metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-chloro-N′-(2-pyridyl­methyl­­idene)benzohydrazidato]cobalt(III) nitrate sesquihydrate

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Teachers College, Anqing 246011, Anhui, People's Republic of China
*Correspondence e-mail: wudayu_nju@yahoo.com.cn

(Received 16 August 2010; accepted 9 November 2010; online 13 November 2010)

In the title compound, [Co(C13H9ClN3O)2]NO3·1.5H2O, the central Co3+ atom in the cation is coordinated by four N and two O atoms from the two tridentate ligands in a distorted octa­hedral fashion. In the crystal, the cobalt complex cations are linked to the half-occupied and the fully occupied water mol­ecules, and the nitrate anion via classical inter­molecular O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O contacts.

Related literature

For the structure of bis­{4-chloro-N′-[phen­yl(2-pyrid­yl)methyl­idene]benzohydrazidato}cobalt(III) nitrate methanol disolvate, see: Wu et al. (2010[Wu, G., Ye, H. & Wu, D. (2010). Acta Cryst. E66, m1121.]). For a related mononuclear cobalt compound, see: Herchel & Boca (2005[Herchel, R. & Boca, R. (2005). Dalton Trans. pp. 1352-1353.]) and for a bimetallic dicobalt(II) complex, see: Gavrilova et al. (2002[Gavrilova, A., Qin, C. J., Sommer, R., Rheingold, A. & Bosnich, B. (2002). J. Am. Chem. Soc. 124, 1714-1722.]). For related structures containing hydrazide groups, see: Liu et al. (2006[Liu, M.-L., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o1009-o1010.]); Cao et al. (2009[Cao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H9ClN3O)2]NO3·1.5H2O

  • Mr = 665.33

  • Monoclinic, P 2/n

  • a = 14.198 (10) Å

  • b = 10.876 (7) Å

  • c = 18.553 (13) Å

  • β = 94.196 (12)°

  • V = 2857 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.862

  • 13702 measured reflections

  • 5019 independent reflections

  • 3527 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 1.05

  • 5019 reflections

  • 388 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2 1.850 (3)
Co1—N5 1.855 (3)
Co1—O2 1.899 (3)
Co1—O1 1.914 (3)
Co1—N4 1.926 (4)
Co1—N1 1.931 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H61⋯O5 0.85 2.19 2.964 (8) 151
O6—H62⋯O7 0.85 2.09 2.804 (16) 141
O7—H72⋯N6i 0.85 2.32 3.053 (12) 145
C14—H14A⋯O4ii 0.93 2.41 3.229 (7) 146
C17—H17A⋯O5iii 0.93 2.46 3.263 (7) 145
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We used a new ligand, 4-chloride-benzoylcarbohydrazide, to synthesize the title cobalt(III) complex (Bis[4-chloride-benzoylcarbohydrazido] cobalt(III) nitrate sesquihydrate). A related ethanol disolvate structure was recently published where we focussed on magnetic properties for this kind of cobalt(III) complex (Wu et al., 2010). As a part of our ongoing investigations in this field we have synthesized the title compound and present its crystal structure here. For the title compound, we used 2(E)-1-[(4-chlorophenyl)carbonyl]-2-[(pyridin-2-yl)methylidene] diazanide as ligand, a typical rigid tridentate donor to synthesize a mononuclear compound, and we report the crystal structure of the complex [Co(C13H9N3OCl)2]+(NO3)- 1.5(H2O) (Fig. 1). The coordination environments of Co(III) ions are completed by two ligands with average Co—N bond length of 1.891 Å and Co—O 1.907 Å (Table 1). The ligands adopt almost planar configurations, which are similar to those of two recently published hydrazide structures (Liu et al., 2006 and Cao et al., 2009).

In the crystal, the cobalt complexes are linked through the half-occupied, the full occupied water molecules and the nitrate anion via classic intermolecular O—H···O and O—H···N hydrogen bonds and weak C—H···O hydrogen bonding contacts (Table 2, Fig. 2).

Related literature top

For the structure of bis{4-chloro-N'-[phenyl(2- pyridyl)methylidene]benzohydrazidato}cobalt(III) nitrate methanol disolvate, see: Wu et al. (2010). For a related mononuclear cobalt compound, see: Herchel et al. (2005) and for a bimetallic dicobalt(II) complex, see: Gavrilova et al. (2002). For related structures containing hydrazide groups, see: Liu et al. (2006); Cao et al. (2009).

Experimental top

Preparation of ligand: To the methanol solution of 4-Chlorobenzoic hydrazide (10 mmol, 1.7g) was added dropwise 2-pyridylcarboxylate (10 mmol, 1.1g) after stirring at boiling temperature for 1 hour, the white precipitate formed, which was filtered and dried over P2O5 in vacuum. (yield: 78%).Anal calc (%). for C13 H10 Cl1 N3 O: H 3.88 C 60.13 N 16.18. Found: H 3.76 C 60.34 N 16.87. Preparation of Co(III) complex: A methanolic solution (25 ml) containing the ligand (0.2 mmol, 0.052 g) was added dropwise to Co(NO3)2 6 H2O (0.1 mmol, 0.029 g). After stirring for 15 minutes, the dark solution was filtered. Red block-shaped crystals suitable for single-crystal X-ray diffraction were obtained by evaporating the resulting filtration in air for several days (yield: 54.4%). Anal calc (%). for C26 H22 Cl2 Co N7 O7: H 3.29 C 46.36 N 14.56. Found: H 3.21 C 46.46 N 14.95.

Refinement top

C-bound H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C). The water H atoms were located in a difference Fourier map and refined using distance restraints d(O—H) = 0.85 (1) Å and finally refined as riding with the parent atom with Uiso(H) = 1.2Ueq(O).

Structure description top

We used a new ligand, 4-chloride-benzoylcarbohydrazide, to synthesize the title cobalt(III) complex (Bis[4-chloride-benzoylcarbohydrazido] cobalt(III) nitrate sesquihydrate). A related ethanol disolvate structure was recently published where we focussed on magnetic properties for this kind of cobalt(III) complex (Wu et al., 2010). As a part of our ongoing investigations in this field we have synthesized the title compound and present its crystal structure here. For the title compound, we used 2(E)-1-[(4-chlorophenyl)carbonyl]-2-[(pyridin-2-yl)methylidene] diazanide as ligand, a typical rigid tridentate donor to synthesize a mononuclear compound, and we report the crystal structure of the complex [Co(C13H9N3OCl)2]+(NO3)- 1.5(H2O) (Fig. 1). The coordination environments of Co(III) ions are completed by two ligands with average Co—N bond length of 1.891 Å and Co—O 1.907 Å (Table 1). The ligands adopt almost planar configurations, which are similar to those of two recently published hydrazide structures (Liu et al., 2006 and Cao et al., 2009).

In the crystal, the cobalt complexes are linked through the half-occupied, the full occupied water molecules and the nitrate anion via classic intermolecular O—H···O and O—H···N hydrogen bonds and weak C—H···O hydrogen bonding contacts (Table 2, Fig. 2).

For the structure of bis{4-chloro-N'-[phenyl(2- pyridyl)methylidene]benzohydrazidato}cobalt(III) nitrate methanol disolvate, see: Wu et al. (2010). For a related mononuclear cobalt compound, see: Herchel et al. (2005) and for a bimetallic dicobalt(II) complex, see: Gavrilova et al. (2002). For related structures containing hydrazide groups, see: Liu et al. (2006); Cao et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The thermal ellipsoids were drawn at 30% probability level using PLATON (Spek, 2009).
[Figure 2] Fig. 2. A section of the crystal packing with the hydrogen bonding indicated as dashed lines.
Bis[4-chloro-N'-(2-pyridylmethylidene)benzohydrazidato]cobalt(III) nitrate sesquihydrate top
Crystal data top
[Co(C13H9ClN3O)2]NO3·1.5H2OF(000) = 1356
Mr = 665.33Dx = 1.547 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 5210 reflections
a = 14.198 (10) Åθ = 2.5–50.3°
b = 10.876 (7) ŵ = 0.84 mm1
c = 18.553 (13) ÅT = 293 K
β = 94.196 (12)°Block, dark-red
V = 2857 (3) Å30.32 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed tube3527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: ψ scan
(SADABS; Bruker, 1997)
h = 1616
Tmin = 0.765, Tmax = 0.862k = 1210
13702 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0924P)2 + 0.4119P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.70 e Å3
5 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(C13H9ClN3O)2]NO3·1.5H2OV = 2857 (3) Å3
Mr = 665.33Z = 4
Monoclinic, P2/nMo Kα radiation
a = 14.198 (10) ŵ = 0.84 mm1
b = 10.876 (7) ÅT = 293 K
c = 18.553 (13) Å0.32 × 0.22 × 0.18 mm
β = 94.196 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5019 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 1997)
3527 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.862Rint = 0.042
13702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0555 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
5019 reflectionsΔρmin = 0.45 e Å3
388 parameters
Special details top

Experimental. The water oxygen atom O7 showed an approximate double value of the isotropic displacement parameter of water oxygen O6 (0.347 vs. 0.158). Therefore we set the site occupancy of O7 to 1/2 and refined the solvent water and the nitrate anion with anisotropic displacement parameters.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.62443 (4)0.72407 (5)0.45042 (3)0.0370 (2)
C10.6243 (3)0.7598 (4)0.2917 (2)0.0483 (11)
H1A0.62350.84440.29890.058*
C20.6240 (3)0.7152 (4)0.2223 (2)0.0570 (12)
H2A0.62310.76970.18360.068*
C30.6250 (3)0.5917 (5)0.2099 (2)0.0564 (12)
H3A0.62520.56100.16310.068*
C40.6257 (3)0.5138 (4)0.2681 (2)0.0512 (11)
H4A0.62680.42920.26100.061*
C50.6249 (3)0.5610 (4)0.3374 (2)0.0418 (9)
C60.6225 (3)0.4894 (4)0.4023 (2)0.0415 (10)
H6A0.62200.40390.40270.050*
C70.6191 (3)0.6008 (4)0.5726 (2)0.0390 (9)
C80.6173 (3)0.5700 (4)0.6503 (2)0.0384 (9)
C90.6228 (3)0.4484 (4)0.6718 (2)0.0490 (11)
H9A0.62660.38700.63730.059*
C100.6229 (3)0.4173 (4)0.7431 (2)0.0526 (11)
H10A0.62710.33520.75700.063*
C110.6168 (3)0.5066 (4)0.7938 (2)0.0479 (11)
C120.6086 (3)0.6291 (4)0.7744 (2)0.0579 (12)
H12A0.60290.68950.80930.069*
C130.6090 (3)0.6601 (4)0.7025 (2)0.0530 (11)
H13A0.60360.74210.68870.064*
C140.8270 (3)0.6589 (4)0.4748 (2)0.0476 (10)
H14A0.80980.57660.47750.057*
C150.9209 (3)0.6903 (5)0.4849 (2)0.0561 (12)
H15A0.96590.62950.49520.067*
C160.9482 (3)0.8086 (5)0.4799 (3)0.0600 (12)
H16A1.01180.82960.48600.072*
C170.8803 (3)0.8982 (4)0.4656 (2)0.0565 (12)
H17A0.89770.98030.46210.068*
C180.7860 (3)0.8647 (4)0.4565 (2)0.0440 (10)
C190.7070 (3)0.9470 (4)0.4422 (2)0.0483 (10)
H19A0.71401.03110.43550.058*
C200.4752 (3)0.8648 (4)0.4255 (2)0.0424 (10)
C210.3756 (3)0.9004 (4)0.4079 (2)0.0441 (10)
C220.3531 (4)1.0132 (4)0.3757 (3)0.0670 (14)
H22A0.40101.06880.36770.080*
C230.2620 (4)1.0433 (5)0.3557 (3)0.0745 (16)
H23A0.24801.11850.33350.089*
C240.1905 (3)0.9620 (5)0.3684 (3)0.0631 (13)
C250.2097 (3)0.8526 (4)0.4026 (3)0.0611 (13)
H25A0.16080.79970.41260.073*
C260.3019 (3)0.8217 (4)0.4219 (2)0.0520 (11)
H26A0.31520.74690.44480.062*
N20.6211 (2)0.5548 (3)0.45984 (16)0.0360 (7)
N30.6194 (2)0.5074 (3)0.52737 (16)0.0398 (8)
N40.7595 (2)0.7441 (3)0.46134 (16)0.0396 (8)
N50.6262 (2)0.8936 (3)0.43946 (16)0.0397 (8)
N60.5418 (2)0.9507 (3)0.42431 (19)0.0464 (9)
N10.6257 (2)0.6854 (3)0.34889 (17)0.0398 (8)
O20.4919 (2)0.7504 (2)0.43905 (15)0.0430 (7)
O10.6200 (2)0.7154 (2)0.55317 (14)0.0421 (7)
Cl20.07430 (10)0.99916 (16)0.34145 (10)0.0988 (6)
Cl10.61734 (11)0.46595 (13)0.88446 (6)0.0751 (4)
N70.6640 (3)0.2922 (4)0.0902 (3)0.0703 (12)
O30.6977 (6)0.3291 (6)0.1463 (4)0.199 (3)
O40.6469 (4)0.3662 (5)0.0448 (3)0.134 (2)
O50.6521 (4)0.1837 (4)0.0843 (3)0.1204 (17)
O60.6525 (4)0.0520 (6)0.2242 (4)0.216 (4)
H610.65560.06300.17910.259*
H620.65620.11310.25290.259*
O70.5975 (6)0.1822 (9)0.3446 (9)0.193 (7)0.50
H720.59560.13600.38140.231*0.50
H710.54650.17450.31800.231*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0475 (4)0.0276 (3)0.0361 (3)0.0045 (2)0.0047 (2)0.0015 (2)
C10.056 (3)0.046 (3)0.043 (2)0.000 (2)0.005 (2)0.010 (2)
C20.069 (3)0.060 (3)0.041 (3)0.002 (2)0.000 (2)0.012 (2)
C30.069 (3)0.064 (3)0.036 (2)0.001 (2)0.002 (2)0.003 (2)
C40.061 (3)0.051 (3)0.041 (2)0.002 (2)0.005 (2)0.008 (2)
C50.046 (2)0.038 (2)0.041 (2)0.0017 (18)0.0039 (18)0.0005 (18)
C60.050 (3)0.028 (2)0.046 (2)0.0014 (17)0.0017 (19)0.0037 (18)
C70.037 (2)0.041 (2)0.040 (2)0.0072 (17)0.0034 (17)0.0026 (18)
C80.041 (2)0.036 (2)0.037 (2)0.0077 (17)0.0002 (17)0.0015 (17)
C90.072 (3)0.038 (2)0.037 (2)0.003 (2)0.005 (2)0.0026 (19)
C100.080 (3)0.037 (2)0.042 (2)0.006 (2)0.008 (2)0.0050 (19)
C110.055 (3)0.051 (3)0.037 (2)0.003 (2)0.0004 (19)0.004 (2)
C120.081 (3)0.050 (3)0.044 (3)0.001 (2)0.010 (2)0.010 (2)
C130.074 (3)0.042 (3)0.043 (3)0.005 (2)0.006 (2)0.001 (2)
C140.058 (3)0.041 (3)0.043 (2)0.002 (2)0.003 (2)0.0096 (19)
C150.048 (3)0.065 (3)0.055 (3)0.000 (2)0.001 (2)0.008 (2)
C160.049 (3)0.068 (3)0.062 (3)0.009 (2)0.002 (2)0.001 (3)
C170.060 (3)0.051 (3)0.059 (3)0.020 (2)0.004 (2)0.005 (2)
C180.056 (3)0.036 (2)0.040 (2)0.009 (2)0.0058 (19)0.0025 (18)
C190.063 (3)0.034 (2)0.049 (3)0.010 (2)0.008 (2)0.0012 (19)
C200.055 (3)0.031 (2)0.042 (2)0.0000 (19)0.0076 (19)0.0006 (18)
C210.051 (3)0.031 (2)0.051 (3)0.0004 (18)0.0085 (19)0.0012 (19)
C220.056 (3)0.048 (3)0.097 (4)0.002 (2)0.001 (3)0.017 (3)
C230.060 (3)0.059 (3)0.103 (4)0.009 (3)0.001 (3)0.027 (3)
C240.051 (3)0.062 (3)0.075 (3)0.009 (2)0.002 (2)0.000 (3)
C250.053 (3)0.050 (3)0.082 (4)0.007 (2)0.016 (2)0.005 (3)
C260.058 (3)0.038 (2)0.061 (3)0.007 (2)0.012 (2)0.001 (2)
N20.0427 (19)0.0295 (17)0.0358 (18)0.0042 (14)0.0018 (14)0.0020 (14)
N30.054 (2)0.0321 (18)0.0338 (18)0.0053 (15)0.0054 (15)0.0006 (14)
N40.052 (2)0.0350 (19)0.0312 (17)0.0071 (15)0.0004 (15)0.0032 (14)
N50.047 (2)0.0315 (18)0.0403 (19)0.0031 (16)0.0040 (15)0.0002 (14)
N60.054 (2)0.0316 (19)0.054 (2)0.0037 (17)0.0091 (17)0.0000 (16)
N10.045 (2)0.0368 (19)0.0374 (18)0.0040 (15)0.0019 (14)0.0046 (15)
O20.0511 (17)0.0291 (15)0.0494 (17)0.0049 (12)0.0083 (13)0.0005 (12)
O10.0580 (18)0.0281 (15)0.0407 (15)0.0045 (12)0.0066 (13)0.0002 (12)
Cl20.0549 (9)0.1056 (13)0.1344 (15)0.0108 (8)0.0029 (9)0.0189 (10)
Cl10.1181 (12)0.0727 (9)0.0344 (6)0.0010 (8)0.0045 (6)0.0036 (6)
N70.097 (4)0.053 (3)0.058 (3)0.008 (2)0.013 (2)0.015 (2)
O30.321 (10)0.144 (6)0.126 (5)0.035 (6)0.016 (6)0.042 (4)
O40.151 (5)0.097 (4)0.147 (5)0.023 (3)0.030 (3)0.062 (4)
O50.156 (5)0.063 (3)0.136 (4)0.002 (3)0.031 (3)0.022 (3)
O60.194 (6)0.222 (8)0.216 (7)0.131 (6)0.096 (5)0.133 (6)
O70.077 (6)0.087 (7)0.41 (2)0.015 (5)0.043 (9)0.138 (10)
Geometric parameters (Å, º) top
Co1—N21.850 (3)C14—H14A0.9300
Co1—N51.855 (3)C15—C161.349 (7)
Co1—O21.899 (3)C15—H15A0.9300
Co1—O11.914 (3)C16—C171.384 (7)
Co1—N41.926 (4)C16—H16A0.9300
Co1—N11.931 (3)C17—C181.385 (6)
C1—N11.334 (5)C17—H17A0.9300
C1—C21.375 (6)C18—N41.369 (5)
C1—H1A0.9300C18—C191.444 (6)
C2—C31.363 (6)C19—N51.283 (5)
C2—H2A0.9300C19—H19A0.9300
C3—C41.372 (6)C20—O21.287 (4)
C3—H3A0.9300C20—N61.331 (5)
C4—C51.385 (6)C20—C211.479 (6)
C4—H4A0.9300C21—C221.392 (6)
C5—N11.369 (5)C21—C261.392 (6)
C5—C61.438 (6)C22—C231.359 (7)
C6—N21.284 (5)C22—H22A0.9300
C6—H6A0.9300C23—C241.380 (7)
C7—O11.297 (5)C23—H23A0.9300
C7—N31.318 (5)C24—C251.367 (7)
C7—C81.483 (5)C24—Cl21.736 (5)
C8—C91.381 (6)C25—C261.374 (6)
C8—C131.388 (6)C25—H25A0.9300
C9—C101.366 (6)C26—H26A0.9300
C9—H9A0.9300N2—N31.357 (4)
C10—C111.359 (6)N5—N61.362 (5)
C10—H10A0.9300N7—O41.176 (6)
C11—C121.383 (6)N7—O31.185 (7)
C11—Cl11.738 (4)N7—O51.197 (6)
C12—C131.376 (6)O6—H610.8498
C12—H12A0.9300O6—H620.8501
C13—H13A0.9300O7—H720.8501
C14—N41.344 (5)O7—H710.8499
C14—C151.376 (6)
N2—Co1—N5178.95 (14)C16—C15—C14120.5 (5)
N2—Co1—O297.39 (12)C16—C15—H15A119.7
N5—Co1—O281.92 (13)C14—C15—H15A119.7
N2—Co1—O181.59 (12)C15—C16—C17119.1 (4)
N5—Co1—O199.20 (12)C15—C16—H16A120.5
O2—Co1—O190.78 (12)C17—C16—H16A120.5
N2—Co1—N497.76 (13)C16—C17—C18119.4 (4)
N5—Co1—N482.94 (14)C16—C17—H17A120.3
O2—Co1—N4164.81 (13)C18—C17—H17A120.3
O1—Co1—N490.33 (13)N4—C18—C17120.8 (4)
N2—Co1—N182.97 (13)N4—C18—C19113.1 (4)
N5—Co1—N196.22 (13)C17—C18—C19126.1 (4)
O2—Co1—N190.24 (13)N5—C19—C18114.0 (4)
O1—Co1—N1164.53 (13)N5—C19—H19A123.0
N4—Co1—N192.71 (13)C18—C19—H19A123.0
N1—C1—C2122.0 (4)O2—C20—N6124.1 (4)
N1—C1—H1A119.0O2—C20—C21117.1 (3)
C2—C1—H1A119.0N6—C20—C21118.7 (4)
C3—C2—C1120.4 (4)C22—C21—C26118.1 (4)
C3—C2—H2A119.8C22—C21—C20120.8 (4)
C1—C2—H2A119.8C26—C21—C20121.1 (4)
C2—C3—C4118.4 (4)C23—C22—C21120.9 (5)
C2—C3—H3A120.8C23—C22—H22A119.5
C4—C3—H3A120.8C21—C22—H22A119.5
C3—C4—C5120.1 (4)C22—C23—C24119.8 (5)
C3—C4—H4A119.9C22—C23—H23A120.1
C5—C4—H4A119.9C24—C23—H23A120.1
N1—C5—C4120.7 (4)C25—C24—C23120.9 (5)
N1—C5—C6113.9 (3)C25—C24—Cl2119.3 (4)
C4—C5—C6125.4 (4)C23—C24—Cl2119.8 (4)
N2—C6—C5113.5 (4)C24—C25—C26119.2 (4)
N2—C6—H6A123.2C24—C25—H25A120.4
C5—C6—H6A123.2C26—C25—H25A120.4
O1—C7—N3124.3 (3)C25—C26—C21121.1 (4)
O1—C7—C8119.3 (3)C25—C26—H26A119.5
N3—C7—C8116.5 (3)C21—C26—H26A119.5
C9—C8—C13118.7 (4)C6—N2—N3124.0 (3)
C9—C8—C7119.5 (4)C6—N2—Co1118.1 (3)
C13—C8—C7121.8 (4)N3—N2—Co1117.9 (2)
C10—C9—C8120.8 (4)C7—N3—N2107.2 (3)
C10—C9—H9A119.6C14—N4—C18118.5 (4)
C8—C9—H9A119.6C14—N4—Co1129.2 (3)
C11—C10—C9119.9 (4)C18—N4—Co1112.2 (3)
C11—C10—H10A120.1C19—N5—N6124.9 (4)
C9—C10—H10A120.1C19—N5—Co1117.7 (3)
C10—C11—C12121.1 (4)N6—N5—Co1117.2 (2)
C10—C11—Cl1119.5 (3)C20—N6—N5107.0 (3)
C12—C11—Cl1119.4 (3)C1—N1—C5118.4 (4)
C13—C12—C11118.8 (4)C1—N1—Co1130.1 (3)
C13—C12—H12A120.6C5—N1—Co1111.5 (2)
C11—C12—H12A120.6C20—O2—Co1109.6 (2)
C12—C13—C8120.6 (4)C7—O1—Co1109.0 (2)
C12—C13—H13A119.7O4—N7—O3116.5 (6)
C8—C13—H13A119.7O4—N7—O5126.2 (5)
N4—C14—C15121.7 (4)O3—N7—O5117.3 (6)
N4—C14—H14A119.2H61—O6—H62120.0
C15—C14—H14A119.2H72—O7—H71109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O50.852.192.964 (8)151
O6—H62···O70.852.092.804 (16)141
O7—H72···N6i0.852.323.053 (12)145
C14—H14A···O4ii0.932.413.229 (7)146
C17—H17A···O5iii0.932.463.263 (7)145
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y, z+1/2; (iii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C13H9ClN3O)2]NO3·1.5H2O
Mr665.33
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)14.198 (10), 10.876 (7), 18.553 (13)
β (°) 94.196 (12)
V3)2857 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionψ scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.765, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
13702, 5019, 3527
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.05
No. of reflections5019
No. of parameters388
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N21.850 (3)Co1—O11.914 (3)
Co1—N51.855 (3)Co1—N41.926 (4)
Co1—O21.899 (3)Co1—N11.931 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O50.852.192.964 (8)151
O6—H62···O70.852.092.804 (16)141
O7—H72···N6i0.852.323.053 (12)145
C14—H14A···O4ii0.932.413.229 (7)146
C17—H17A···O5iii0.932.463.263 (7)145
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y, z+1/2; (iii) x+3/2, y+1, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21001008) and the Anhui Provincial Office of Science and Technology (Project: Photo-induced Spin Crossover Cluster and Photomagnetic devices).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGavrilova, A., Qin, C. J., Sommer, R., Rheingold, A. & Bosnich, B. (2002). J. Am. Chem. Soc. 124, 1714-1722.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHerchel, R. & Boca, R. (2005). Dalton Trans. pp. 1352–1353.  Web of Science CrossRef Google Scholar
First citationLiu, M.-L., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, G., Ye, H. & Wu, D. (2010). Acta Cryst. E66, m1121.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds