30.0268 (7)0.0483 (8)0.0369 (7)0.0000 (6)0.0011 (5)0.0033 (6)
Cl40.0359 (7)0.0489 (8)0.0351 (7)0.0088 (6)0.0088 (6)0.0036 (6)
Cl50.0479 (8)0.0466 (8)0.0386 (8)0.0115 (7)0.0124 (6)0.0030 (6)
Cl60.0462 (8)0.0490 (8)0.0353 (7)0.0161 (7)0.0027 (6)0.0022 (6)
Cl70.0439 (8)0.0490 (8)0.0342 (7)0.0140 (7)0.0074 (6)0.0008 (6)
Cl80.0415 (8)0.0504 (8)0.0335 (7)0.0112 (7)0.0054 (6)0.0005 (6)
O10.0387 (19)0.0242 (17)0.0248 (17)0.0089 (16)0.0023 (14)0.0042 (13)
O20.044 (2)0.0299 (18)0.0251 (18)0.0077 (16)0.0026 (15)0.0090 (14)
O30.050 (2)0.0339 (19)0.0222 (17)0.0120 (17)0.0018 (16)0.0088 (15)
O40.0379 (19)0.0239 (18)0.0266 (17)0.0061 (16)0.0046 (15)0.0053 (14)
O50.0374 (19)0.0285 (18)0.0234 (17)0.0066 (16)0.0012 (15)0.0012 (14)
O60.066 (3)0.054 (2)0.032 (2)0.020 (2)0.0074 (19)0.0110 (18)
O70.118 (4)0.058 (3)0.029 (2)0.039 (3)0.002 (2)0.0134 (19)
O80.037 (2)0.0289 (19)0.0239 (17)0.0030 (16)0.0015 (15)0.0004 (14)
O90.0367 (19)0.0318 (18)0.0250 (17)0.0058 (16)0.0018 (15)0.0071 (14)
O100.0359 (19)0.0341 (19)0.0169 (16)0.0038 (16)0.0029 (14)0.0060 (13)
N10.027 (2)0.029 (2)0.025 (2)0.0014 (18)0.0019 (17)0.0057 (17)
N20.028 (2)0.029 (2)0.031 (2)0.0013 (18)0.0015 (18)0.0129 (18)
N30.031 (2)0.027 (2)0.036 (2)0.0001 (19)0.0029 (19)0.0105 (18)
N40.029 (2)0.022 (2)0.022 (2)0.0008 (17)0.0029 (16)0.0055 (16)
N50.029 (2)0.027 (2)0.025 (2)0.0003 (18)0.0018 (17)0.0083 (17)
N60.027 (2)0.034 (2)0.033 (2)0.0025 (19)0.0043 (18)0.0128 (19)
N70.066 (4)0.053 (3)0.044 (3)0.017 (3)0.005 (3)0.019 (3)
N80.049 (3)0.057 (3)0.044 (3)0.001 (3)0.009 (2)0.019 (2)
C10.022 (2)0.028 (3)0.022 (2)0.003 (2)0.0038 (19)0.002 (2)
C20.032 (3)0.022 (2)0.022 (2)0.005 (2)0.003 (2)0.0085 (19)
C30.028 (3)0.026 (2)0.026 (2)0.001 (2)0.007 (2)0.007 (2)
C40.021 (2)0.023 (2)0.032 (3)0.005 (2)0.004 (2)0.007 (2)
C50.031 (3)0.020 (2)0.024 (2)0.006 (2)0.005 (2)0.0055 (18)
C60.030 (3)0.022 (2)0.024 (2)0.000 (2)0.008 (2)0.0018 (19)
C70.020 (2)0.029 (3)0.027 (2)0.002 (2)0.002 (2)0.011 (2)
C80.024 (2)0.023 (2)0.024 (2)0.001 (2)0.001 (2)0.0022 (19)
C90.035 (3)0.036 (3)0.021 (2)0.002 (2)0.000 (2)0.006 (2)
C100.031 (3)0.022 (2)0.027 (3)0.006 (2)0.000 (2)0.007 (2)
C110.032 (3)0.017 (2)0.029 (3)0.003 (2)0.004 (2)0.0004 (19)
C120.033 (3)0.022 (2)0.029 (3)0.003 (2)0.004 (2)0.004 (2)
C130.035 (3)0.024 (2)0.026 (3)0.003 (2)0.002 (2)0.009 (2)
C140.034 (3)0.029 (3)0.030 (3)0.004 (2)0.006 (2)0.003 (2)
C150.031 (3)0.029 (3)0.020 (2)0.000 (2)0.006 (2)0.003 (2)
C160.042 (3)0.029 (3)0.027 (3)0.000 (2)0.001 (2)0.005 (2)
C170.038 (3)0.032 (3)0.035 (3)0.001 (2)0.005 (2)0.015 (2)
C180.046 (3)0.037 (3)0.046 (3)0.010 (3)0.013 (3)0.019 (3)
C190.040 (3)0.054 (4)0.035 (3)0.018 (3)0.007 (2)0.017 (3)
C200.032 (3)0.058 (4)0.030 (3)0.000 (3)0.002 (2)0.004 (3)
C210.037 (3)0.030 (3)0.027 (3)0.004 (2)0.005 (2)0.002 (2)
C220.038 (3)0.034 (3)0.037 (3)0.003 (2)0.012 (2)0.012 (2)
C230.060 (4)0.059 (4)0.039 (3)0.006 (3)0.009 (3)0.020 (3)
C240.072 (4)0.077 (5)0.044 (4)0.021 (4)0.006 (3)0.041 (3)
C250.068 (4)0.055 (4)0.053 (4)0.021 (3)0.006 (3)0.035 (3)
C260.043 (3)0.030 (3)0.040 (3)0.007 (3)0.002 (2)0.015 (2)
C270.045 (3)0.047 (3)0.040 (3)0.007 (3)0.005 (3)0.017 (3)
C280.044 (4)0.064 (4)0.069 (4)0.002 (3)0.004 (3)0.040 (4)
C290.040 (3)0.039 (3)0.092 (5)0.005 (3)0.013 (4)0.037 (3)
C300.047 (4)0.041 (3)0.066 (4)0.008 (3)0.026 (3)0.017 (3)
C310.038 (3)0.032 (3)0.044 (3)0.001 (2)0.009 (3)0.010 (2)
C320.029 (3)0.026 (3)0.038 (3)0.002 (2)0.007 (2)0.010 (2)
C330.041 (3)0.034 (3)0.058 (4)0.009 (3)0.013 (3)0.023 (3)
C340.031 (3)0.048 (3)0.052 (3)0.011 (3)0.015 (3)0.023 (3)
C350.031 (3)0.038 (3)0.038 (3)0.002 (2)0.013 (2)0.006 (2)
C360.034 (3)0.028 (3)0.028 (3)0.005 (2)0.007 (2)0.008 (2)
C370.032 (3)0.037 (3)0.031 (3)0.001 (2)0.004 (2)0.016 (2)
C380.045 (3)0.065 (4)0.034 (3)0.002 (3)0.012 (3)0.020 (3)
C390.064 (4)0.074 (5)0.062 (4)0.006 (4)0.010 (3)0.047 (4)
C400.082 (5)0.042 (3)0.060 (4)0.008 (3)0.011 (4)0.033 (3)
C410.050 (3)0.031 (3)0.038 (3)0.005 (3)0.000 (3)0.015 (2)
C420.040 (3)0.029 (3)0.043 (3)0.000 (2)0.013 (2)0.008 (2)
C430.038 (3)0.047 (4)0.068 (4)0.000 (3)0.017 (3)0.016 (3)
C440.049 (4)0.041 (4)0.097 (6)0.011 (3)0.011 (4)0.031 (4)
C450.046 (4)0.067 (4)0.069 (5)0.000 (3)0.012 (3)0.038 (4)
C460.049 (4)0.050 (4)0.044 (3)0.002 (3)0.004 (3)0.025 (3)
C470.075 (5)0.063 (5)0.093 (6)0.016 (4)0.001 (5)0.034 (4)
C480.093 (7)0.098 (7)0.114 (8)0.049 (6)0.062 (6)0.072 (6)
C490.158 (10)0.083 (6)0.059 (5)0.076 (7)0.027 (6)0.036 (5)
C500.128 (7)0.054 (4)0.061 (5)0.028 (5)0.020 (5)0.009 (4)
C510.072 (5)0.075 (5)0.054 (4)0.022 (4)0.003 (4)0.027 (4)
C520.054 (4)0.051 (4)0.070 (4)0.006 (3)0.014 (3)0.028 (3)
C530.074 (5)0.078 (5)0.078 (5)0.016 (4)0.026 (4)0.055 (4)
C540.069 (5)0.089 (5)0.046 (4)0.032 (4)0.012 (4)0.031 (4)
C550.047 (4)0.071 (5)0.053 (4)0.008 (3)0.004 (3)0.020 (3)
C560.050 (4)0.061 (4)0.052 (4)0.005 (3)0.012 (3)0.032 (3)
Geometric parameters (Å, º) top
Ni1—O52.065 (3)C19—C201.378 (8)
Ni1—O92.071 (3)C19—H19A0.9300
Ni1—O12.086 (3)C20—C211.380 (7)
Ni1—N12.094 (4)C20—H20A0.9300
Ni1—N32.103 (4)C21—H21A0.9300
Ni1—N22.106 (4)C22—C231.381 (7)
Ni2—O82.067 (3)C22—H22A0.9300
Ni2—O4i2.094 (3)C23—C241.364 (8)
Ni2—O102.095 (3)C23—H23A0.9300
Ni2—N42.098 (4)C24—C251.372 (8)
Ni2—N62.102 (4)C24—H24A0.9300
Ni2—N52.124 (4)C25—C261.360 (7)
Cl1—C31.729 (5)C25—H25A0.9300
Cl2—C41.729 (5)C26—H26A0.9300
Cl3—C71.729 (4)C27—C281.380 (8)
Cl4—C61.732 (5)C27—H27A0.9300
Cl5—C121.734 (5)C28—C291.370 (8)
Cl6—C111.735 (5)C28—H28A0.9300
Cl7—C151.729 (5)C29—C301.362 (8)
Cl8—C141.729 (5)C29—H29A0.9300
O1—C11.255 (5)C30—C311.372 (8)
O2—C11.241 (5)C30—H30A0.9300
O3—C81.232 (5)C31—H31A0.9300
O4—C81.268 (5)C32—C331.380 (7)
O4—Ni2ii2.094 (3)C32—H32A0.9300
O5—C91.255 (5)C33—C341.370 (7)
O6—C91.228 (6)C33—H33A0.9300
O7—C161.217 (6)C34—C351.379 (7)
O8—C161.267 (6)C34—H34A0.9300
O9—H9A0.8500C35—C361.368 (7)
O9—H9B0.8499C35—H35A0.9300
O10—H10A0.8499C36—H36A0.9300
O10—H10B0.8502C37—C381.384 (7)
N1—C211.336 (6)C37—H37A0.9300
N1—C171.342 (6)C38—C391.356 (8)
N2—C221.338 (6)C38—H38A0.9300
N2—C261.340 (6)C39—C401.381 (8)
N3—C311.335 (6)C39—H39A0.9300
N3—C271.334 (6)C40—C411.366 (7)
N4—C321.343 (6)C40—H40A0.9300
N4—C361.343 (6)C41—H41A0.9300
N5—C411.324 (6)C42—C431.368 (8)
N5—C371.332 (6)C42—H42A0.9300
N6—C461.332 (6)C43—C441.372 (9)
N6—C421.345 (6)C43—H43A0.9300
N7—C511.325 (8)C44—C451.368 (8)
N7—C471.331 (8)C44—H44A0.9300
N8—C561.330 (7)C45—C461.384 (8)
N8—C521.335 (7)C45—H45A0.9300
C1—C21.533 (6)C46—H46A0.9300
C2—C71.385 (6)C47—C481.379 (10)
C2—C31.389 (6)C47—H47A0.9300
C3—C41.391 (6)C48—C491.376 (12)
C4—C51.387 (6)C48—H48A0.9300
C5—C61.377 (6)C49—C501.337 (12)
C5—C81.523 (6)C49—H49A0.9300
C6—C71.390 (6)C50—C511.367 (9)
C9—C101.542 (6)C50—H50A0.9300
C10—C111.381 (6)C51—H51A0.9300
C10—C151.389 (6)C52—C531.384 (9)
C11—C121.395 (6)C52—H52A0.9300
C12—C131.379 (6)C53—C541.386 (9)
C13—C141.384 (7)C53—H53A0.9300
C13—C161.539 (6)C54—C551.363 (9)
C14—C151.386 (6)C54—H54A0.9300
C17—C181.369 (7)C55—C561.369 (8)
C17—H17A0.9300C55—H55A0.9300
C18—C191.372 (7)C56—H56A0.9300
C18—H18A0.9300
O5—Ni1—O985.31 (12)C18—C19—C20118.7 (5)
O5—Ni1—O1174.04 (13)C18—C19—H19A120.6
O9—Ni1—O188.76 (12)C20—C19—H19A120.6
O5—Ni1—N188.98 (13)C19—C20—C21118.7 (5)
O9—Ni1—N191.83 (14)C19—C20—H20A120.7
O1—Ni1—N191.79 (13)C21—C20—H20A120.7
O5—Ni1—N391.68 (14)N1—C21—C20123.1 (5)
O9—Ni1—N386.30 (14)N1—C21—H21A118.4
O1—Ni1—N387.36 (14)C20—C21—H21A118.4
N1—Ni1—N3177.96 (15)N2—C22—C23123.6 (5)
O5—Ni1—N2101.70 (13)N2—C22—H22A118.2
O9—Ni1—N2172.48 (13)C23—C22—H22A118.2
O1—Ni1—N284.19 (13)C24—C23—C22118.6 (6)
N1—Ni1—N290.99 (15)C24—C23—H23A120.7
N3—Ni1—N290.76 (15)C22—C23—H23A120.7
O8—Ni2—O4i173.56 (13)C23—C24—C25118.3 (5)
O8—Ni2—O1084.59 (12)C23—C24—H24A120.8
O4i—Ni2—O1089.13 (12)C25—C24—H24A120.8
O8—Ni2—N489.24 (13)C26—C25—C24120.0 (6)
O4i—Ni2—N492.32 (13)C26—C25—H25A120.0
O10—Ni2—N491.11 (13)C24—C25—H25A120.0
O8—Ni2—N690.75 (14)N2—C26—C25122.9 (5)
O4i—Ni2—N687.57 (14)N2—C26—H26A118.5
O10—Ni2—N687.79 (14)C25—C26—H26A118.5
N4—Ni2—N6178.89 (15)N3—C27—C28122.6 (6)
O8—Ni2—N5103.27 (13)N3—C27—H27A118.7
O4i—Ni2—N582.98 (13)C28—C27—H27A118.7
O10—Ni2—N5172.07 (12)C29—C28—C27119.0 (6)
N4—Ni2—N590.03 (15)C29—C28—H28A120.5
N6—Ni2—N591.05 (15)C27—C28—H28A120.5
C1—O1—Ni1132.2 (3)C30—C29—C28119.0 (6)
C8—O4—Ni2ii130.6 (3)C30—C29—H29A120.5
C9—O5—Ni1141.5 (3)C28—C29—H29A120.5
C16—O8—Ni2136.5 (3)C29—C30—C31118.9 (6)
Ni1—O9—H9A114.1C29—C30—H30A120.6
Ni1—O9—H9B126.7C31—C30—H30A120.6
H9A—O9—H9B95.8N3—C31—C30123.3 (5)
Ni2—O10—H10A128.5N3—C31—H31A118.4
Ni2—O10—H10B95.6C30—C31—H31A118.4
H10A—O10—H10B114.5N4—C32—C33122.8 (4)
C21—N1—C17117.2 (4)N4—C32—H32A118.6
C21—N1—Ni1120.1 (3)C33—C32—H32A118.6
C17—N1—Ni1122.7 (3)C34—C33—C32120.1 (5)
C22—N2—C26116.4 (4)C34—C33—H33A119.9
C22—N2—Ni1120.6 (3)C32—C33—H33A119.9
C26—N2—Ni1122.5 (3)C33—C34—C35117.5 (5)
C31—N3—C27117.3 (5)C33—C34—H34A121.3
C31—N3—Ni1120.4 (4)C35—C34—H34A121.3
C27—N3—Ni1122.3 (4)C36—C35—C34119.6 (5)
C32—N4—C36116.4 (4)C36—C35—H35A120.2
C32—N4—Ni2123.4 (3)C34—C35—H35A120.2
C36—N4—Ni2120.1 (3)N4—C36—C35123.6 (5)
C41—N5—C37116.8 (4)N4—C36—H36A118.2
C41—N5—Ni2123.5 (3)C35—C36—H36A118.2
C37—N5—Ni2119.3 (3)N5—C37—C38123.3 (5)
C46—N6—C42116.8 (5)N5—C37—H37A118.4
C46—N6—Ni2122.2 (4)C38—C37—H37A118.4
C42—N6—Ni2121.0 (3)C39—C38—C37118.7 (5)
C51—N7—C47116.7 (6)C39—C38—H38A120.6
C56—N8—C52116.5 (5)C37—C38—H38A120.6
O2—C1—O1129.3 (4)C38—C39—C40118.7 (5)
O2—C1—C2117.0 (4)C38—C39—H39A120.7
O1—C1—C2113.6 (4)C40—C39—H39A120.7
C7—C2—C3118.6 (4)C41—C40—C39118.7 (6)
C7—C2—C1120.9 (4)C41—C40—H40A120.6
C3—C2—C1120.5 (4)C39—C40—H40A120.6
C2—C3—C4121.0 (4)N5—C41—C40123.7 (5)
C2—C3—Cl1118.7 (3)N5—C41—H41A118.1
C4—C3—Cl1120.3 (4)C40—C41—H41A118.1
C5—C4—C3120.1 (4)N6—C42—C43122.9 (5)
C5—C4—Cl2119.7 (3)N6—C42—H42A118.5
C3—C4—Cl2120.2 (4)C43—C42—H42A118.5
C6—C5—C4118.8 (4)C42—C43—C44119.4 (6)
C6—C5—C8120.7 (4)C42—C43—H43A120.3
C4—C5—C8120.5 (4)C44—C43—H43A120.3
C5—C6—C7121.3 (4)C45—C44—C43118.9 (6)
C5—C6—Cl4118.5 (3)C45—C44—H44A120.6
C7—C6—Cl4120.2 (4)C43—C44—H44A120.6
C2—C7—C6120.2 (4)C44—C45—C46118.5 (6)
C2—C7—Cl3119.4 (3)C44—C45—H45A120.8
C6—C7—Cl3120.5 (4)C46—C45—H45A120.8
O3—C8—O4128.4 (4)N6—C46—C45123.5 (6)
O3—C8—C5117.1 (4)N6—C46—H46A118.2
O4—C8—C5114.5 (4)C45—C46—H46A118.2
O6—C9—O5130.0 (4)N7—C47—C48122.4 (8)
O6—C9—C10116.1 (4)N7—C47—H47A118.8
O5—C9—C10113.9 (4)C48—C47—H47A118.8
C11—C10—C15117.3 (4)C49—C48—C47119.0 (8)
C11—C10—C9122.0 (4)C49—C48—H48A120.5
C15—C10—C9120.6 (4)C47—C48—H48A120.5
C10—C11—C12121.5 (4)C50—C49—C48118.8 (8)
C10—C11—Cl6119.0 (3)C50—C49—H49A120.6
C12—C11—Cl6119.5 (4)C48—C49—H49A120.6
C13—C12—C11121.0 (4)C49—C50—C51119.2 (9)
C13—C12—Cl5118.8 (3)C49—C50—H50A120.4
C11—C12—Cl5120.2 (4)C51—C50—H50A120.4
C12—C13—C14117.5 (4)N7—C51—C50124.0 (7)
C12—C13—C16122.2 (4)N7—C51—H51A118.0
C14—C13—C16120.3 (4)C50—C51—H51A118.0
C13—C14—C15121.6 (4)N8—C52—C53123.1 (6)
C13—C14—Cl8118.9 (4)N8—C52—H52A118.5
C15—C14—Cl8119.5 (4)C53—C52—H52A118.5
C14—C15—C10121.0 (4)C52—C53—C54118.6 (6)
C14—C15—Cl7120.3 (4)C52—C53—H53A120.7
C10—C15—Cl7118.7 (3)C54—C53—H53A120.7
O7—C16—O8128.7 (5)C55—C54—C53118.5 (6)
O7—C16—C13117.9 (4)C55—C54—H54A120.7
O8—C16—C13113.4 (4)C53—C54—H54A120.7
N1—C17—C18123.0 (5)C54—C55—C56118.7 (6)
N1—C17—H17A118.5C54—C55—H55A120.6
C18—C17—H17A118.5C56—C55—H55A120.6
C17—C18—C19119.3 (5)N8—C56—C55124.5 (6)
C17—C18—H18A120.4N8—C56—H56A117.8
C19—C18—H18A120.4C55—C56—H56A117.8
O9—Ni1—O1—C113.3 (4)Ni1—O5—C9—O67.9 (10)
N1—Ni1—O1—C178.5 (4)Ni1—O5—C9—C10171.8 (3)
N3—Ni1—O1—C199.7 (4)O6—C9—C10—C1184.6 (6)
N2—Ni1—O1—C1169.3 (4)O5—C9—C10—C1195.2 (6)
O9—Ni1—O5—C9179.4 (6)O6—C9—C10—C1594.4 (6)
N1—Ni1—O5—C987.5 (5)O5—C9—C10—C1585.8 (6)
N3—Ni1—O5—C994.4 (6)C15—C10—C11—C120.9 (7)
N2—Ni1—O5—C93.3 (6)C9—C10—C11—C12178.1 (4)
O10—Ni2—O8—C16170.9 (5)C15—C10—C11—Cl6178.7 (3)
N4—Ni2—O8—C1698.0 (5)C9—C10—C11—Cl62.3 (6)
N6—Ni2—O8—C1683.2 (5)C10—C11—C12—C131.1 (7)
N5—Ni2—O8—C168.1 (5)Cl6—C11—C12—C13178.5 (4)
O5—Ni1—N1—C2152.0 (3)C10—C11—C12—Cl5179.6 (4)
O9—Ni1—N1—C21137.3 (3)Cl6—C11—C12—Cl50.0 (6)
O1—Ni1—N1—C21133.9 (3)C11—C12—C13—C140.0 (7)
N2—Ni1—N1—C2149.6 (3)Cl5—C12—C13—C14178.5 (4)
O5—Ni1—N1—C17126.8 (4)C11—C12—C13—C16177.5 (4)
O9—Ni1—N1—C1741.6 (3)Cl5—C12—C13—C161.0 (6)
O1—Ni1—N1—C1747.3 (4)C12—C13—C14—C151.2 (7)
N2—Ni1—N1—C17131.5 (4)C16—C13—C14—C15178.8 (4)
O5—Ni1—N2—C22143.2 (4)C12—C13—C14—Cl8176.6 (4)
O1—Ni1—N2—C2237.6 (4)C16—C13—C14—Cl81.0 (6)
N1—Ni1—N2—C2254.1 (4)C13—C14—C15—C101.4 (7)
N3—Ni1—N2—C22124.9 (4)Cl8—C14—C15—C10176.4 (4)
O5—Ni1—N2—C2644.9 (4)C13—C14—C15—Cl7178.5 (4)
O1—Ni1—N2—C26134.2 (4)Cl8—C14—C15—Cl73.7 (6)
N1—Ni1—N2—C26134.1 (4)C11—C10—C15—C140.3 (7)
N3—Ni1—N2—C2647.0 (4)C9—C10—C15—C14179.3 (4)
O5—Ni1—N3—C3133.3 (4)C11—C10—C15—Cl7179.6 (4)
O9—Ni1—N3—C3151.9 (4)C9—C10—C15—Cl70.6 (6)
O1—Ni1—N3—C31140.8 (4)Ni2—O8—C16—O71.6 (10)
N2—Ni1—N3—C31135.0 (4)Ni2—O8—C16—C13179.7 (3)
O5—Ni1—N3—C27149.4 (4)C12—C13—C16—O787.4 (7)
O9—Ni1—N3—C27125.5 (4)C14—C13—C16—O790.1 (6)
O1—Ni1—N3—C2736.5 (4)C12—C13—C16—O894.3 (6)
N2—Ni1—N3—C2747.6 (4)C14—C13—C16—O888.2 (6)
O8—Ni2—N4—C32124.6 (4)C21—N1—C17—C180.3 (7)
O4i—Ni2—N4—C3249.2 (4)Ni1—N1—C17—C18178.6 (4)
O10—Ni2—N4—C3240.0 (3)N1—C17—C18—C191.5 (8)
N5—Ni2—N4—C32132.2 (3)C17—C18—C19—C202.0 (8)
O8—Ni2—N4—C3651.2 (3)C18—C19—C20—C211.3 (7)
O4i—Ni2—N4—C36135.1 (3)C17—N1—C21—C200.4 (7)
O10—Ni2—N4—C36135.7 (3)Ni1—N1—C21—C20179.3 (4)
N5—Ni2—N4—C3652.1 (3)C19—C20—C21—N10.1 (8)
O8—Ni2—N5—C4148.2 (4)C26—N2—C22—C232.9 (7)
O4i—Ni2—N5—C41130.3 (4)Ni1—N2—C22—C23169.4 (4)
N4—Ni2—N5—C41137.4 (4)N2—C22—C23—C240.6 (9)
N6—Ni2—N5—C4142.8 (4)C22—C23—C24—C251.2 (9)
O8—Ni2—N5—C37139.9 (3)C23—C24—C25—C260.6 (9)
O4i—Ni2—N5—C3741.7 (3)C22—N2—C26—C253.6 (7)
N4—Ni2—N5—C3750.6 (3)Ni1—N2—C26—C25168.6 (4)
N6—Ni2—N5—C37129.1 (3)C24—C25—C26—N22.0 (9)
O8—Ni2—N6—C46150.5 (4)C31—N3—C27—C280.7 (8)
O4i—Ni2—N6—C4635.8 (4)Ni1—N3—C27—C28176.8 (4)
O10—Ni2—N6—C46125.0 (4)N3—C27—C28—C290.9 (9)
N5—Ni2—N6—C4647.2 (4)C27—C28—C29—C301.1 (8)
O8—Ni2—N6—C4230.5 (4)C28—C29—C30—C311.0 (8)
O4i—Ni2—N6—C42143.3 (4)C27—N3—C31—C300.6 (7)
O10—Ni2—N6—C4254.1 (3)Ni1—N3—C31—C30176.9 (4)
N5—Ni2—N6—C42133.8 (4)C29—C30—C31—N30.8 (8)
Ni1—O1—C1—O21.3 (8)C36—N4—C32—C330.4 (7)
Ni1—O1—C1—C2180.0 (3)Ni2—N4—C32—C33175.4 (4)
O2—C1—C2—C799.7 (5)N4—C32—C33—C340.6 (8)
O1—C1—C2—C779.2 (6)C32—C33—C34—C350.3 (8)
O2—C1—C2—C382.9 (6)C33—C34—C35—C361.3 (8)
O1—C1—C2—C398.1 (5)C32—N4—C36—C350.7 (7)
C7—C2—C3—C42.3 (7)Ni2—N4—C36—C35176.7 (4)
C1—C2—C3—C4179.7 (4)C34—C35—C36—N41.6 (8)
C7—C2—C3—Cl1178.0 (3)C41—N5—C37—C381.5 (7)
C1—C2—C3—Cl10.6 (6)Ni2—N5—C37—C38171.0 (4)
C2—C3—C4—C52.3 (7)N5—C37—C38—C390.5 (8)
Cl1—C3—C4—C5178.0 (4)C37—C38—C39—C401.3 (9)
C2—C3—C4—Cl2178.0 (4)C38—C39—C40—C410.3 (9)
Cl1—C3—C4—Cl21.7 (6)C37—N5—C41—C402.7 (7)
C3—C4—C5—C61.9 (7)Ni2—N5—C41—C40169.5 (4)
Cl2—C4—C5—C6178.3 (4)C39—C40—C41—N51.9 (9)
C3—C4—C5—C8177.1 (4)C46—N6—C42—C431.5 (7)
Cl2—C4—C5—C82.6 (6)Ni2—N6—C42—C43179.4 (4)
C4—C5—C6—C71.7 (7)N6—C42—C43—C440.7 (8)
C8—C5—C6—C7177.4 (4)C42—C43—C44—C450.5 (9)
C4—C5—C6—Cl4179.3 (3)C43—C44—C45—C460.8 (9)
C8—C5—C6—Cl41.6 (6)C42—N6—C46—C451.1 (8)
C3—C2—C7—C62.0 (7)Ni2—N6—C46—C45179.8 (4)
C1—C2—C7—C6179.4 (4)C44—C45—C46—N60.0 (9)
C3—C2—C7—Cl3177.9 (3)C51—N7—C47—C480.1 (10)
C1—C2—C7—Cl30.5 (6)N7—C47—C48—C490.8 (12)
C5—C6—C7—C21.7 (7)C47—C48—C49—C501.0 (12)
Cl4—C6—C7—C2179.3 (4)C48—C49—C50—C510.7 (12)
C5—C6—C7—Cl3178.1 (4)C47—N7—C51—C500.3 (10)
Cl4—C6—C7—Cl30.8 (6)C49—C50—C51—N70.0 (11)
Ni2ii—O4—C8—O33.1 (8)C56—N8—C52—C532.7 (9)
Ni2ii—O4—C8—C5178.7 (3)N8—C52—C53—C540.2 (10)
C6—C5—C8—O380.2 (6)C52—C53—C54—C552.7 (10)
C4—C5—C8—O398.8 (5)C53—C54—C55—C563.0 (10)
C6—C5—C8—O4101.4 (5)C52—N8—C56—C552.4 (9)
C4—C5—C8—O479.5 (6)C54—C55—C56—N80.4 (10)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O20.852.022.751 (4)143
O9—H9B···N70.851.892.699 (6)159
O10—H10A···N8iii0.851.972.783 (6)161
O10—H10B···O3i0.851.832.677 (4)174
Symmetry codes: (i) x1, y1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N
Mr1390.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6148 (6), 17.6879 (10), 21.0617 (10)
α, β, γ (°)68.279 (5), 79.750 (6), 84.853 (6)
V3)2932.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.26 × 0.21 × 0.10
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.688, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26508, 11670, 8092
Rint0.060
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.151, 1.07
No. of reflections11670
No. of parameters757
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O20.852.022.751 (4)143.1
O9—H9B···N70.851.892.699 (6)158.9
O10—H10A···N8i0.851.972.783 (6)160.5
O10—H10B···O3ii0.851.832.677 (4)174.3
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z+1.
 

Acknowledgements

This work was supported by the Center of Analysis and Testing of Jiangnan University and the Research Institute of Element-Organic Chemistry of Suzhou University

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGo, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C. J. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMulder, F. M., Dingemans, T. J., Wagemake, M. & Kearley, G. J. (2005). Chem. Phys. 317, 113–118.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L. Y., Liu, Z. L., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. Commun. 6, 630–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, C. G., Li, S., Zhang, P. P. & Wang, W. X. (2009). Transition Met. Chem. 34, 815–820.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, C.-G., Zhang, J., Hong, J.-Q. & Li, S. (2008). Acta Cryst. E64, m965.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds