organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(Anthracen-9-yl)-1-(2-bromo­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 16 November 2010; accepted 21 November 2010; online 27 November 2010)

The mol­ecule of the title chalcone, C23H15BrO, is not planar and exists in the E configuration with respect to the central C=C bond. The dihedral angle between the benzene and anthracene rings is 83.58 (6)°. The prop-2-en-1-one bridge makes dihedral angles of 63.00 (7) and 42.62 (16)° with the benzene and anthracene rings, respectively. In the crystal, mol­ecules are linked into dimers by weak C—H⋯O inter­actions. These dimers are arranged parallel to the bc plane and are further stacked along the a axis by ππ inter­actions with a centroid–centroid distance of 3.7561 (9) Å. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]); Joothamongkhon et al. (2010[Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669-o2670.]). For background to and applications of chalcones, see: Cheng et al. (2008[Cheng, J. H., Hung, C.-F., Yang, S. C., Wang, J.-P., Won, S.-J. & Lin, S.-J. (2008). Bioorg. Med. Chem. 16, 7270-7276.]); Gaber et al. (2008[Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Technol. 40, 528-537.]); Joothamongkhon et al. (2010[Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669-o2670.]); Nawakowska et al. (2008)[Nawakowska, Z., Kedzia, B. & Schroeder, G. (2008). Eur. J. Med. Chem. 43, 707-713.]; Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol, 25, 503-508.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15BrO

  • Mr = 387.25

  • Orthorhombic, P b c a

  • a = 7.8631 (1) Å

  • b = 20.0583 (3) Å

  • c = 20.7259 (3) Å

  • V = 3268.90 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.482, Tmax = 0.629

  • 22332 measured reflections

  • 4766 independent reflections

  • 3717 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.02

  • 4766 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.53 3.301 (2) 140
C15—H15ACg1ii 0.93 2.99 3.6989 (19) 135
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have been studied for their chemical and biological activities for a long time. They have a wide range of applications such as in non-linear optical devices (Patil & Dharmaprakash, 2008) and have various biological properties such as analgesic, anti-inflammatory, antibacterial, antifungal (Nawakowska et al., 2008; Cheng et al., 2008) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Moreover, chalcones have also been studied for fluorescent property (Gaber et al., 2008). Our previous investigation has revealed that chalcones containing the anthracene moiety displayed fluorescent property (Joothamongkhon et al., 2010). The title compound (I) was synthesized for further investigation of its fluorescent properties. The title compound in chloroform solution exhibited fluorescence with the maximum emission at 450 nm when it was excited at 380 nm.

The molecule of (I) (Fig. 1) exists in an E configuration with respect to the C8C9 double bond [1.343 (2)°], with the torsion angle C7–C8–C9–C10 = 174.24 (16)°. The anthracene unit is essentially planar with the r.m.s. 0.0416 (2) Å. The molecule is not planar as indicated by the dihedral angle between benzene and anthracene rings of 83.58 (6)°. The mean plane through the pro-2-en-1-one bridge (C7–C9/O1) [r.m.s. 0.0283 (2) Å] makes dihedral angles of 63.00 (7) and 42.62 (16)° with the benzene and anthracene rings, respectively. The bond distances are of normal values (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2009; Joothamongkhon et al., 2010).

In the crystal packing, the molecules are linked into dimers through the C5—H5A···O1 interactions (Fig. 2). These dimers are arranged into sheets parallel to the bc plane, and are further stacked along the a axis by ππ interaction with a Cg2···Cg3 distance of 3.7561 (9) Å (symmetry code: -1/2 + x, y, 1/2 - z). The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C11/C16–C18/C23 and C11–C16 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009); Joothamongkhon et al. (2010). For background to and applications of chalcones, see: Cheng et al. (2008); Gaber et al. (2008); Joothamongkhon et al. (2010); Nawakowska et al. (2008); Patil & Dharmaprakash (2008); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by condensation of 2-bromoacetophenone (0.39 g, 2 mmol) with anthracene-9-carboxaldehyde (0.41 g, 2 mmol) in ethanol (40 ml) in the presence of 20% NaOH (aq) (5 ml). After stirring for 7 h at room temperature, the yellow solid obtained was collected by filtration, washed with distilled water and dried in air. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after several days. Mp. 427–428 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for all H atoms. The highest residual electron density peak is located at 0.64 Å from C6 and the deepest hole is located at 0.38 Å from Br1.

Structure description top

Chalcones have been studied for their chemical and biological activities for a long time. They have a wide range of applications such as in non-linear optical devices (Patil & Dharmaprakash, 2008) and have various biological properties such as analgesic, anti-inflammatory, antibacterial, antifungal (Nawakowska et al., 2008; Cheng et al., 2008) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Moreover, chalcones have also been studied for fluorescent property (Gaber et al., 2008). Our previous investigation has revealed that chalcones containing the anthracene moiety displayed fluorescent property (Joothamongkhon et al., 2010). The title compound (I) was synthesized for further investigation of its fluorescent properties. The title compound in chloroform solution exhibited fluorescence with the maximum emission at 450 nm when it was excited at 380 nm.

The molecule of (I) (Fig. 1) exists in an E configuration with respect to the C8C9 double bond [1.343 (2)°], with the torsion angle C7–C8–C9–C10 = 174.24 (16)°. The anthracene unit is essentially planar with the r.m.s. 0.0416 (2) Å. The molecule is not planar as indicated by the dihedral angle between benzene and anthracene rings of 83.58 (6)°. The mean plane through the pro-2-en-1-one bridge (C7–C9/O1) [r.m.s. 0.0283 (2) Å] makes dihedral angles of 63.00 (7) and 42.62 (16)° with the benzene and anthracene rings, respectively. The bond distances are of normal values (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2009; Joothamongkhon et al., 2010).

In the crystal packing, the molecules are linked into dimers through the C5—H5A···O1 interactions (Fig. 2). These dimers are arranged into sheets parallel to the bc plane, and are further stacked along the a axis by ππ interaction with a Cg2···Cg3 distance of 3.7561 (9) Å (symmetry code: -1/2 + x, y, 1/2 - z). The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C11/C16–C18/C23 and C11–C16 rings, respectively.

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009); Joothamongkhon et al. (2010). For background to and applications of chalcones, see: Cheng et al. (2008); Gaber et al. (2008); Joothamongkhon et al. (2010); Nawakowska et al. (2008); Patil & Dharmaprakash (2008); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. C—H···O weak interactions are shown as dashed lines.
(E)-3-(Anthracen-9-yl)-1-(2-bromophenyl)prop-2-en-1-one top
Crystal data top
C23H15BrODx = 1.574 Mg m3
Mr = 387.25Melting point = 427–428 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4766 reflections
a = 7.8631 (1) Åθ = 2.0–30.0°
b = 20.0583 (3) ŵ = 2.52 mm1
c = 20.7259 (3) ÅT = 100 K
V = 3268.90 (8) Å3Block, yellow
Z = 80.34 × 0.28 × 0.20 mm
F(000) = 1568
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4766 independent reflections
Radiation source: sealed tube3717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 119
Tmin = 0.482, Tmax = 0.629k = 2821
22332 measured reflectionsl = 2629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.3057P]
where P = (Fo2 + 2Fc2)/3
4766 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C23H15BrOV = 3268.90 (8) Å3
Mr = 387.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8631 (1) ŵ = 2.52 mm1
b = 20.0583 (3) ÅT = 100 K
c = 20.7259 (3) Å0.34 × 0.28 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4766 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3717 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.629Rint = 0.038
22332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
4766 reflectionsΔρmin = 0.46 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28035 (2)0.124729 (8)0.534873 (8)0.01848 (6)
O10.02804 (17)0.24813 (6)0.51069 (6)0.0207 (3)
C10.0478 (2)0.09958 (8)0.53816 (8)0.0141 (3)
C20.0051 (2)0.04186 (8)0.57118 (8)0.0182 (3)
H2A0.08830.01730.59250.022*
C30.1634 (2)0.02107 (9)0.57209 (8)0.0187 (3)
H3A0.19360.01730.59460.022*
C40.2868 (2)0.05739 (9)0.53953 (8)0.0169 (3)
H4A0.39910.04290.53960.020*
C50.2427 (2)0.11522 (8)0.50691 (8)0.0148 (3)
H5A0.32600.13930.48520.018*
C60.0743 (2)0.13775 (8)0.50626 (7)0.0130 (3)
C70.0308 (2)0.20401 (8)0.47631 (7)0.0144 (3)
C80.0571 (2)0.21502 (8)0.40715 (8)0.0152 (3)
H8A0.03800.25770.39130.018*
C90.1067 (2)0.16805 (8)0.36499 (8)0.0143 (3)
H9A0.13570.12660.38170.017*
C100.1193 (2)0.17648 (8)0.29459 (7)0.0136 (3)
C110.1861 (2)0.23539 (8)0.26620 (8)0.0146 (3)
C120.2644 (2)0.28787 (8)0.30234 (9)0.0172 (3)
H12A0.27650.28320.34670.021*
C130.3216 (2)0.34451 (9)0.27314 (9)0.0210 (4)
H13A0.37150.37790.29780.025*
C140.3059 (2)0.35296 (9)0.20539 (9)0.0227 (4)
H14A0.34170.39240.18610.027*
C150.2388 (2)0.30366 (9)0.16882 (9)0.0211 (4)
H15A0.23030.30950.12440.025*
C160.1807 (2)0.24275 (8)0.19713 (8)0.0168 (3)
C170.1193 (2)0.19111 (8)0.15893 (8)0.0184 (3)
H17A0.11690.19640.11440.022*
C180.0612 (2)0.13157 (8)0.18586 (8)0.0161 (3)
C190.0007 (2)0.07806 (9)0.14641 (8)0.0206 (4)
H19A0.00330.08250.10180.025*
C200.0605 (2)0.02092 (9)0.17272 (9)0.0213 (4)
H20A0.09840.01340.14620.026*
C210.0666 (2)0.01375 (9)0.24085 (9)0.0208 (4)
H21A0.10950.02520.25890.025*
C220.0101 (2)0.06361 (8)0.28000 (8)0.0178 (3)
H22A0.01670.05810.32450.021*
C230.0591 (2)0.12412 (8)0.25471 (8)0.0143 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01349 (9)0.01896 (9)0.02300 (10)0.00166 (6)0.00026 (7)0.00057 (7)
O10.0275 (7)0.0153 (6)0.0193 (6)0.0025 (5)0.0052 (5)0.0013 (5)
C10.0132 (8)0.0144 (7)0.0146 (8)0.0010 (6)0.0003 (6)0.0014 (6)
C20.0190 (9)0.0186 (8)0.0168 (8)0.0012 (7)0.0029 (7)0.0039 (6)
C30.0209 (9)0.0175 (8)0.0175 (8)0.0021 (7)0.0002 (7)0.0039 (6)
C40.0156 (8)0.0187 (8)0.0165 (8)0.0013 (6)0.0001 (7)0.0009 (6)
C50.0171 (9)0.0150 (8)0.0124 (7)0.0016 (6)0.0015 (6)0.0012 (6)
C60.0166 (8)0.0130 (7)0.0094 (7)0.0002 (6)0.0005 (6)0.0015 (5)
C70.0149 (8)0.0136 (7)0.0147 (8)0.0022 (6)0.0004 (6)0.0003 (6)
C80.0164 (8)0.0145 (8)0.0147 (8)0.0008 (6)0.0001 (6)0.0030 (6)
C90.0150 (8)0.0148 (7)0.0131 (7)0.0006 (6)0.0012 (6)0.0036 (6)
C100.0139 (8)0.0152 (8)0.0117 (7)0.0030 (6)0.0006 (6)0.0015 (6)
C110.0128 (8)0.0163 (8)0.0148 (8)0.0038 (6)0.0016 (6)0.0031 (6)
C120.0169 (8)0.0178 (8)0.0170 (8)0.0024 (6)0.0024 (6)0.0021 (6)
C130.0168 (9)0.0181 (9)0.0280 (9)0.0003 (7)0.0030 (7)0.0005 (7)
C140.0196 (10)0.0196 (8)0.0290 (10)0.0019 (7)0.0065 (7)0.0099 (7)
C150.0213 (9)0.0243 (9)0.0178 (8)0.0060 (7)0.0052 (7)0.0097 (7)
C160.0144 (8)0.0201 (8)0.0159 (8)0.0049 (6)0.0028 (6)0.0054 (6)
C170.0183 (9)0.0248 (9)0.0122 (8)0.0071 (7)0.0022 (6)0.0044 (6)
C180.0158 (8)0.0201 (8)0.0122 (7)0.0047 (6)0.0007 (6)0.0007 (6)
C190.0201 (9)0.0283 (9)0.0134 (8)0.0065 (7)0.0030 (7)0.0044 (7)
C200.0207 (9)0.0220 (8)0.0212 (9)0.0038 (7)0.0029 (7)0.0074 (7)
C210.0179 (9)0.0191 (8)0.0254 (9)0.0002 (7)0.0002 (7)0.0004 (7)
C220.0179 (9)0.0185 (8)0.0169 (8)0.0015 (6)0.0001 (6)0.0021 (6)
C230.0130 (8)0.0170 (8)0.0128 (7)0.0045 (6)0.0001 (6)0.0019 (6)
Geometric parameters (Å, º) top
Br1—C11.8983 (17)C12—C131.364 (2)
O1—C71.2269 (19)C12—H12A0.9300
C1—C21.386 (2)C13—C141.420 (3)
C1—C61.395 (2)C13—H13A0.9300
C2—C31.389 (2)C14—C151.353 (3)
C2—H2A0.9300C14—H14A0.9300
C3—C41.388 (2)C15—C161.430 (2)
C3—H3A0.9300C15—H15A0.9300
C4—C51.387 (2)C16—C171.390 (2)
C4—H4A0.9300C17—C181.395 (2)
C5—C61.399 (2)C17—H17A0.9300
C5—H5A0.9300C18—C191.431 (2)
C6—C71.506 (2)C18—C231.435 (2)
C7—C81.465 (2)C19—C201.357 (3)
C8—C91.343 (2)C19—H19A0.9300
C8—H8A0.9300C20—C211.420 (2)
C9—C101.472 (2)C20—H20A0.9300
C9—H9A0.9300C21—C221.362 (2)
C10—C231.418 (2)C21—H21A0.9300
C10—C111.421 (2)C22—C231.430 (2)
C11—C121.431 (2)C22—H22A0.9300
C11—C161.440 (2)
C2—C1—C6121.74 (16)C11—C12—H12A119.3
C2—C1—Br1118.21 (13)C12—C13—C14120.64 (17)
C6—C1—Br1120.02 (12)C12—C13—H13A119.7
C1—C2—C3119.22 (16)C14—C13—H13A119.7
C1—C2—H2A120.4C15—C14—C13120.04 (16)
C3—C2—H2A120.4C15—C14—H14A120.0
C4—C3—C2120.15 (16)C13—C14—H14A120.0
C4—C3—H3A119.9C14—C15—C16121.28 (17)
C2—C3—H3A119.9C14—C15—H15A119.4
C5—C4—C3120.10 (16)C16—C15—H15A119.4
C5—C4—H4A120.0C17—C16—C15120.92 (16)
C3—C4—H4A120.0C17—C16—C11120.00 (15)
C4—C5—C6120.76 (15)C15—C16—C11119.08 (16)
C4—C5—H5A119.6C16—C17—C18121.58 (15)
C6—C5—H5A119.6C16—C17—H17A119.2
C1—C6—C5118.00 (15)C18—C17—H17A119.2
C1—C6—C7121.57 (15)C17—C18—C19121.51 (15)
C5—C6—C7120.25 (15)C17—C18—C23119.39 (15)
O1—C7—C8120.84 (14)C19—C18—C23119.09 (15)
O1—C7—C6118.86 (14)C20—C19—C18121.46 (16)
C8—C7—C6120.29 (14)C20—C19—H19A119.3
C9—C8—C7124.87 (15)C18—C19—H19A119.3
C9—C8—H8A117.6C19—C20—C21119.79 (16)
C7—C8—H8A117.6C19—C20—H20A120.1
C8—C9—C10125.72 (15)C21—C20—H20A120.1
C8—C9—H9A117.1C22—C21—C20120.45 (17)
C10—C9—H9A117.1C22—C21—H21A119.8
C23—C10—C11119.88 (14)C20—C21—H21A119.8
C23—C10—C9118.06 (14)C21—C22—C23121.94 (16)
C11—C10—C9122.05 (14)C21—C22—H22A119.0
C10—C11—C12123.65 (15)C23—C22—H22A119.0
C10—C11—C16119.09 (15)C10—C23—C22122.83 (15)
C12—C11—C16117.23 (15)C10—C23—C18119.92 (14)
C13—C12—C11121.50 (16)C22—C23—C18117.22 (15)
C13—C12—H12A119.3
C6—C1—C2—C30.6 (3)C12—C13—C14—C152.3 (3)
Br1—C1—C2—C3177.50 (13)C13—C14—C15—C160.8 (3)
C1—C2—C3—C40.8 (3)C14—C15—C16—C17176.97 (17)
C2—C3—C4—C51.1 (3)C14—C15—C16—C113.2 (3)
C3—C4—C5—C60.0 (2)C10—C11—C16—C173.5 (2)
C2—C1—C6—C51.7 (2)C12—C11—C16—C17174.62 (15)
Br1—C1—C6—C5176.39 (12)C10—C11—C16—C15176.38 (15)
C2—C1—C6—C7173.58 (15)C12—C11—C16—C155.5 (2)
Br1—C1—C6—C78.4 (2)C15—C16—C17—C18179.59 (16)
C4—C5—C6—C11.4 (2)C11—C16—C17—C180.2 (3)
C4—C5—C6—C7173.95 (15)C16—C17—C18—C19178.97 (16)
C1—C6—C7—O158.3 (2)C16—C17—C18—C232.2 (3)
C5—C6—C7—O1116.82 (18)C17—C18—C19—C20178.01 (17)
C1—C6—C7—C8121.07 (17)C23—C18—C19—C200.8 (3)
C5—C6—C7—C863.8 (2)C18—C19—C20—C210.6 (3)
O1—C7—C8—C9173.96 (17)C19—C20—C21—C220.6 (3)
C6—C7—C8—C95.4 (3)C20—C21—C22—C230.9 (3)
C7—C8—C9—C10174.24 (16)C11—C10—C23—C22179.81 (15)
C8—C9—C10—C23137.39 (17)C9—C10—C23—C221.0 (2)
C8—C9—C10—C1141.4 (3)C11—C10—C23—C181.8 (2)
C23—C10—C11—C12173.75 (15)C9—C10—C23—C18176.97 (15)
C9—C10—C11—C127.5 (2)C21—C22—C23—C10179.72 (16)
C23—C10—C11—C164.2 (2)C21—C22—C23—C182.2 (2)
C9—C10—C11—C16174.54 (15)C17—C18—C23—C101.4 (2)
C10—C11—C12—C13177.81 (16)C19—C18—C23—C10179.73 (15)
C16—C11—C12—C134.2 (2)C17—C18—C23—C22176.71 (15)
C11—C12—C13—C140.4 (3)C19—C18—C23—C222.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.533.301 (2)140
C15—H15A···Cg1ii0.932.993.6989 (19)135
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y1/2, z1.

Experimental details

Crystal data
Chemical formulaC23H15BrO
Mr387.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.8631 (1), 20.0583 (3), 20.7259 (3)
V3)3268.90 (8)
Z8
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.34 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.482, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
22332, 4766, 3717
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.02
No. of reflections4766
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.533.301 (2)140
C15—H15A···Cg1ii0.932.993.6989 (19)135
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y1/2, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose (grant No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. H., Hung, C.-F., Yang, S. C., Wang, J.-P., Won, S.-J. & Lin, S.-J. (2008). Bioorg. Med. Chem. 16, 7270–7276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Technol. 40, 528–537.  Web of Science CrossRef CAS Google Scholar
First citationJoothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNawakowska, Z., Kedzia, B. & Schroeder, G. (2008). Eur. J. Med. Chem. 43, 707–713.  Web of Science PubMed Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol, 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds