organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-({[4-Amino-5-(4-chloro­anilinometh­yl)-4H-1,2,4-triazol-3-yl]sulfan­yl}acet­yl)-3-(4-meth­­oxy­phen­yl)-1,2,3-oxa­diazol-3-ium-5-olate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 October 2010; accepted 9 November 2010; online 13 November 2010)

In the title sydnone compound, C20H18ClN7O4S, the oxadiazole, triazole, chloro-substituted and meth­oxy-substituted phenyl rings are essentially planar, with maximum deviations of 0.007 (3), 0.009 (2), 0.017 (2) and 0.002 (3) Å, respectively. The dihedral angles between the chloro-substituted phenyl ring and the triazole ring, the triazole ring and the oxadiazole ring, and the oxadiazole ring and the methoxy-substituted phenyl ring are 80.02 (13), 85.68 (14) and 51.62 (14)°, respectively. In the crystal, mol­ecules are connected via inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For details and biological applications of sydnones, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Jyothi et al. (2008[Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Kalluraya et al. (2002[Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712-1717.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN7O4S

  • Mr = 487.92

  • Monoclinic, C 2/c

  • a = 20.109 (3) Å

  • b = 5.8952 (8) Å

  • c = 36.369 (5) Å

  • β = 96.076 (3)°

  • V = 4287.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.40 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.883, Tmax = 0.989

  • 8905 measured reflections

  • 4429 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.08

  • 4429 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1N6⋯N4i 0.93 (3) 2.08 (3) 2.947 (3) 155 (2)
N7—H1N7⋯O3ii 0.86 (3) 2.22 (3) 2.990 (3) 150 (3)
N6—H2N6⋯O2iii 0.90 (3) 2.15 (3) 2.983 (3) 153 (2)
C4—H4A⋯O4iv 0.93 2.53 3.337 (3) 145
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2002). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Because of the wide variety of properties displayed by sydnones, we were prompted to synthesize a new S-substituted triazoles containing a sydnone ring. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 3-substituted-4-amino-5-mecapto-1,2,4-triazoles with 3-aryl-4-bromoacetylsydnones yielded S-substituted triazoles derivatives (Jyothi et al., 2008).

In the title compound, (Fig. 1), the rings A (C14–C19), B (N3/N4/N5/C11–C12), C (N1/N2/O1/C7–C8) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 80.02 (13)°, A/C = 53.76 (14)°, A/D = 5.24 (12)°, B/C = 85.68 (14)°, B/D = 85.12 (13)° and C/D = 51.62 (14)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the molecules are connected via intermolecular N6—H1N6···N4, N7—H1N7···O3, N6—H2N6···O2 and C4—H4A···O4 hydrogen bonds to form two-dimensional networks parallel to the ac plane.

Related literature top

For details and biological applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008); Kalluraya et al. (2002). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A catalytic amount of anhydrous sodium acetate was added to solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and 4-amino-5-(p-chlorophenyl) aminomethyl-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol. The solution was stirred at room temperature for 2-3 hours. The solid product which separated was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from a mixture of DMF and ethanol (1:2 v/v) by slow evaporation.

Refinement top

Atoms H1N6 and H2N6 were located in a difference Fourier map and refined freely [N–H = 0.86 (4)–0.92 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) fo methyl H atoms.

Structure description top

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2002). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Because of the wide variety of properties displayed by sydnones, we were prompted to synthesize a new S-substituted triazoles containing a sydnone ring. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 3-substituted-4-amino-5-mecapto-1,2,4-triazoles with 3-aryl-4-bromoacetylsydnones yielded S-substituted triazoles derivatives (Jyothi et al., 2008).

In the title compound, (Fig. 1), the rings A (C14–C19), B (N3/N4/N5/C11–C12), C (N1/N2/O1/C7–C8) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 80.02 (13)°, A/C = 53.76 (14)°, A/D = 5.24 (12)°, B/C = 85.68 (14)°, B/D = 85.12 (13)° and C/D = 51.62 (14)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the molecules are connected via intermolecular N6—H1N6···N4, N7—H1N7···O3, N6—H2N6···O2 and C4—H4A···O4 hydrogen bonds to form two-dimensional networks parallel to the ac plane.

For details and biological applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008); Kalluraya et al. (2002). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) two-dimensional networks parallel to the ac plane.
4-({[4-Amino-5-(4-chloroanilinomethyl)-4H-1,2,4-triazol-3- yl]sulfanyl}acetyl)-3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C20H18ClN7O4SF(000) = 2016
Mr = 487.92Dx = 1.512 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2099 reflections
a = 20.109 (3) Åθ = 3.2–28.1°
b = 5.8952 (8) ŵ = 0.32 mm1
c = 36.369 (5) ÅT = 100 K
β = 96.076 (3)°Plate, yellow
V = 4287.2 (10) Å30.40 × 0.13 × 0.04 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4429 independent reflections
Radiation source: fine-focus sealed tube3255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2525
Tmin = 0.883, Tmax = 0.989k = 77
8905 measured reflectionsl = 3445
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 1.4574P]
where P = (Fo2 + 2Fc2)/3
4429 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H18ClN7O4SV = 4287.2 (10) Å3
Mr = 487.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.109 (3) ŵ = 0.32 mm1
b = 5.8952 (8) ÅT = 100 K
c = 36.369 (5) Å0.40 × 0.13 × 0.04 mm
β = 96.076 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3255 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.989Rint = 0.037
8905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
4429 reflectionsΔρmin = 0.35 e Å3
311 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49815 (4)0.56466 (15)0.451234 (19)0.0463 (2)
S10.41984 (3)0.08369 (12)0.219978 (18)0.02935 (18)
O10.47596 (10)0.9335 (3)0.13290 (6)0.0453 (6)
O20.52595 (10)0.7437 (4)0.18278 (6)0.0484 (6)
O30.35348 (8)0.3013 (3)0.15066 (5)0.0322 (4)
O40.17845 (9)0.4831 (3)0.01486 (5)0.0349 (5)
N10.42244 (13)0.9057 (4)0.10652 (7)0.0404 (6)
N20.39537 (10)0.7121 (4)0.11473 (6)0.0280 (5)
N30.34474 (11)0.4519 (4)0.23488 (6)0.0266 (5)
N40.30066 (10)0.5097 (4)0.26070 (5)0.0251 (5)
N50.33599 (9)0.1657 (3)0.27278 (5)0.0198 (4)
N60.34284 (12)0.0438 (4)0.29125 (6)0.0254 (5)
H1N60.3216 (13)0.156 (5)0.2766 (7)0.023 (7)*
N70.26410 (11)0.5056 (4)0.33948 (6)0.0288 (5)
H1N70.2383 (17)0.621 (6)0.3370 (9)0.056 (11)*
C10.28726 (14)0.8080 (5)0.08290 (7)0.0332 (6)
H1A0.29030.94720.09500.040*
C20.23260 (13)0.7609 (5)0.05768 (7)0.0299 (6)
H2A0.19860.86690.05260.036*
C30.22975 (13)0.5494 (5)0.04003 (7)0.0282 (6)
C40.28062 (13)0.3919 (4)0.04767 (6)0.0260 (6)
H4A0.27790.25220.03570.031*
C50.33487 (13)0.4398 (4)0.07267 (6)0.0241 (5)
H5A0.36910.33470.07770.029*
C60.33718 (13)0.6490 (4)0.09012 (7)0.0262 (6)
C70.48223 (14)0.7465 (5)0.15758 (8)0.0374 (7)
C80.42757 (12)0.6031 (5)0.14469 (7)0.0290 (6)
C90.40503 (12)0.3965 (5)0.16192 (7)0.0271 (6)
C100.45183 (12)0.3144 (5)0.19467 (7)0.0335 (6)
H10A0.46180.44060.21150.040*
H10B0.49350.26680.18590.040*
C110.36414 (11)0.2442 (4)0.24269 (6)0.0237 (5)
C120.29609 (11)0.3372 (4)0.28250 (6)0.0206 (5)
C130.25244 (12)0.3233 (4)0.31341 (7)0.0260 (6)
H13A0.20590.32590.30310.031*
H13B0.26060.18010.32620.031*
C140.32161 (12)0.5235 (4)0.36322 (6)0.0214 (5)
C150.36909 (12)0.3484 (4)0.36751 (6)0.0218 (5)
H15A0.36400.22100.35240.026*
C160.42330 (12)0.3642 (5)0.39407 (6)0.0263 (6)
H16A0.45440.24710.39690.032*
C170.43145 (13)0.5526 (5)0.41640 (7)0.0285 (6)
C180.38641 (14)0.7303 (5)0.41185 (7)0.0315 (6)
H18A0.39270.85890.42660.038*
C190.33229 (13)0.7165 (4)0.38544 (7)0.0300 (6)
H19A0.30240.83700.38230.036*
C200.12571 (15)0.6392 (6)0.00442 (8)0.0426 (8)
H20A0.09410.57080.01390.064*
H20B0.14380.77370.00560.064*
H20C0.10370.67830.02570.064*
H2N60.3874 (13)0.066 (4)0.2955 (7)0.018 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0354 (4)0.0690 (6)0.0335 (4)0.0181 (4)0.0004 (3)0.0100 (4)
S10.0262 (3)0.0321 (4)0.0290 (3)0.0061 (3)0.0005 (3)0.0056 (3)
O10.0459 (12)0.0328 (12)0.0607 (14)0.0217 (10)0.0229 (11)0.0162 (11)
O20.0299 (11)0.0598 (15)0.0570 (13)0.0188 (11)0.0115 (10)0.0279 (12)
O30.0285 (10)0.0403 (11)0.0269 (9)0.0176 (9)0.0010 (7)0.0009 (8)
O40.0395 (11)0.0384 (11)0.0266 (9)0.0133 (9)0.0019 (8)0.0056 (9)
N10.0466 (15)0.0270 (13)0.0518 (15)0.0160 (12)0.0246 (12)0.0100 (12)
N20.0323 (12)0.0208 (11)0.0340 (11)0.0107 (10)0.0181 (9)0.0083 (10)
N30.0317 (12)0.0215 (11)0.0256 (11)0.0039 (10)0.0010 (9)0.0010 (9)
N40.0309 (11)0.0180 (10)0.0252 (10)0.0023 (9)0.0022 (9)0.0002 (9)
N50.0198 (10)0.0152 (10)0.0228 (9)0.0014 (8)0.0047 (8)0.0006 (8)
N60.0299 (12)0.0157 (11)0.0287 (11)0.0060 (10)0.0061 (9)0.0027 (9)
N70.0310 (12)0.0256 (12)0.0297 (12)0.0120 (11)0.0030 (9)0.0034 (10)
C10.0452 (16)0.0207 (13)0.0380 (14)0.0020 (13)0.0245 (13)0.0018 (12)
C20.0354 (14)0.0233 (13)0.0335 (13)0.0080 (12)0.0155 (12)0.0069 (12)
C30.0364 (14)0.0297 (14)0.0203 (12)0.0029 (12)0.0119 (11)0.0058 (11)
C40.0393 (15)0.0182 (12)0.0217 (12)0.0041 (11)0.0083 (10)0.0005 (10)
C50.0325 (13)0.0168 (12)0.0244 (12)0.0007 (11)0.0089 (10)0.0021 (10)
C60.0316 (14)0.0214 (13)0.0275 (12)0.0037 (11)0.0124 (10)0.0015 (11)
C70.0308 (14)0.0361 (16)0.0482 (16)0.0155 (13)0.0181 (13)0.0211 (14)
C80.0248 (13)0.0319 (15)0.0318 (13)0.0120 (12)0.0105 (11)0.0107 (12)
C90.0238 (13)0.0324 (15)0.0261 (12)0.0059 (12)0.0077 (10)0.0105 (11)
C100.0226 (13)0.0460 (17)0.0317 (13)0.0079 (13)0.0017 (11)0.0106 (13)
C110.0225 (12)0.0251 (13)0.0218 (12)0.0035 (11)0.0055 (10)0.0030 (10)
C120.0199 (12)0.0161 (12)0.0240 (12)0.0011 (10)0.0061 (9)0.0018 (10)
C130.0232 (12)0.0245 (13)0.0294 (13)0.0033 (11)0.0020 (10)0.0007 (11)
C140.0259 (12)0.0189 (12)0.0206 (11)0.0010 (10)0.0080 (9)0.0006 (10)
C150.0250 (12)0.0194 (12)0.0217 (11)0.0010 (10)0.0055 (9)0.0023 (10)
C160.0231 (12)0.0306 (14)0.0261 (12)0.0013 (11)0.0074 (10)0.0004 (11)
C170.0272 (13)0.0364 (16)0.0226 (12)0.0116 (12)0.0060 (10)0.0025 (11)
C180.0445 (16)0.0230 (14)0.0290 (13)0.0083 (13)0.0139 (12)0.0085 (11)
C190.0414 (15)0.0210 (13)0.0299 (13)0.0047 (12)0.0141 (12)0.0015 (11)
C200.0397 (16)0.0508 (19)0.0381 (16)0.0198 (15)0.0080 (13)0.0162 (15)
Geometric parameters (Å, º) top
Cl1—C171.746 (3)C2—H2A0.9300
S1—C111.740 (2)C3—C41.388 (4)
S1—C101.799 (3)C4—C51.374 (4)
O1—N11.373 (3)C4—H4A0.9300
O1—C71.418 (4)C5—C61.385 (3)
O2—C71.201 (3)C5—H5A0.9300
O3—C91.211 (3)C7—C81.426 (4)
O4—C31.362 (3)C8—C91.463 (4)
O4—C201.425 (3)C9—C101.517 (4)
N1—N21.312 (3)C10—H10A0.9700
N2—C81.368 (3)C10—H10B0.9700
N2—C61.445 (3)C12—C131.500 (3)
N3—C111.307 (3)C13—H13A0.9700
N3—N41.400 (3)C13—H13B0.9700
N4—C121.298 (3)C14—C191.398 (3)
N5—C121.361 (3)C14—C151.404 (3)
N5—C111.365 (3)C15—C161.381 (3)
N5—N61.406 (3)C15—H15A0.9300
N6—H1N60.92 (3)C16—C171.375 (4)
N6—H2N60.90 (3)C16—H16A0.9300
N7—C141.372 (3)C17—C181.383 (4)
N7—C131.436 (3)C18—C191.376 (4)
N7—H1N70.86 (4)C18—H18A0.9300
C1—C61.378 (4)C19—H19A0.9300
C1—C21.383 (4)C20—H20A0.9600
C1—H1A0.9300C20—H20B0.9600
C2—C31.401 (4)C20—H20C0.9600
C11—S1—C1096.59 (13)C8—C9—C10114.0 (2)
N1—O1—C7111.1 (2)C9—C10—S1114.66 (18)
C3—O4—C20118.9 (2)C9—C10—H10A108.6
N2—N1—O1105.0 (2)S1—C10—H10A108.6
N1—N2—C8114.6 (2)C9—C10—H10B108.6
N1—N2—C6114.3 (2)S1—C10—H10B108.6
C8—N2—C6131.0 (2)H10A—C10—H10B107.6
C11—N3—N4106.1 (2)N3—C11—N5110.6 (2)
C12—N4—N3108.1 (2)N3—C11—S1126.8 (2)
C12—N5—C11105.2 (2)N5—C11—S1122.58 (19)
C12—N5—N6124.0 (2)N4—C12—N5110.0 (2)
C11—N5—N6130.8 (2)N4—C12—C13125.8 (2)
N5—N6—H1N6109.7 (16)N5—C12—C13124.2 (2)
N5—N6—H2N6104.7 (16)N7—C13—C12112.7 (2)
H1N6—N6—H2N6113 (2)N7—C13—H13A109.0
C14—N7—C13122.7 (2)C12—C13—H13A109.0
C14—N7—H1N7118 (2)N7—C13—H13B109.0
C13—N7—H1N7118 (2)C12—C13—H13B109.0
C6—C1—C2120.1 (2)H13A—C13—H13B107.8
C6—C1—H1A120.0N7—C14—C19119.6 (2)
C2—C1—H1A120.0N7—C14—C15122.1 (2)
C1—C2—C3118.3 (2)C19—C14—C15118.2 (2)
C1—C2—H2A120.9C16—C15—C14120.3 (2)
C3—C2—H2A120.9C16—C15—H15A119.8
O4—C3—C4115.6 (2)C14—C15—H15A119.8
O4—C3—C2123.7 (2)C17—C16—C15120.2 (2)
C4—C3—C2120.7 (2)C17—C16—H16A119.9
C5—C4—C3120.8 (2)C15—C16—H16A119.9
C5—C4—H4A119.6C16—C17—C18120.4 (2)
C3—C4—H4A119.6C16—C17—Cl1119.7 (2)
C4—C5—C6118.2 (2)C18—C17—Cl1119.9 (2)
C4—C5—H5A120.9C19—C18—C17119.9 (2)
C6—C5—H5A120.9C19—C18—H18A120.1
C1—C6—C5122.0 (2)C17—C18—H18A120.1
C1—C6—N2117.9 (2)C18—C19—C14120.9 (2)
C5—C6—N2119.9 (2)C18—C19—H19A119.6
O2—C7—O1120.2 (3)C14—C19—H19A119.6
O2—C7—C8136.0 (3)O4—C20—H20A109.5
O1—C7—C8103.8 (2)O4—C20—H20B109.5
N2—C8—C7105.5 (2)H20A—C20—H20B109.5
N2—C8—C9126.2 (2)O4—C20—H20C109.5
C7—C8—C9128.0 (3)H20A—C20—H20C109.5
O3—C9—C8122.3 (2)H20B—C20—H20C109.5
O3—C9—C10123.7 (2)
C7—O1—N1—N21.3 (3)C7—C8—C9—C108.4 (4)
O1—N1—N2—C81.1 (3)O3—C9—C10—S18.0 (3)
O1—N1—N2—C6179.88 (19)C8—C9—C10—S1172.08 (18)
C11—N3—N4—C120.3 (3)C11—S1—C10—C975.5 (2)
C6—C1—C2—C30.0 (4)N4—N3—C11—N51.3 (3)
C20—O4—C3—C4177.4 (2)N4—N3—C11—S1179.44 (17)
C20—O4—C3—C22.8 (3)C12—N5—C11—N31.7 (3)
C1—C2—C3—O4179.7 (2)N6—N5—C11—N3179.1 (2)
C1—C2—C3—C40.1 (4)C12—N5—C11—S1179.98 (16)
O4—C3—C4—C5179.9 (2)N6—N5—C11—S10.9 (3)
C2—C3—C4—C50.0 (4)C10—S1—C11—N313.6 (2)
C3—C4—C5—C60.3 (4)C10—S1—C11—N5164.31 (19)
C2—C1—C6—C50.2 (4)N3—N4—C12—N50.8 (3)
C2—C1—C6—N2175.8 (2)N3—N4—C12—C13177.9 (2)
C4—C5—C6—C10.4 (4)C11—N5—C12—N41.5 (3)
C4—C5—C6—N2175.9 (2)N6—N5—C12—N4179.3 (2)
N1—N2—C6—C150.1 (3)C11—N5—C12—C13177.2 (2)
C8—N2—C6—C1131.1 (3)N6—N5—C12—C132.0 (3)
N1—N2—C6—C5125.5 (2)C14—N7—C13—C1270.2 (3)
C8—N2—C6—C553.3 (3)N4—C12—C13—N755.2 (3)
N1—O1—C7—O2179.0 (2)N5—C12—C13—N7126.3 (2)
N1—O1—C7—C81.0 (3)C13—N7—C14—C19174.1 (2)
N1—N2—C8—C70.5 (3)C13—N7—C14—C159.4 (4)
C6—N2—C8—C7179.3 (2)N7—C14—C15—C16174.1 (2)
N1—N2—C8—C9174.0 (2)C19—C14—C15—C162.5 (3)
C6—N2—C8—C97.1 (4)C14—C15—C16—C170.4 (4)
O2—C7—C8—N2177.8 (3)C15—C16—C17—C181.6 (4)
O1—C7—C8—N20.3 (3)C15—C16—C17—Cl1177.12 (18)
O2—C7—C8—C94.4 (5)C16—C17—C18—C191.5 (4)
O1—C7—C8—C9173.1 (2)Cl1—C17—C18—C19177.23 (19)
N2—C8—C9—O30.4 (4)C17—C18—C19—C140.6 (4)
C7—C8—C9—O3171.7 (3)N7—C14—C19—C18174.1 (2)
N2—C8—C9—C10179.5 (2)C15—C14—C19—C182.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···N4i0.93 (3)2.08 (3)2.947 (3)155 (2)
N7—H1N7···O3ii0.86 (3)2.22 (3)2.990 (3)150 (3)
N6—H2N6···O2iii0.90 (3)2.15 (3)2.983 (3)153 (2)
C4—H4A···O4iv0.932.533.337 (3)145
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y1, z+1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H18ClN7O4S
Mr487.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.109 (3), 5.8952 (8), 36.369 (5)
β (°) 96.076 (3)
V3)4287.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.883, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8905, 4429, 3255
Rint0.037
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.08
No. of reflections4429
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···N4i0.93 (3)2.08 (3)2.947 (3)155 (2)
N7—H1N7···O3ii0.86 (3)2.22 (3)2.990 (3)150 (3)
N6—H2N6···O2iii0.90 (3)2.15 (3)2.983 (3)153 (2)
C4—H4A···O4iv0.932.533.337 (3)145
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y1, z+1/2; (iv) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds