organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Meth­­oxy-N′-(4-nitro­benzyl­­idene)benzohydrazide methanol monosolvate

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 5 November 2010; accepted 13 November 2010; online 20 November 2010)

The hydrazone mol­ecule of the title compound, C15H13N3O4·CH4O, is nearly planar, with a dihedral angle between the two benzene rings of 1.2 (4)°. The mol­ecule exists in a trans configuration with respect to the central methyl­idene unit. In the crystal, the benzohydrazide and methanol mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun, Patil, Jebas et al., 2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]; Fun, Patil, Rao et al., 2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]; Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4·CH4O

  • Mr = 331.33

  • Monoclinic, P 21 /n

  • a = 6.6482 (14) Å

  • b = 17.730 (3) Å

  • c = 13.898 (2) Å

  • β = 95.004 (3)°

  • V = 1631.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.980, Tmax = 0.983

  • 12876 measured reflections

  • 3466 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.204

  • S = 0.94

  • 3466 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3 0.82 2.03 2.812 (4) 159
O5—H5⋯N2 0.82 2.61 3.194 (4) 129
N3—H3A⋯O5i 0.90 (1) 2.02 (2) 2.900 (4) 166 (4)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban & Li, 2008a,b; Li & Ban, 2009a,b). Herein the crystal structure of the title new compound is reported.

The asymmetric unit of the title compound consists of a hydrazone molecule and a methanol molecule (Fig. 1). The hydrazone molecule is nearly planar, the dihedral angle between the two benzene rings being 1.2 (4)°. The molecule exists in a trans configuration with respect to the central methylidene unit. In the crystal structure, the hydrazone molecules and the methanol molecules are linked through intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 4-methoxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

Atom H3A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å and Uiso fixed at 0.08 Å2. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O and methyl C).

Structure description top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban & Li, 2008a,b; Li & Ban, 2009a,b). Herein the crystal structure of the title new compound is reported.

The asymmetric unit of the title compound consists of a hydrazone molecule and a methanol molecule (Fig. 1). The hydrazone molecule is nearly planar, the dihedral angle between the two benzene rings being 1.2 (4)°. The molecule exists in a trans configuration with respect to the central methylidene unit. In the crystal structure, the hydrazone molecules and the methanol molecules are linked through intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al. (2008); Ejsmont et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
(E)-4-Methoxy-N'-(4-nitrobenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C15H13N3O4·CH4OF(000) = 696
Mr = 331.33Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 794 reflections
a = 6.6482 (14) Åθ = 2.7–26.5°
b = 17.730 (3) ŵ = 0.10 mm1
c = 13.898 (2) ÅT = 298 K
β = 95.004 (3)°Block, colourless
V = 1631.9 (5) Å30.20 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3466 independent reflections
Radiation source: fine-focus sealed tube1184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 88
Tmin = 0.980, Tmax = 0.983k = 2222
12876 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0757P)2]
where P = (Fo2 + 2Fc2)/3
3466 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C15H13N3O4·CH4OV = 1631.9 (5) Å3
Mr = 331.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6482 (14) ŵ = 0.10 mm1
b = 17.730 (3) ÅT = 298 K
c = 13.898 (2) Å0.20 × 0.17 × 0.17 mm
β = 95.004 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3466 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1184 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.115
12876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0811 restraint
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.23 e Å3
3466 reflectionsΔρmin = 0.27 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4536 (7)0.3135 (2)0.1424 (3)0.0634 (12)
N20.1193 (5)0.0260 (2)0.1132 (2)0.0453 (9)
N30.0063 (5)0.0908 (2)0.1112 (3)0.0460 (9)
O10.3670 (6)0.3698 (2)0.1665 (3)0.0923 (13)
O20.6283 (6)0.3132 (2)0.1217 (3)0.0930 (13)
O30.2843 (4)0.15868 (16)0.0864 (2)0.0650 (10)
O40.3188 (4)0.43167 (16)0.0795 (2)0.0709 (10)
O50.5933 (4)0.05685 (17)0.1482 (3)0.0642 (10)
H50.48980.07670.12370.096*
C10.1378 (6)0.1068 (2)0.1293 (3)0.0424 (11)
C20.3344 (6)0.1112 (2)0.1018 (3)0.0529 (12)
H20.39640.06820.08010.063*
C30.4373 (6)0.1786 (3)0.1064 (3)0.0549 (13)
H30.56800.18170.08760.066*
C40.3437 (7)0.2407 (2)0.1391 (3)0.0493 (12)
C50.1521 (7)0.2403 (3)0.1657 (3)0.0586 (13)
H5A0.09220.28400.18660.070*
C60.0480 (6)0.1719 (3)0.1607 (3)0.0563 (13)
H60.08340.16990.17860.068*
C70.0276 (6)0.0354 (3)0.1262 (3)0.0495 (12)
H70.11000.03500.13380.059*
C80.1041 (7)0.1569 (2)0.0971 (3)0.0461 (11)
C90.0195 (6)0.2263 (2)0.0959 (3)0.0449 (11)
C100.2157 (6)0.2311 (2)0.1201 (3)0.0508 (12)
H100.27850.18770.14030.061*
C110.3223 (6)0.2981 (2)0.1153 (3)0.0535 (12)
H110.45510.29980.13140.064*
C120.2287 (7)0.3619 (2)0.0864 (3)0.0540 (12)
C130.0345 (7)0.3593 (3)0.0605 (4)0.0829 (18)
H130.02770.40280.04020.100*
C140.0666 (7)0.2920 (3)0.0649 (4)0.0745 (16)
H140.19770.29040.04650.089*
C150.5263 (8)0.4384 (3)0.0967 (4)0.0833 (17)
H15A0.60780.41150.04770.125*
H15B0.56420.49070.09510.125*
H15C0.54670.41770.15890.125*
C160.5721 (7)0.0414 (3)0.2467 (4)0.0823 (17)
H16A0.61810.00890.26170.123*
H16B0.43270.04590.25880.123*
H16C0.65120.07670.28630.123*
H3A0.128 (2)0.087 (2)0.116 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.077 (3)0.054 (3)0.060 (3)0.021 (3)0.006 (2)0.000 (2)
N20.041 (2)0.038 (2)0.056 (2)0.0098 (19)0.0024 (17)0.0028 (18)
N30.030 (2)0.039 (2)0.069 (3)0.0102 (19)0.0049 (19)0.0039 (19)
O10.117 (3)0.047 (2)0.115 (3)0.022 (2)0.025 (2)0.015 (2)
O20.078 (3)0.077 (3)0.128 (3)0.043 (2)0.031 (2)0.021 (2)
O30.0322 (17)0.053 (2)0.111 (3)0.0070 (15)0.0143 (17)0.0145 (18)
O40.056 (2)0.0407 (19)0.115 (3)0.0141 (17)0.0002 (19)0.0034 (19)
O50.0343 (18)0.056 (2)0.102 (3)0.0096 (16)0.0027 (17)0.017 (2)
C10.037 (3)0.040 (3)0.049 (3)0.002 (2)0.004 (2)0.001 (2)
C20.050 (3)0.036 (3)0.073 (3)0.004 (2)0.013 (2)0.000 (2)
C30.037 (3)0.050 (3)0.077 (4)0.005 (2)0.006 (2)0.002 (3)
C40.058 (3)0.042 (3)0.048 (3)0.017 (2)0.003 (2)0.003 (2)
C50.061 (3)0.044 (3)0.073 (3)0.002 (3)0.017 (3)0.008 (2)
C60.048 (3)0.052 (3)0.070 (4)0.007 (3)0.017 (2)0.002 (3)
C70.034 (2)0.051 (3)0.063 (3)0.007 (2)0.004 (2)0.002 (2)
C80.042 (3)0.044 (3)0.053 (3)0.007 (2)0.001 (2)0.009 (2)
C90.035 (3)0.044 (3)0.056 (3)0.001 (2)0.001 (2)0.002 (2)
C100.052 (3)0.031 (3)0.071 (3)0.003 (2)0.010 (2)0.007 (2)
C110.049 (3)0.039 (3)0.074 (3)0.008 (2)0.013 (2)0.009 (2)
C120.059 (3)0.034 (3)0.067 (3)0.013 (2)0.005 (3)0.002 (2)
C130.051 (3)0.047 (3)0.152 (5)0.005 (3)0.020 (3)0.015 (3)
C140.037 (3)0.057 (3)0.131 (5)0.003 (3)0.012 (3)0.020 (3)
C150.091 (4)0.057 (3)0.106 (4)0.036 (3)0.029 (3)0.009 (3)
C160.069 (4)0.082 (4)0.094 (5)0.006 (3)0.009 (3)0.002 (3)
Geometric parameters (Å, º) top
N1—O11.214 (4)C5—H5A0.9300
N1—O21.221 (5)C6—H60.9300
N1—C41.482 (5)C7—H70.9300
N2—C71.269 (5)C8—C91.479 (5)
N2—N31.372 (4)C9—C101.377 (5)
N3—C81.363 (5)C9—C141.383 (5)
N3—H3A0.902 (10)C10—C111.383 (5)
O3—C81.221 (4)C10—H100.9300
O4—C121.374 (5)C11—C121.367 (5)
O4—C151.426 (5)C11—H110.9300
O5—C161.415 (5)C12—C131.371 (6)
O5—H50.8200C13—C141.369 (6)
C1—C61.386 (5)C13—H130.9300
C1—C21.395 (5)C14—H140.9300
C1—C71.461 (5)C15—H15A0.9600
C2—C31.376 (5)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.362 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.357 (5)C16—H16C0.9600
C5—C61.395 (5)
O1—N1—O2123.5 (4)N3—C8—C9116.5 (4)
O1—N1—C4118.7 (4)C10—C9—C14116.8 (4)
O2—N1—C4117.7 (5)C10—C9—C8125.8 (4)
C7—N2—N3116.9 (3)C14—C9—C8117.4 (4)
C8—N3—N2117.2 (3)C9—C10—C11122.2 (4)
C8—N3—H3A124 (3)C9—C10—H10118.9
N2—N3—H3A119 (3)C11—C10—H10118.9
C12—O4—C15119.1 (4)C12—C11—C10118.7 (4)
C16—O5—H5109.5C12—C11—H11120.7
C6—C1—C2118.6 (4)C10—C11—H11120.6
C6—C1—C7120.1 (4)C11—C12—C13120.9 (4)
C2—C1—C7121.3 (4)C11—C12—O4123.9 (4)
C3—C2—C1120.6 (4)C13—C12—O4115.2 (4)
C3—C2—H2119.7C14—C13—C12119.2 (5)
C1—C2—H2119.7C14—C13—H13120.4
C4—C3—C2118.5 (4)C12—C13—H13120.4
C4—C3—H3120.7C13—C14—C9122.2 (4)
C2—C3—H3120.7C13—C14—H14118.9
C5—C4—C3123.6 (4)C9—C14—H14118.9
C5—C4—N1118.0 (4)O4—C15—H15A109.5
C3—C4—N1118.4 (4)O4—C15—H15B109.5
C4—C5—C6117.7 (4)H15A—C15—H15B109.5
C4—C5—H5A121.2O4—C15—H15C109.5
C6—C5—H5A121.2H15A—C15—H15C109.5
C1—C6—C5120.9 (4)H15B—C15—H15C109.5
C1—C6—H6119.5O5—C16—H16A109.5
C5—C6—H6119.5O5—C16—H16B109.5
N2—C7—C1120.1 (4)H16A—C16—H16B109.5
N2—C7—H7120.0O5—C16—H16C109.5
C1—C7—H7120.0H16A—C16—H16C109.5
O3—C8—N3121.7 (4)H16B—C16—H16C109.5
O3—C8—C9121.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.822.032.812 (4)159
O5—H5···N20.822.613.194 (4)129
N3—H3A···O5i0.90 (1)2.02 (2)2.900 (4)166 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4·CH4O
Mr331.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.6482 (14), 17.730 (3), 13.898 (2)
β (°) 95.004 (3)
V3)1631.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12876, 3466, 1184
Rint0.115
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.204, 0.94
No. of reflections3466
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.822.032.812 (4)159.2
O5—H5···N20.822.613.194 (4)128.9
N3—H3A···O5i0.902 (10)2.018 (15)2.900 (4)166 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The author acknowledges financial support by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds