organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-benzyl-5-{[(iso­propyl­amino)(3-nitro­phen­­oxy)methyl­­idene]amino}-1H-1,2,3-triazole-4-carboxyl­ate

aInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, People's Republic of China, and bCenter of Oncology, People's Hospital affiliated with Hubei Medical University, Shi Yan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 1 November 2010; accepted 11 November 2010; online 17 November 2010)

In the title compound, C22H24N6O5, the triazole ring is essentially planar with a maximum deviation of 0.005 (2) Å and forms dihedral angles of 79.78 (11) and 86.22 (11)° with the phenyl and benzene rings, respectively. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N, C—H⋯O and C—H⋯π inter­actions into a three-dimensional network.

Related literature

For the biological activity of 8-aza­guanine derivatives, see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.]); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]). For related structures, see: Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Li et al. (2004[Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11-14.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.]); Xiao & Shi (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Zeng et al. (2006[Zeng, X.-H., Wang, H.-M., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o1888-o1890.], 2009[Zeng, X.-H., Liu, X.-L., Deng, S.-H., Chen, P. & Wang, H.-M. (2009). Acta Cryst. E65, o2583-o2584.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N6O5

  • Mr = 452.47

  • Monoclinic, P 21 /n

  • a = 11.5019 (7) Å

  • b = 14.5616 (9) Å

  • c = 14.1758 (9) Å

  • β = 106.384 (1)°

  • V = 2277.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.990

  • 16973 measured reflections

  • 5620 independent reflections

  • 4276 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.170

  • S = 1.11

  • 5620 reflections

  • 304 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the triazole and C1–C6 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N3i 0.83 (2) 2.50 (2) 3.230 (2) 148 (2)
C3—H3⋯O1ii 0.93 2.42 3.303 (3) 158
C21—H21⋯Cg1ii 0.93 2.98 3.829 (3) 153
C14—H14⋯Cg2iii 0.98 2.78 3.625 (2) 145
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975). In recent years, our group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained as an intermediate product from β-ethoxycarbonyl iminophosphorane with an alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazole ring are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006; Xiao & Shi, 2007; Chen & Shi, 2006), the triazole ring system is essentially planar, with a maximum displacement of 0.005 (2) Å for atom N3, and forms dihedral angles of 79.78 (11) and 86.22 (11)° with the phenyl and benzene rings, respectively. In the crystal packing, molecules are linked by intermolecular N—H···N, C—H···O and C—H···π hydrogen bonding interactions (Table 1) in a three-dimensional network.

Related literature top

For the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Chen & Shi (2006); Ferguson et al. (1998); Li et al. (2004); Maldonado et al. (2006); Wang et al. (2006); Xiao & Shi (2007); Zeng et al. (2006, 2009); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Zhao, Xie et al. (2005).

Experimental top

To a solution of carbodiimide prepared according to Wang et al. (2006) in a mixed solvent (CH2Cl2/CH3CN, 1:4 v/v, 15 ml) was added 3-nitrobenzene (3 mmol), and the reaction mixture was stirred for 6 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound in 92% yield (m.p. 437 K). Elemental analysis: calculated for C22H24N6O5: C, 58.40; H, 5.35; N, 18.57%. Found: C, 58.08; H, 5.49; N, 18.29%. Crystals suitable for X-ray diffraction study were obtained by recrystallization from EtOH and dichloromethane (1:3 v/v) at room temperature.

Refinement top

The H atom attached to atom N5 was located in a difference Fourier map and allowed to ride on their parent atom with a restraint of N—H = 0.83 Å and Uiso(H) = 1.2Ueq(N). Other H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975). In recent years, our group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained as an intermediate product from β-ethoxycarbonyl iminophosphorane with an alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazole ring are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006; Xiao & Shi, 2007; Chen & Shi, 2006), the triazole ring system is essentially planar, with a maximum displacement of 0.005 (2) Å for atom N3, and forms dihedral angles of 79.78 (11) and 86.22 (11)° with the phenyl and benzene rings, respectively. In the crystal packing, molecules are linked by intermolecular N—H···N, C—H···O and C—H···π hydrogen bonding interactions (Table 1) in a three-dimensional network.

For the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Chen & Shi (2006); Ferguson et al. (1998); Li et al. (2004); Maldonado et al. (2006); Wang et al. (2006); Xiao & Shi (2007); Zeng et al. (2006, 2009); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Zhao, Xie et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size.
Ethyl 1-benzyl-5-{[(isopropylamino)(3-nitrophenoxy)methylidene]amino}- 1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C22H24N6O5F(000) = 952
Mr = 452.47Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4925 reflections
a = 11.5019 (7) Åθ = 2.3–27.5°
b = 14.5616 (9) ŵ = 0.10 mm1
c = 14.1758 (9) ÅT = 298 K
β = 106.384 (1)°Block, colourless
V = 2277.8 (2) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5620 independent reflections
Radiation source: fine-focus sealed tube4276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.985, Tmax = 0.990k = 1911
16973 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.3769P]
where P = (Fo2 + 2Fc2)/3
5620 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H24N6O5V = 2277.8 (2) Å3
Mr = 452.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5019 (7) ŵ = 0.10 mm1
b = 14.5616 (9) ÅT = 298 K
c = 14.1758 (9) Å0.16 × 0.12 × 0.10 mm
β = 106.384 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4276 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.069
16973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.25 e Å3
5620 reflectionsΔρmin = 0.19 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83494 (16)0.73129 (13)0.46761 (13)0.0443 (4)
C20.92546 (19)0.79033 (16)0.45953 (18)0.0607 (6)
H20.90530.84480.42450.073*
C31.0448 (2)0.7693 (2)0.5027 (2)0.0778 (8)
H31.10510.80960.49690.093*
C41.0756 (2)0.6893 (3)0.5545 (2)0.0880 (10)
H41.15650.67610.58550.106*
C50.9865 (3)0.6285 (2)0.56061 (19)0.0858 (9)
H51.00730.57310.59360.103*
C60.8662 (2)0.64966 (17)0.51778 (17)0.0634 (6)
H60.80610.60880.52270.076*
C70.70362 (17)0.75548 (14)0.42216 (15)0.0496 (5)
H7A0.68920.76430.35200.060*
H7B0.65310.70500.43180.060*
C80.67486 (14)0.92697 (13)0.43699 (12)0.0386 (4)
C90.64906 (14)0.97754 (13)0.51172 (12)0.0374 (4)
C100.65826 (15)1.07626 (14)0.52721 (13)0.0428 (4)
C110.6438 (2)1.19830 (17)0.63312 (18)0.0666 (6)
H11A0.58761.23470.58320.080*
H11B0.72561.21780.63690.080*
C120.6194 (3)1.2108 (2)0.7301 (2)0.0843 (8)
H12A0.53981.18840.72640.126*
H12B0.62441.27490.74680.126*
H12C0.67841.17730.77950.126*
C130.65271 (15)1.00782 (13)0.29254 (12)0.0405 (4)
C140.48968 (17)1.11872 (14)0.21120 (13)0.0473 (5)
H140.52741.11870.15720.057*
C150.35540 (19)1.09763 (18)0.16922 (17)0.0655 (6)
H15A0.34571.03710.14130.098*
H15B0.31941.14170.11910.098*
H15C0.31641.10080.22070.098*
C160.5115 (3)1.21091 (17)0.26153 (18)0.0714 (7)
H16A0.47591.21160.31520.107*
H16B0.47541.25820.21530.107*
H16C0.59711.22160.28610.107*
C170.82682 (16)1.01845 (14)0.23484 (13)0.0435 (4)
C180.85824 (16)0.97580 (13)0.15946 (13)0.0432 (4)
H180.79970.95530.10380.052*
C190.98042 (18)0.96439 (14)0.16946 (15)0.0496 (5)
C201.06905 (19)0.99366 (19)0.25005 (19)0.0682 (7)
H201.15050.98450.25490.082*
C211.0339 (2)1.0371 (2)0.32389 (19)0.0785 (8)
H211.09261.05800.37920.094*
C220.9133 (2)1.04989 (19)0.31693 (16)0.0652 (6)
H220.89031.07940.36700.078*
N10.66986 (13)0.83894 (11)0.46539 (11)0.0430 (4)
N20.64102 (15)0.83418 (12)0.55231 (12)0.0498 (4)
N30.62788 (13)0.91804 (12)0.57907 (11)0.0447 (4)
N40.70987 (13)0.94745 (12)0.35461 (11)0.0455 (4)
N50.54469 (13)1.04458 (12)0.28047 (11)0.0439 (4)
H5A0.5090 (19)1.0317 (14)0.3220 (16)0.053*
N61.0155 (2)0.91968 (15)0.08856 (18)0.0698 (6)
O10.69213 (14)1.12893 (11)0.47476 (11)0.0593 (4)
O20.62878 (12)1.10169 (9)0.60849 (10)0.0500 (3)
O30.70407 (11)1.03569 (10)0.22136 (9)0.0528 (4)
O40.9375 (2)0.89508 (16)0.01765 (16)0.1013 (7)
O51.1227 (2)0.91031 (17)0.09688 (19)0.1151 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (10)0.0477 (11)0.0431 (9)0.0052 (8)0.0210 (8)0.0076 (8)
C20.0551 (12)0.0505 (13)0.0834 (15)0.0011 (10)0.0306 (11)0.0126 (11)
C30.0489 (12)0.0810 (19)0.108 (2)0.0053 (12)0.0295 (13)0.0411 (17)
C40.0548 (14)0.125 (3)0.0771 (17)0.0327 (17)0.0069 (12)0.0258 (18)
C50.088 (2)0.101 (2)0.0679 (16)0.0427 (18)0.0212 (14)0.0184 (15)
C60.0686 (14)0.0688 (16)0.0606 (13)0.0095 (12)0.0308 (11)0.0101 (11)
C70.0496 (10)0.0482 (12)0.0541 (11)0.0008 (9)0.0196 (9)0.0052 (9)
C80.0280 (7)0.0500 (11)0.0404 (9)0.0051 (7)0.0140 (6)0.0050 (8)
C90.0305 (7)0.0485 (11)0.0368 (8)0.0005 (7)0.0152 (6)0.0024 (8)
C100.0324 (8)0.0556 (12)0.0417 (9)0.0059 (8)0.0126 (7)0.0004 (9)
C110.0732 (15)0.0536 (14)0.0767 (15)0.0157 (11)0.0271 (12)0.0179 (12)
C120.098 (2)0.0805 (19)0.0757 (17)0.0005 (15)0.0265 (14)0.0294 (15)
C130.0398 (9)0.0514 (11)0.0351 (8)0.0012 (8)0.0184 (7)0.0005 (8)
C140.0497 (10)0.0560 (12)0.0424 (9)0.0108 (9)0.0232 (8)0.0099 (9)
C150.0512 (12)0.0804 (17)0.0640 (13)0.0159 (11)0.0150 (10)0.0107 (12)
C160.0987 (18)0.0556 (14)0.0640 (14)0.0020 (13)0.0295 (13)0.0087 (12)
C170.0412 (9)0.0518 (11)0.0438 (9)0.0010 (8)0.0222 (7)0.0068 (8)
C180.0454 (9)0.0456 (11)0.0429 (9)0.0027 (8)0.0197 (8)0.0027 (8)
C190.0514 (11)0.0474 (12)0.0607 (12)0.0034 (9)0.0334 (9)0.0061 (9)
C200.0402 (10)0.0885 (18)0.0812 (16)0.0018 (11)0.0255 (11)0.0057 (14)
C210.0529 (13)0.112 (2)0.0677 (15)0.0206 (13)0.0130 (11)0.0204 (15)
C220.0605 (13)0.0871 (18)0.0546 (12)0.0113 (12)0.0270 (10)0.0182 (12)
N10.0407 (8)0.0483 (10)0.0453 (8)0.0047 (7)0.0209 (6)0.0040 (7)
N20.0539 (9)0.0551 (11)0.0489 (9)0.0017 (8)0.0280 (7)0.0075 (8)
N30.0471 (8)0.0511 (10)0.0423 (8)0.0000 (7)0.0228 (7)0.0038 (7)
N40.0443 (8)0.0578 (10)0.0419 (8)0.0127 (7)0.0242 (6)0.0081 (7)
N50.0410 (8)0.0572 (10)0.0401 (8)0.0081 (7)0.0224 (6)0.0109 (7)
N60.0799 (14)0.0630 (13)0.0853 (15)0.0147 (11)0.0538 (12)0.0007 (11)
O10.0667 (9)0.0590 (9)0.0594 (8)0.0195 (7)0.0296 (7)0.0017 (7)
O20.0562 (8)0.0491 (8)0.0505 (7)0.0073 (6)0.0244 (6)0.0071 (6)
O30.0456 (7)0.0770 (10)0.0447 (7)0.0127 (7)0.0271 (6)0.0163 (7)
O40.1143 (17)0.1171 (18)0.0855 (13)0.0095 (13)0.0492 (13)0.0371 (13)
O50.0924 (14)0.129 (2)0.156 (2)0.0250 (13)0.0866 (15)0.0155 (16)
Geometric parameters (Å, º) top
C1—C21.380 (3)C13—N51.319 (2)
C1—C61.380 (3)C13—O31.367 (2)
C1—C71.507 (3)C14—N51.476 (2)
C2—C31.371 (3)C14—C161.508 (3)
C2—H20.9300C14—C151.522 (3)
C3—C41.370 (4)C14—H140.9800
C3—H30.9300C15—H15A0.9600
C4—C51.375 (5)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.379 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—N11.462 (2)C17—C181.370 (3)
C7—H7A0.9700C17—C221.378 (3)
C7—H7B0.9700C17—O31.393 (2)
C8—N11.350 (2)C18—C191.382 (3)
C8—N41.371 (2)C18—H180.9300
C8—C91.389 (2)C19—C201.367 (3)
C9—N31.361 (2)C19—N61.471 (3)
C9—C101.454 (3)C20—C211.377 (3)
C10—O11.207 (2)C20—H200.9300
C10—O21.342 (2)C21—C221.376 (3)
C11—O21.448 (3)C21—H210.9300
C11—C121.489 (3)C22—H220.9300
C11—H11A0.9700N1—N21.365 (2)
C11—H11B0.9700N2—N31.300 (2)
C12—H12A0.9600N5—H5A0.83 (2)
C12—H12B0.9600N6—O41.198 (3)
C12—H12C0.9600N6—O51.212 (3)
C13—N41.286 (2)
C2—C1—C6119.1 (2)N5—C14—C15108.05 (16)
C2—C1—C7120.50 (19)C16—C14—C15112.33 (19)
C6—C1—C7120.38 (19)N5—C14—H14108.6
C3—C2—C1120.5 (2)C16—C14—H14108.6
C3—C2—H2119.7C15—C14—H14108.6
C1—C2—H2119.7C14—C15—H15A109.5
C4—C3—C2120.3 (3)C14—C15—H15B109.5
C4—C3—H3119.9H15A—C15—H15B109.5
C2—C3—H3119.9C14—C15—H15C109.5
C3—C4—C5119.8 (2)H15A—C15—H15C109.5
C3—C4—H4120.1H15B—C15—H15C109.5
C5—C4—H4120.1C14—C16—H16A109.5
C4—C5—C6120.1 (3)C14—C16—H16B109.5
C4—C5—H5120.0H16A—C16—H16B109.5
C6—C5—H5120.0C14—C16—H16C109.5
C5—C6—C1120.2 (2)H16A—C16—H16C109.5
C5—C6—H6119.9H16B—C16—H16C109.5
C1—C6—H6119.9C18—C17—C22121.54 (18)
N1—C7—C1111.57 (16)C18—C17—O3117.06 (16)
N1—C7—H7A109.3C22—C17—O3121.18 (17)
C1—C7—H7A109.3C17—C18—C19117.32 (18)
N1—C7—H7B109.3C17—C18—H18121.3
C1—C7—H7B109.3C19—C18—H18121.3
H7A—C7—H7B108.0C20—C19—C18123.04 (19)
N1—C8—N4120.53 (16)C20—C19—N6119.04 (19)
N1—C8—C9103.88 (14)C18—C19—N6117.92 (19)
N4—C8—C9135.35 (18)C19—C20—C21117.96 (19)
N3—C9—C8108.45 (16)C19—C20—H20121.0
N3—C9—C10122.91 (15)C21—C20—H20121.0
C8—C9—C10128.12 (16)C22—C21—C20120.9 (2)
O1—C10—O2123.88 (19)C22—C21—H21119.5
O1—C10—C9123.91 (17)C20—C21—H21119.5
O2—C10—C9112.17 (15)C21—C22—C17119.2 (2)
O2—C11—C12107.5 (2)C21—C22—H22120.4
O2—C11—H11A110.2C17—C22—H22120.4
C12—C11—H11A110.2C8—N1—N2111.03 (15)
O2—C11—H11B110.2C8—N1—C7128.74 (15)
C12—C11—H11B110.2N2—N1—C7119.81 (16)
H11A—C11—H11B108.5N3—N2—N1107.07 (15)
C11—C12—H12A109.5N2—N3—C9109.55 (14)
C11—C12—H12B109.5C13—N4—C8121.01 (14)
H12A—C12—H12B109.5C13—N5—C14126.48 (15)
C11—C12—H12C109.5C13—N5—H5A117.0 (15)
H12A—C12—H12C109.5C14—N5—H5A115.6 (15)
H12B—C12—H12C109.5O4—N6—O5123.3 (2)
N4—C13—N5130.36 (16)O4—N6—C19118.8 (2)
N4—C13—O3117.65 (15)O5—N6—C19118.0 (2)
N5—C13—O3111.79 (15)C10—O2—C11115.68 (16)
N5—C14—C16110.70 (16)C13—O3—C17118.53 (14)
C6—C1—C2—C31.6 (3)C9—C8—N1—N20.76 (18)
C7—C1—C2—C3178.52 (19)N4—C8—N1—C73.4 (3)
C1—C2—C3—C40.0 (4)C9—C8—N1—C7171.70 (16)
C2—C3—C4—C52.0 (4)C1—C7—N1—C889.8 (2)
C3—C4—C5—C62.4 (4)C1—C7—N1—N282.1 (2)
C4—C5—C6—C10.8 (4)C8—N1—N2—N30.05 (19)
C2—C1—C6—C51.1 (3)C7—N1—N2—N3173.18 (15)
C7—C1—C6—C5179.0 (2)N1—N2—N3—C90.72 (19)
C2—C1—C7—N162.2 (2)C8—C9—N3—N21.21 (19)
C6—C1—C7—N1117.9 (2)C10—C9—N3—N2171.13 (16)
N1—C8—C9—N31.17 (17)N5—C13—N4—C816.3 (3)
N4—C8—C9—N3175.21 (18)O3—C13—N4—C8169.37 (17)
N1—C8—C9—C10170.66 (17)N1—C8—N4—C13136.47 (19)
N4—C8—C9—C103.4 (3)C9—C8—N4—C1350.3 (3)
N3—C9—C10—O1170.10 (17)N4—C13—N5—C14175.4 (2)
C8—C9—C10—O10.7 (3)O3—C13—N5—C1410.0 (3)
N3—C9—C10—O27.7 (2)C16—C14—N5—C1394.9 (2)
C8—C9—C10—O2178.49 (15)C15—C14—N5—C13141.7 (2)
C22—C17—C18—C190.8 (3)C20—C19—N6—O4179.2 (2)
O3—C17—C18—C19175.51 (16)C18—C19—N6—O40.0 (3)
C17—C18—C19—C200.1 (3)C20—C19—N6—O50.2 (3)
C17—C18—C19—N6179.29 (18)C18—C19—N6—O5179.4 (2)
C18—C19—C20—C210.5 (4)O1—C10—O2—C112.0 (3)
N6—C19—C20—C21178.6 (2)C9—C10—O2—C11175.81 (16)
C19—C20—C21—C220.5 (4)C12—C11—O2—C10174.08 (18)
C20—C21—C22—C170.2 (4)N4—C13—O3—C1717.6 (3)
C18—C17—C22—C210.8 (4)N5—C13—O3—C17166.98 (17)
O3—C17—C22—C21175.3 (2)C18—C17—O3—C13128.60 (19)
N4—C8—N1—N2175.89 (14)C22—C17—O3—C1356.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the triazole and C1–C6 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5A···N3i0.83 (2)2.50 (2)3.230 (2)148 (2)
C3—H3···O1ii0.932.423.303 (3)158
C21—H21···Cg1ii0.932.983.829 (3)153
C14—H14···Cg2iii0.982.783.625 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H24N6O5
Mr452.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.5019 (7), 14.5616 (9), 14.1758 (9)
β (°) 106.384 (1)
V3)2277.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16973, 5620, 4276
Rint0.069
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.170, 1.11
No. of reflections5620
No. of parameters304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the triazole and C1–C6 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5A···N3i0.83 (2)2.50 (2)3.230 (2)148 (2)
C3—H3···O1ii0.932.423.303 (3)157.7
C21—H21···Cg1ii0.932.983.829 (3)153
C14—H14···Cg2iii0.982.783.625 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant No. B200624004, B20092412) and the Shiyan Municipal Science and Technology Bureau (grant No. 20061835).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269–272.  CrossRef CAS Google Scholar
First citationLi, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14.  Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Liu, X.-L., Deng, S.-H., Chen, P. & Wang, H.-M. (2009). Acta Cryst. E65, o2583–o2584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Wang, H.-M., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o1888–o1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds