organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(p-Anis­yl)sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 November 2010; accepted 16 November 2010; online 20 November 2010)

In the title sydnone compound [systematic name: 3-(4-meth­oxy­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate], C9H8N2O3, the essentially planar oxadiazole ring [maximum deviation = 0.005 (1) Å] is inclined at a dihedral angle of 30.32 (8)° with respect to the benzene ring. In the crystal, adjacent mol­ecules are inter­connected by inter­molecular C—H⋯O hydrogen bonds into sheets lying parallel to (100). Weak inter­molecular ππ inter­actions [centroid–centroid distance = 3.5812 (8) Å] further stabilize the crystal packing.

Related literature

For general background to and applications of the title sydnone compound, see: Hegde et al. (2008[Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]); Kalluraya et al. (2002[Kalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. Sect. B, 41, 1712-1717.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For closely related sydnone structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225-o1226.],b[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1251-o1252.],c[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1303.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O3

  • Mr = 192.17

  • Orthorhombic, P 21 21 21

  • a = 7.0505 (2) Å

  • b = 9.8220 (3) Å

  • c = 12.0934 (3) Å

  • V = 837.47 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.56 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.984

  • 7384 measured reflections

  • 1760 independent reflections

  • 1577 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.06

  • 1760 reflections

  • 159 parameters

  • All H-atom parameters refined

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 1.00 (2) 2.59 (2) 3.5441 (19) 159.1 (15)
C7—H7A⋯O3ii 0.98 (2) 2.42 (2) 3.3814 (18) 165.7 (17)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activity displayed by some of them (Rai et al., 2008). Sydnone derivatives were found to exhibit promising anti-microbial properties (Hegde et al., 2008). Sydnones are synthesized by the cyclodehydration of N-nitroso-N-substituted amino acids using acetic anhydride. The sydnones unsubstituted in the 4-position readily undergo typical electrophilic substitution reaction namely formylation (Kalluraya & Rahiman, 1997) and acetylation (Kalluraya et al., 2002).

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole ring with atom sequence C7/C8/O1/N1/N2 is essentially planar, with a maximum deviation of 0.005 (1) Å at atom O1. The whole molecule is not planar, as indicated by the dihedral angle formed between the 1,2,3-oxadiazole and phenyl rings of 30.32 (8)°. Comparing with those previously reported structures with substitution at the 4-position of the sydnone moiety (Goh et al., 2010a,c), the exocyclic C8—O2 bond length [1.2174 (8) Å] is longer than the respective values observed [1.193 (3) and 1.2089 (9) Å]. All other geometric parameters agree well with those observed in closely related sydnone structures (Goh et al., 2010a,b,c).

In the crystal packing, intermolecular C1—H1A···O2 and C7—H7A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-dimensional sheets lying parallel to the bc plane (Fig. 2). The crystal packing is further stabilized by weak intermolecular ππ interactions [Cg1···Cg2 = 3.5812 (8) Å; symmetry code: x-1/2, -y+3/2, -z+1] involving the 1,2,3-oxadiazole and phenyl rings.

Related literature top

For general background to and applications of the title sydnone compound, see: Hegde et al. (2008); Kalluraya & Rahiman (1997); Kalluraya et al. (2002); Rai et al. (2008). For closely related sydnone structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

N-Nitroso-p-methoxyanilinoacetic acid (0.01 mol) was heated with acetic acid anhydride (0.5 mol) on a water bath for 2–3 h. The reaction mixture was kept aside at room temperature for overnight. It was then poured into ice-cold water. The obtained solid was dried and crystallized from benzene. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

All H atoms were located from difference Fourier map and allowed to refine freely with range of C—H = 0.95 (2) – 1.00 (2) Å. In the absence of significant anomalous dispersion, 1266 Friedel pairs were merged in the final refinement.

Structure description top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activity displayed by some of them (Rai et al., 2008). Sydnone derivatives were found to exhibit promising anti-microbial properties (Hegde et al., 2008). Sydnones are synthesized by the cyclodehydration of N-nitroso-N-substituted amino acids using acetic anhydride. The sydnones unsubstituted in the 4-position readily undergo typical electrophilic substitution reaction namely formylation (Kalluraya & Rahiman, 1997) and acetylation (Kalluraya et al., 2002).

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole ring with atom sequence C7/C8/O1/N1/N2 is essentially planar, with a maximum deviation of 0.005 (1) Å at atom O1. The whole molecule is not planar, as indicated by the dihedral angle formed between the 1,2,3-oxadiazole and phenyl rings of 30.32 (8)°. Comparing with those previously reported structures with substitution at the 4-position of the sydnone moiety (Goh et al., 2010a,c), the exocyclic C8—O2 bond length [1.2174 (8) Å] is longer than the respective values observed [1.193 (3) and 1.2089 (9) Å]. All other geometric parameters agree well with those observed in closely related sydnone structures (Goh et al., 2010a,b,c).

In the crystal packing, intermolecular C1—H1A···O2 and C7—H7A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-dimensional sheets lying parallel to the bc plane (Fig. 2). The crystal packing is further stabilized by weak intermolecular ππ interactions [Cg1···Cg2 = 3.5812 (8) Å; symmetry code: x-1/2, -y+3/2, -z+1] involving the 1,2,3-oxadiazole and phenyl rings.

For general background to and applications of the title sydnone compound, see: Hegde et al. (2008); Kalluraya & Rahiman (1997); Kalluraya et al. (2002); Rai et al. (2008). For closely related sydnone structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title sydnone compound, showing 50 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis, showing a two-dimensional sheet parallel to the bc plane. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C9H8N2O3F(000) = 400
Mr = 192.17Dx = 1.524 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2851 reflections
a = 7.0505 (2) Åθ = 3.4–32.4°
b = 9.8220 (3) ŵ = 0.12 mm1
c = 12.0934 (3) ÅT = 100 K
V = 837.47 (4) Å3Needle, yellow
Z = 40.56 × 0.15 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1760 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 32.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.938, Tmax = 0.984k = 1414
7384 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
1760 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H8N2O3V = 837.47 (4) Å3
Mr = 192.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0505 (2) ŵ = 0.12 mm1
b = 9.8220 (3) ÅT = 100 K
c = 12.0934 (3) Å0.56 × 0.15 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1577 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.984Rint = 0.031
7384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100All H-atom parameters refined
S = 1.06Δρmax = 0.32 e Å3
1760 reflectionsΔρmin = 0.26 e Å3
159 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08268 (18)0.95246 (11)0.72517 (9)0.0204 (2)
O20.15734 (19)0.83477 (13)0.88211 (9)0.0252 (3)
O30.12932 (18)0.57288 (10)0.18145 (8)0.0199 (2)
N10.0695 (2)0.92968 (13)0.61277 (11)0.0199 (3)
N20.11891 (19)0.80122 (12)0.60181 (10)0.0152 (2)
C10.1632 (2)0.82919 (14)0.40336 (11)0.0157 (2)
C20.1665 (2)0.77417 (15)0.29712 (11)0.0158 (3)
C30.1284 (2)0.63583 (15)0.28173 (12)0.0160 (3)
C40.0868 (2)0.55302 (15)0.37253 (13)0.0179 (3)
C50.0829 (2)0.60641 (15)0.47811 (12)0.0165 (3)
C60.1211 (2)0.74504 (16)0.49222 (12)0.0145 (2)
C70.1622 (2)0.73661 (15)0.69641 (12)0.0173 (3)
C80.1394 (2)0.83234 (16)0.78201 (12)0.0186 (3)
C90.1403 (3)0.65840 (16)0.08473 (12)0.0205 (3)
H1A0.192 (3)0.928 (2)0.4147 (15)0.019 (5)*
H2A0.194 (3)0.831 (2)0.2340 (16)0.024 (5)*
H4A0.070 (3)0.457 (2)0.3623 (16)0.025 (5)*
H5A0.047 (3)0.5524 (19)0.5411 (15)0.015 (5)*
H7A0.203 (3)0.641 (2)0.6995 (17)0.026 (5)*
H9A0.124 (3)0.603 (2)0.0190 (16)0.020 (5)*
H9B0.040 (3)0.723 (2)0.0852 (16)0.023 (5)*
H9C0.262 (4)0.708 (3)0.0800 (19)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (5)0.0180 (5)0.0179 (5)0.0014 (5)0.0003 (5)0.0028 (4)
O20.0316 (6)0.0267 (5)0.0172 (5)0.0033 (6)0.0014 (5)0.0011 (4)
O30.0290 (6)0.0155 (5)0.0151 (5)0.0016 (4)0.0015 (4)0.0013 (3)
N10.0258 (6)0.0151 (5)0.0188 (6)0.0035 (5)0.0003 (5)0.0016 (4)
N20.0152 (5)0.0141 (5)0.0163 (5)0.0003 (4)0.0002 (4)0.0006 (4)
C10.0168 (6)0.0136 (5)0.0167 (6)0.0008 (5)0.0016 (5)0.0004 (4)
C20.0168 (6)0.0136 (6)0.0169 (6)0.0011 (5)0.0010 (5)0.0016 (4)
C30.0154 (6)0.0158 (6)0.0169 (6)0.0007 (5)0.0016 (5)0.0013 (4)
C40.0213 (7)0.0130 (5)0.0195 (6)0.0017 (5)0.0001 (5)0.0000 (5)
C50.0166 (6)0.0138 (5)0.0191 (6)0.0013 (5)0.0004 (6)0.0010 (5)
C60.0138 (6)0.0142 (5)0.0154 (5)0.0001 (5)0.0004 (5)0.0003 (4)
C70.0190 (6)0.0167 (6)0.0164 (6)0.0002 (5)0.0007 (5)0.0016 (5)
C80.0176 (6)0.0188 (6)0.0192 (6)0.0014 (6)0.0003 (6)0.0006 (5)
C90.0256 (7)0.0200 (6)0.0159 (6)0.0019 (6)0.0014 (6)0.0002 (5)
Geometric parameters (Å, º) top
O1—N11.3807 (16)C2—H2A0.97 (2)
O1—C81.4227 (19)C3—C41.398 (2)
O2—C81.2174 (18)C4—C51.381 (2)
O3—C31.3613 (17)C4—H4A0.95 (2)
O3—C91.4421 (18)C5—C61.398 (2)
N1—N21.3158 (16)C5—H5A0.961 (19)
N2—C71.3434 (17)C7—C81.408 (2)
N2—C61.4356 (18)C7—H7A0.98 (2)
C1—C61.388 (2)C9—H9A0.97 (2)
C1—C21.3940 (19)C9—H9B0.95 (2)
C1—H1A1.00 (2)C9—H9C0.99 (3)
C2—C31.3976 (19)
N1—O1—C8111.11 (12)C4—C5—C6118.61 (13)
C3—O3—C9117.27 (11)C4—C5—H5A121.9 (11)
N2—N1—O1103.69 (12)C6—C5—H5A119.4 (11)
N1—N2—C7115.30 (12)C1—C6—C5121.77 (14)
N1—N2—C6117.68 (12)C1—C6—N2119.22 (13)
C7—N2—C6127.02 (12)C5—C6—N2119.00 (13)
C6—C1—C2119.11 (13)N2—C7—C8106.54 (13)
C6—C1—H1A121.0 (11)N2—C7—H7A123.4 (12)
C2—C1—H1A119.9 (11)C8—C7—H7A130.1 (12)
C1—C2—C3119.76 (13)O2—C8—C7137.09 (16)
C1—C2—H2A120.5 (13)O2—C8—O1119.56 (14)
C3—C2—H2A119.8 (13)C7—C8—O1103.34 (12)
O3—C3—C4115.89 (13)O3—C9—H9A109.4 (12)
O3—C3—C2124.01 (13)O3—C9—H9B110.2 (12)
C4—C3—C2120.10 (13)H9A—C9—H9B107.0 (17)
C5—C4—C3120.65 (13)O3—C9—H9C112.3 (15)
C5—C4—H4A119.4 (12)H9A—C9—H9C109.3 (18)
C3—C4—H4A119.8 (12)H9B—C9—H9C108.5 (19)
C8—O1—N1—N20.84 (16)C4—C5—C6—C10.2 (2)
O1—N1—N2—C70.46 (17)C4—C5—C6—N2179.47 (14)
O1—N1—N2—C6179.58 (12)N1—N2—C6—C130.90 (19)
C6—C1—C2—C30.2 (2)C7—N2—C6—C1149.14 (15)
C9—O3—C3—C4169.99 (14)N1—N2—C6—C5149.86 (15)
C9—O3—C3—C210.3 (2)C7—N2—C6—C530.1 (2)
C1—C2—C3—O3179.64 (13)N1—N2—C7—C80.09 (18)
C1—C2—C3—C40.0 (2)C6—N2—C7—C8179.87 (13)
O3—C3—C4—C5179.72 (14)N2—C7—C8—O2179.70 (19)
C2—C3—C4—C50.0 (2)N2—C7—C8—O10.58 (16)
C3—C4—C5—C60.1 (2)N1—O1—C8—O2179.79 (14)
C2—C1—C6—C50.3 (2)N1—O1—C8—C70.89 (17)
C2—C1—C6—N2179.53 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i1.00 (2)2.59 (2)3.5441 (19)159.1 (15)
C7—H7A···O3ii0.98 (2)2.42 (2)3.3814 (18)165.7 (17)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2O3
Mr192.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.0505 (2), 9.8220 (3), 12.0934 (3)
V3)837.47 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.56 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.938, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7384, 1760, 1577
Rint0.031
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections1760
No. of parameters159
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i1.00 (2)2.59 (2)3.5441 (19)159.1 (15)
C7—H7A···O3ii0.98 (2)2.42 (2)3.3814 (18)165.7 (17)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1251–o1252.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1303.  Google Scholar
First citationHegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds