metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(1-methyl-1H-imidazole-κN3)bis­­(nitrato-κO)copper(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 29 October 2010; accepted 16 November 2010; online 24 November 2010)

The title complex mol­ecule, [Cu(NO3)2(C4H6N2)2(H2O)], has crystallographically imposed twofold symmetry. The CuII atom displays a distorted square-pyramidal CuN2O3 coordination geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds between the coordinated water mol­ecule and the nitrate anions form chains parallel to the c axis.

Related literature

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C4H6N2)2(H2O)]

  • Mr = 369.78

  • Monoclinic, C 2/c

  • a = 11.864 (2) Å

  • b = 12.242 (2) Å

  • c = 10.509 (2) Å

  • β = 93.98 (3)°

  • V = 1522.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.640, Tmax = 0.740

  • 7712 measured reflections

  • 1742 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.14

  • 1742 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3i 0.85 2.48 2.941 (3) 115
O1—H1C⋯O3ii 0.85 2.48 2.941 (3) 115
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dielectric constant measurements of compounds as a function of temperature is the basic method to find potential ferroelectric phase change materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K (m.p. 393–381 K). In this report the crystal structure of the title compound is reported.

The title complex molecules has crystallographically imposed twofold symmetry (Fig. 1). The copper(II) metal centre is five-coordinated in a distorted square-planar geometry by two nitrogen atoms from two 1-methyl-1H-imidazole ligands and two oxygen atoms from two NO3- defining the basal plane, and a coordinated water at the apex. The Cu–N and Cu–O bond lengths are not exceptional. In the crystal packing, intermolecular O—H···O hydrogen bonds (Table 1) between the coordinate water molecules and nitrate ions form chains along the c axis (Fig. 2).

Related literature top

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

An aqueous solution of 1-methyl-1H-imidazole (1.64 g, 20 mmol) and H2SO4 (0.98 g, 10 mmol) was treated with CuSO4 (2.5 g, 10 mmol). After the mixture was churned for a few minutes, Ba(NO2)2 (5 g, 20 mmol) was added to give a blue solution. Slow evaporation of the resulting solution yielded blue crystals after a few days.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 Uiso(C, O) or 1.5 Uiso(C) for methyl H atoms.

Structure description top

Dielectric constant measurements of compounds as a function of temperature is the basic method to find potential ferroelectric phase change materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K (m.p. 393–381 K). In this report the crystal structure of the title compound is reported.

The title complex molecules has crystallographically imposed twofold symmetry (Fig. 1). The copper(II) metal centre is five-coordinated in a distorted square-planar geometry by two nitrogen atoms from two 1-methyl-1H-imidazole ligands and two oxygen atoms from two NO3- defining the basal plane, and a coordinated water at the apex. The Cu–N and Cu–O bond lengths are not exceptional. In the crystal packing, intermolecular O—H···O hydrogen bonds (Table 1) between the coordinate water molecules and nitrate ions form chains along the c axis (Fig. 2).

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) 1-x, y. 1/2-z.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the stacking of the molecules along the c axis. Dashed lines indicate hydrogen bonds.
Aquabis(1-methyl-1H-imidazole-κN3)bis(nitrato- κO)copper(II) top
Crystal data top
[Cu(NO3)2(C4H6N2)2(H2O)]F(000) = 756
Mr = 369.78Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3705 reflections
a = 11.864 (2) Åθ = 3.0–27.5°
b = 12.242 (2) ŵ = 1.48 mm1
c = 10.509 (2) ÅT = 293 K
β = 93.98 (3)°Block, blue
V = 1522.6 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1742 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1515
Tmin = 0.640, Tmax = 0.740k = 1515
7712 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.8389P]
where P = (Fo2 + 2Fc2)/3
1742 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(NO3)2(C4H6N2)2(H2O)]V = 1522.6 (5) Å3
Mr = 369.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.864 (2) ŵ = 1.48 mm1
b = 12.242 (2) ÅT = 293 K
c = 10.509 (2) Å0.30 × 0.25 × 0.20 mm
β = 93.98 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1742 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1608 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.740Rint = 0.031
7712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.14Δρmax = 0.45 e Å3
1742 reflectionsΔρmin = 0.37 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3268 (2)0.4147 (2)0.0458 (2)0.0496 (5)
H1A0.37990.44950.00120.060*
C20.2500 (2)0.3234 (2)0.1908 (2)0.0505 (5)
H20.24020.28300.26410.061*
C30.1669 (2)0.3521 (2)0.1028 (3)0.0543 (6)
H3A0.09050.33540.10420.065*
C40.1617 (3)0.4595 (3)0.1034 (3)0.0765 (9)
H4A0.11080.51570.07970.115*
H4B0.12030.40440.15190.115*
H4C0.21780.49060.15410.115*
Cu10.50000.36656 (3)0.25000.03738 (14)
N10.35145 (16)0.36341 (14)0.15477 (17)0.0427 (4)
N20.21687 (16)0.41042 (16)0.01160 (19)0.0493 (4)
N30.58487 (15)0.27708 (16)0.03266 (17)0.0462 (4)
O10.50000.5610 (2)0.25000.0700 (8)
H1B0.52670.59580.18880.084*0.50
H1C0.47330.59580.31120.084*0.50
O20.57326 (14)0.37175 (12)0.08207 (15)0.0473 (4)
O30.60599 (18)0.27180 (18)0.08000 (16)0.0715 (6)
O40.57213 (17)0.19602 (15)0.09852 (17)0.0650 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0505 (12)0.0489 (12)0.0495 (12)0.0099 (10)0.0038 (10)0.0080 (10)
C20.0491 (12)0.0617 (14)0.0414 (11)0.0145 (11)0.0085 (9)0.0018 (10)
C30.0433 (12)0.0639 (15)0.0559 (14)0.0101 (10)0.0051 (10)0.0042 (11)
C40.0762 (19)0.0697 (18)0.080 (2)0.0042 (15)0.0213 (16)0.0228 (15)
Cu10.0392 (2)0.0413 (2)0.0326 (2)0.0000.00887 (13)0.000
N10.0436 (9)0.0461 (10)0.0391 (9)0.0060 (7)0.0072 (7)0.0004 (7)
N20.0522 (11)0.0427 (10)0.0520 (11)0.0038 (8)0.0038 (9)0.0025 (8)
N30.0437 (9)0.0580 (11)0.0371 (9)0.0025 (8)0.0052 (7)0.0051 (8)
O10.096 (2)0.0467 (14)0.0651 (16)0.0000.0127 (15)0.000
O20.0532 (9)0.0481 (9)0.0422 (8)0.0034 (6)0.0152 (7)0.0010 (6)
O30.0866 (14)0.0926 (15)0.0375 (9)0.0187 (11)0.0187 (8)0.0079 (9)
O40.0866 (13)0.0497 (10)0.0582 (10)0.0069 (9)0.0013 (9)0.0026 (8)
Geometric parameters (Å, º) top
C1—N11.321 (3)C4—H4C0.9600
C1—N21.330 (3)Cu1—N1i1.9658 (19)
C1—H1A0.9300Cu1—N11.9658 (19)
C2—C31.350 (3)Cu1—O2i2.0216 (16)
C2—N11.377 (3)Cu1—O22.0216 (16)
C2—H20.9300Cu1—O12.381 (3)
C3—N21.363 (3)N3—O41.225 (3)
C3—H3A0.9300N3—O31.229 (2)
C4—N21.463 (3)N3—O21.281 (2)
C4—H4A0.9600O1—H1B0.8500
C4—H4B0.9600O1—H1C0.8500
N1—C1—N2111.7 (2)N1—Cu1—O288.90 (8)
N1—C1—H1A124.2O2i—Cu1—O2176.40 (9)
N2—C1—H1A124.2N1i—Cu1—O191.12 (5)
C3—C2—N1109.3 (2)N1—Cu1—O191.12 (5)
C3—C2—H2125.4O2i—Cu1—O188.20 (4)
N1—C2—H2125.4O2—Cu1—O188.20 (4)
C2—C3—N2106.6 (2)C1—N1—C2105.21 (19)
C2—C3—H3A126.7C1—N1—Cu1124.65 (16)
N2—C3—H3A126.7C2—N1—Cu1129.59 (15)
N2—C4—H4A109.5C1—N2—C3107.3 (2)
N2—C4—H4B109.5C1—N2—C4125.5 (2)
H4A—C4—H4B109.5C3—N2—C4127.2 (2)
N2—C4—H4C109.5O4—N3—O3122.9 (2)
H4A—C4—H4C109.5O4—N3—O2118.86 (17)
H4B—C4—H4C109.5O3—N3—O2118.2 (2)
N1i—Cu1—N1177.76 (10)Cu1—O1—H1B120.0
N1i—Cu1—O2i88.90 (8)Cu1—O1—H1C120.0
N1—Cu1—O2i91.17 (8)H1B—O1—H1C120.0
N1i—Cu1—O291.17 (8)N3—O2—Cu1112.97 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3ii0.852.482.941 (3)115
O1—H1C···O3iii0.852.482.941 (3)115
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C4H6N2)2(H2O)]
Mr369.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.864 (2), 12.242 (2), 10.509 (2)
β (°) 93.98 (3)
V3)1522.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.640, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
7712, 1742, 1608
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.14
No. of reflections1742
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.852.482.941 (3)114.7
O1—H1C···O3ii0.852.482.941 (3)114.7
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds