organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­bromo-4-butyl­anilinium chloride

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhao@yahoo.com.cn

(Received 12 November 2010; accepted 17 November 2010; online 24 November 2010)

In the crystal structure of the title salt, C10H14Br2N+·Cl, the organic cations and chloride anions are linked into one-dimensional chains parallel to the a axis by N—H⋯Cl and N—H⋯Br hydrogen bonds.

Related literature

For general background to supra­molecular self-assembly chemisty, see: Lehn Lehn (1995[Lehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14Br2N+·Cl

  • Mr = 343.49

  • Triclinic, [P \overline 1]

  • a = 4.9785 (10) Å

  • b = 8.7844 (18) Å

  • c = 14.898 (3) Å

  • α = 86.29 (3)°

  • β = 87.58 (3)°

  • γ = 87.17 (3)°

  • V = 648.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.42 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 6685 measured reflections

  • 2959 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.159

  • S = 1.04

  • 2959 reflections

  • 128 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.89 2.59 3.240 (5) 130
N1—H1D⋯Cl1ii 0.89 2.68 3.136 (5) 113
N1—H1C⋯Br1iii 0.89 2.82 3.517 (5) 135
N1—H1B⋯Br1 0.89 2.51 3.094 (5) 124
N1—H1B⋯Cl1 0.89 2.72 3.212 (6) 116
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition. A supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylanilinium chloride.

In the title compound (Fig.1), the butyl group is approximately orthogonal to the benzene plane, as indicated by the torsion angles C1—C6—C7—C8 and C5—C6—C7—C8 of 76.2 (11) and -102.7 (10)°, respectively. The Br1, Br2 and N1 substituents are displaced by 0.0842 (8), 0.1142 (8) and -0.005 (5) Å, respectively, with respect to the benzene ring. Bond lengths and angles lie within normal ranges. In the crystal structure, the organic cations and Cl- anions are linked by N—H···Cl and N—H···Br hydrogen bonds (Table 1) to form one-dimensional chains along the a axis (Fig. 2).

Related literature top

For general background to supramolecular self-assembly chemisty, see: Lehn Lehn (1995); Scheiner (1997).

Experimental top

The title compound was purchased from ALFA AESAR. The compound (3 mmol) was dissolved in ethanol (20 ml) and the solution allowed to evaporate to obtain colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C–H = 0.93-0.97 Å, N–H = 0.89 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(C, N) for methyl and protonated amine H atoms. Restraints (SIMU and DELU) were applied to the Uij parameters of atoms C9 and C10.

Structure description top

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition. A supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylanilinium chloride.

In the title compound (Fig.1), the butyl group is approximately orthogonal to the benzene plane, as indicated by the torsion angles C1—C6—C7—C8 and C5—C6—C7—C8 of 76.2 (11) and -102.7 (10)°, respectively. The Br1, Br2 and N1 substituents are displaced by 0.0842 (8), 0.1142 (8) and -0.005 (5) Å, respectively, with respect to the benzene ring. Bond lengths and angles lie within normal ranges. In the crystal structure, the organic cations and Cl- anions are linked by N—H···Cl and N—H···Br hydrogen bonds (Table 1) to form one-dimensional chains along the a axis (Fig. 2).

For general background to supramolecular self-assembly chemisty, see: Lehn Lehn (1995); Scheiner (1997).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing a chain formed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
2,6-Dibromo-4-butylanilinium chloride top
Crystal data top
C10H14Br2N+·ClZ = 2
Mr = 343.49F(000) = 336
Triclinic, P1Dx = 1.758 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9785 (10) ÅCell parameters from 2959 reflections
b = 8.7844 (18) Åθ = 3.5–27.5°
c = 14.898 (3) ŵ = 6.42 mm1
α = 86.29 (3)°T = 298 K
β = 87.58 (3)°Block, colourless
γ = 87.17 (3)°0.10 × 0.03 × 0.03 mm
V = 648.9 (2) Å3
Data collection top
Rigaku Mercury2
diffractometer
2959 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.910, Tmax = 1.000l = 1919
6685 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1405P]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.74 e Å3
7 restraintsΔρmin = 0.59 e Å3
Crystal data top
C10H14Br2N+·Clγ = 87.17 (3)°
Mr = 343.49V = 648.9 (2) Å3
Triclinic, P1Z = 2
a = 4.9785 (10) ÅMo Kα radiation
b = 8.7844 (18) ŵ = 6.42 mm1
c = 14.898 (3) ÅT = 298 K
α = 86.29 (3)°0.10 × 0.03 × 0.03 mm
β = 87.58 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2959 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1843 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.073
6685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0647 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
2959 reflectionsΔρmin = 0.59 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.72826 (13)0.30511 (8)0.02752 (5)0.0481 (3)
Br20.07834 (15)0.10595 (9)0.28643 (5)0.0591 (3)
C60.3280 (15)0.5078 (8)0.2416 (5)0.0510 (18)
C30.3104 (12)0.2297 (6)0.1577 (4)0.0380 (15)
C50.4948 (15)0.4763 (7)0.1683 (5)0.0533 (19)
H5A0.61590.54830.14630.064*
C20.1509 (13)0.2581 (7)0.2341 (5)0.0399 (15)
N10.2929 (10)0.0916 (5)0.1091 (4)0.0414 (13)
H1B0.41050.09390.06240.062*
H1C0.12730.08700.08950.062*
H1D0.33040.00990.14570.062*
C40.4871 (13)0.3411 (7)0.1268 (4)0.0426 (16)
C10.1564 (14)0.3928 (8)0.2748 (5)0.0503 (18)
H1A0.04470.40870.32530.060*
Cl10.2000 (3)0.13452 (17)0.10326 (12)0.0454 (4)
C70.332 (2)0.6574 (9)0.2856 (6)0.074 (2)
H7A0.41590.73170.24380.088*
H7B0.14760.69430.29760.088*
C80.475 (2)0.6474 (10)0.3703 (8)0.100 (3)
H8A0.65340.60110.35880.120*
H8B0.38130.57900.41310.120*
C90.507 (3)0.7949 (12)0.4139 (8)0.121 (3)
H9A0.59830.86410.37070.145*
H9B0.32910.84030.42660.145*
C100.656 (3)0.7844 (12)0.4977 (8)0.124 (3)
H10A0.77050.86900.49790.185*
H10B0.76280.69050.50150.185*
H10C0.53020.78690.54840.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0415 (4)0.0531 (4)0.0507 (5)0.0095 (3)0.0033 (3)0.0037 (3)
Br20.0639 (5)0.0619 (5)0.0529 (6)0.0181 (4)0.0049 (4)0.0073 (4)
C60.065 (5)0.044 (4)0.045 (5)0.003 (4)0.011 (4)0.009 (3)
C30.042 (3)0.030 (3)0.044 (4)0.003 (3)0.012 (3)0.008 (3)
C50.064 (5)0.034 (4)0.063 (5)0.008 (3)0.019 (4)0.002 (3)
C20.047 (4)0.034 (3)0.039 (4)0.004 (3)0.003 (3)0.002 (3)
N10.039 (3)0.033 (3)0.053 (4)0.007 (2)0.002 (3)0.010 (2)
C40.046 (4)0.044 (4)0.038 (4)0.008 (3)0.012 (3)0.001 (3)
C10.052 (4)0.057 (4)0.042 (4)0.001 (4)0.003 (4)0.013 (3)
Cl10.0441 (9)0.0400 (8)0.0535 (11)0.0059 (7)0.0057 (8)0.0093 (7)
C70.109 (7)0.044 (4)0.070 (6)0.012 (4)0.000 (6)0.013 (4)
C80.129 (8)0.065 (6)0.112 (10)0.000 (6)0.036 (7)0.039 (6)
C90.181 (9)0.080 (5)0.111 (7)0.013 (6)0.050 (6)0.043 (5)
C100.183 (9)0.083 (5)0.113 (7)0.011 (6)0.049 (6)0.041 (5)
Geometric parameters (Å, º) top
Br1—C41.898 (7)C1—H1A0.9300
Br2—C21.907 (6)C7—C81.473 (12)
C6—C51.377 (10)C7—H7A0.9700
C6—C11.407 (10)C7—H7B0.9700
C6—C71.507 (10)C8—C91.504 (12)
C3—C21.389 (9)C8—H8A0.9700
C3—C41.391 (8)C8—H8B0.9700
C3—N11.461 (7)C9—C101.474 (15)
C5—C41.378 (9)C9—H9A0.9700
C5—H5A0.9300C9—H9B0.9700
C2—C11.365 (9)C10—H10A0.9600
N1—H1B0.8900C10—H10B0.9600
N1—H1C0.8900C10—H10C0.9600
N1—H1D0.8900
C5—C6—C1117.0 (6)C8—C7—C6113.8 (7)
C5—C6—C7121.8 (7)C8—C7—H7A108.8
C1—C6—C7121.2 (7)C6—C7—H7A108.8
C2—C3—C4117.2 (5)C8—C7—H7B108.8
C2—C3—N1122.6 (5)C6—C7—H7B108.8
C4—C3—N1120.1 (6)H7A—C7—H7B107.7
C6—C5—C4121.8 (7)C7—C8—C9116.7 (9)
C6—C5—H5A119.1C7—C8—H8A108.1
C4—C5—H5A119.1C9—C8—H8A108.1
C1—C2—C3121.7 (6)C7—C8—H8B108.1
C1—C2—Br2118.2 (5)C9—C8—H8B108.1
C3—C2—Br2120.2 (4)H8A—C8—H8B107.3
C3—N1—H1B109.5C10—C9—C8116.4 (10)
C3—N1—H1C109.5C10—C9—H9A108.2
H1B—N1—H1C109.5C8—C9—H9A108.2
C3—N1—H1D109.5C10—C9—H9B108.2
H1B—N1—H1D109.5C8—C9—H9B108.2
H1C—N1—H1D109.5H9A—C9—H9B107.4
C5—C4—C3121.1 (6)C9—C10—H10A109.5
C5—C4—Br1119.1 (5)C9—C10—H10B109.5
C3—C4—Br1119.8 (5)H10A—C10—H10B109.5
C2—C1—C6121.1 (6)C9—C10—H10C109.5
C2—C1—H1A119.4H10A—C10—H10C109.5
C6—C1—H1A119.4H10B—C10—H10C109.5
C1—C6—C5—C42.6 (11)C2—C3—C4—Br1175.9 (5)
C7—C6—C5—C4178.4 (7)N1—C3—C4—Br15.7 (8)
C4—C3—C2—C13.2 (9)C3—C2—C1—C61.0 (10)
N1—C3—C2—C1175.1 (6)Br2—C2—C1—C6177.7 (5)
C4—C3—C2—Br2175.5 (4)C5—C6—C1—C21.9 (10)
N1—C3—C2—Br26.1 (8)C7—C6—C1—C2179.1 (7)
C6—C5—C4—C30.4 (10)C5—C6—C7—C8102.7 (10)
C6—C5—C4—Br1178.9 (5)C1—C6—C7—C876.2 (11)
C2—C3—C4—C52.5 (9)C6—C7—C8—C9175.0 (10)
N1—C3—C4—C5175.9 (6)C7—C8—C9—C10178.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.892.593.240 (5)130
N1—H1D···Cl1ii0.892.683.136 (5)113
N1—H1C···Br1iii0.892.823.517 (5)135
N1—H1B···Br10.892.513.094 (5)124
N1—H1B···Cl10.892.723.212 (6)116
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H14Br2N+·Cl
Mr343.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.9785 (10), 8.7844 (18), 14.898 (3)
α, β, γ (°)86.29 (3), 87.58 (3), 87.17 (3)
V3)648.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.42
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6685, 2959, 1843
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.159, 1.04
No. of reflections2959
No. of parameters128
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.59

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.892.593.240 (5)130.4
N1—H1D···Cl1ii0.892.683.136 (5)113.3
N1—H1C···Br1iii0.892.823.517 (5)135
N1—H1B···Br10.892.513.094 (5)123.5
N1—H1B···Cl10.892.723.212 (6)116.3
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by a School start-up grant to LZ.

References

First citationLehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds