metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nitrato-κ2O,O′)bis­­[N-(tri­phenyl­meth­yl)pyridin-2-amine-κN1]nickel(II)

aInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: zgn25721086@163.com

(Received 12 October 2010; accepted 1 November 2010; online 6 November 2010)

In the title compound, [Ni(NO3)2(C24H20N2)2], the NiII atom has a distorted pseudo-octa­hedral coordination geometry defined by two chelating nitrate groups and two pyridine N atoms of the monodentate N-(triphenyl­meth­yl)pyridin-2-amine ligands. Intra­molecular N—H⋯O hydrogen bonds help to establish the configuration.

Related literature

For the isostructural dichlorido-cobalt(II), -zinc(II) and -cadmium(II) complexes with bis­{2-[(triphenyl­meth­yl)amino]­pyrid­yl} ligands, see: Fang et al. (2006[Fang, Y., Huang, C.-Y., Zhu, Z.-M., Yu, X.-L. & You, W.-S. (2006). Acta Cryst. E62, m3347-m3348.]); Zhang et al. (2007[Zhang, G.-N., Fang, Y., Huang, C.-Y. & You, W.-S. (2007). Acta Cryst. E63, m2247.]) and Zhang (2008[Zhang, G.-N. (2008). Acta Cryst. E64, m357.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Ni(NO3)2(C24H20N2)2]

  • Mr = 855.57

  • Monoclinic, P 21 /n

  • a = 10.287 (2) Å

  • b = 23.462 (5) Å

  • c = 17.868 (4) Å

  • β = 105.266 (3)°

  • V = 4160.3 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.53 × 0.52 × 0.47 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.733, Tmax = 0.791

  • 20535 measured reflections

  • 7279 independent reflections

  • 4928 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.01

  • 7279 reflections

  • 550 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O5 2.050 (2)
Ni1—O2 2.0607 (19)
Ni1—N3 2.061 (2)
Ni1—N4 2.062 (2)
Ni1—O4 2.133 (2)
Ni1—O1 2.150 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O2 0.86 2.16 2.994 (3) 165
N6—H6A⋯O5 0.86 2.22 3.048 (3) 162

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The first example of a distorted tetrahedral metalorganic title related complex, dichloridobis{2-[(triphenylmethyl)amino]pyridyl}cobalt(II), was reported by Fang et al. (2006). We continued the study by replacement of cobalt(II) with zinc(II) (Zhang et al., 2007) and cadmium(II) (Zhang, 2008) as the coordination centre. For the title complex we used two nitrato instead of chlorido ligands in order to study the geometric and packing differences for this structure type.

The molecular structure of (I) is shown in Fig.1. In the title compound, the Ni1 atom is distorted pseudo-tetrahedral coordinated by pyridyl atoms N3, N4 and two pairs of nitrato oxygen atoms O1/O2 and O4/O5 (Table 1). The O1—Ni1—O5 and O2—Ni1—O4 angles are observed: 94.26 (9)° and 91.56 (9)°. These two angles are less than the Cl—Co—Cl, Cl—Zn—Cl and Cl—Cd—Cl angles in the literature (121.18 (3)° for Cl-Cd–Cl). The large volume of the two 2-[N-(triphenylmethyl)imino]pyridyl ligands determine the crystal packing of the Ni(II) title complex and related dichlorido-Co(II) (Fang et al., 2006), dichlorido-Zn(II) (Zhang et al., 2007) and dichlorido-Cd(II) (Zhang, 2008) structures. The four compounds crystallize in the monoclinic space group P21/n and exhibit similar unit-cell parameters. Packing motifs of unit cell projections down the a axis are shown in Zhang et al. (2007) and Zhang (2008) for this structure type. Intramolecular N—H···O hydrogen bonds help to establish the conformation of the title complex (Table 2). Similar properties are observed with N—H···Cl hydrogen bonds in the dichlorido complexes.

Related literature top

For the isostructural dichlorido-cobalt(II), -zinc(II) and -cadmium(II) complexes with bis{2-[(triphenylmethyl)amino]pyridyl} ligands, see: Fang et al. (2006); Zhang et al. (2007) and Zhang (2008), respectively.

Experimental top

2-[N-(triphenylmethyl)imino]pyridyl ligand (0.03 g, 0.09 mmol) and Ni(NO3) 2(0.025 g, 0.14 mmol) were dissolved in 5 ml and 10 ml of ethanol respectively, then mixed. The mixed solution was stirred about 30 minutes and covered with hexane (10 ml). After two months, blue crystals were obtained.

Refinement top

H atoms were positioned geometrically, with N—H=0.86 Å(for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The first example of a distorted tetrahedral metalorganic title related complex, dichloridobis{2-[(triphenylmethyl)amino]pyridyl}cobalt(II), was reported by Fang et al. (2006). We continued the study by replacement of cobalt(II) with zinc(II) (Zhang et al., 2007) and cadmium(II) (Zhang, 2008) as the coordination centre. For the title complex we used two nitrato instead of chlorido ligands in order to study the geometric and packing differences for this structure type.

The molecular structure of (I) is shown in Fig.1. In the title compound, the Ni1 atom is distorted pseudo-tetrahedral coordinated by pyridyl atoms N3, N4 and two pairs of nitrato oxygen atoms O1/O2 and O4/O5 (Table 1). The O1—Ni1—O5 and O2—Ni1—O4 angles are observed: 94.26 (9)° and 91.56 (9)°. These two angles are less than the Cl—Co—Cl, Cl—Zn—Cl and Cl—Cd—Cl angles in the literature (121.18 (3)° for Cl-Cd–Cl). The large volume of the two 2-[N-(triphenylmethyl)imino]pyridyl ligands determine the crystal packing of the Ni(II) title complex and related dichlorido-Co(II) (Fang et al., 2006), dichlorido-Zn(II) (Zhang et al., 2007) and dichlorido-Cd(II) (Zhang, 2008) structures. The four compounds crystallize in the monoclinic space group P21/n and exhibit similar unit-cell parameters. Packing motifs of unit cell projections down the a axis are shown in Zhang et al. (2007) and Zhang (2008) for this structure type. Intramolecular N—H···O hydrogen bonds help to establish the conformation of the title complex (Table 2). Similar properties are observed with N—H···Cl hydrogen bonds in the dichlorido complexes.

For the isostructural dichlorido-cobalt(II), -zinc(II) and -cadmium(II) complexes with bis{2-[(triphenylmethyl)amino]pyridyl} ligands, see: Fang et al. (2006); Zhang et al. (2007) and Zhang (2008), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsids at the 30% probability level. H atoms have been omitted.
Bis(nitrato-κ2O,O')bis[N-(triphenylmethyl)pyridin- 2-amine-κN1]nickel(II) top
Crystal data top
[Ni(NO3)2(C24H20N2)2]F(000) = 1784
Mr = 855.57Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.287 (2) ÅCell parameters from 3946 reflections
b = 23.462 (5) Åθ = 2.2–21.3°
c = 17.868 (4) ŵ = 0.53 mm1
β = 105.266 (3)°T = 293 K
V = 4160.3 (14) Å3Plate, blue
Z = 40.53 × 0.52 × 0.47 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
7279 independent reflections
Radiation source: fine-focus sealed tube4928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
CCD scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1112
Tmin = 0.733, Tmax = 0.791k = 2727
20535 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5431P]
where P = (Fo2 + 2Fc2)/3
7279 reflections(Δ/σ)max = 0.001
550 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(NO3)2(C24H20N2)2]V = 4160.3 (14) Å3
Mr = 855.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.287 (2) ŵ = 0.53 mm1
b = 23.462 (5) ÅT = 293 K
c = 17.868 (4) Å0.53 × 0.52 × 0.47 mm
β = 105.266 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4928 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.791Rint = 0.041
20535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
7279 reflectionsΔρmin = 0.30 e Å3
550 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.68497 (3)0.181447 (15)0.17328 (2)0.04318 (13)
O10.7259 (2)0.21664 (10)0.07075 (13)0.0656 (6)
O20.83125 (19)0.24336 (8)0.18590 (12)0.0556 (5)
O30.8942 (3)0.27540 (12)0.08652 (16)0.0931 (9)
O40.8238 (2)0.11640 (10)0.16253 (14)0.0660 (6)
O50.6099 (2)0.10632 (8)0.12069 (11)0.0545 (5)
O60.7416 (3)0.03988 (11)0.09769 (16)0.0996 (9)
C10.4878 (3)0.27695 (11)0.18500 (15)0.0393 (6)
C20.3571 (3)0.29778 (12)0.17711 (17)0.0475 (7)
H2A0.34410.33160.20120.057*
C30.2494 (3)0.26823 (13)0.13411 (18)0.0530 (8)
H3A0.16260.28190.12890.064*
C40.2688 (3)0.21793 (13)0.09802 (18)0.0571 (8)
H4A0.19640.19790.06690.068*
C50.3968 (3)0.19888 (13)0.10973 (17)0.0526 (8)
H5A0.41020.16490.08600.063*
C60.6152 (3)0.13579 (11)0.32002 (16)0.0404 (6)
C70.6306 (3)0.13566 (13)0.39981 (16)0.0492 (7)
H7A0.56860.11670.42040.059*
C80.7370 (3)0.16348 (14)0.44772 (18)0.0570 (8)
H8A0.74760.16340.50100.068*
C90.8285 (3)0.19170 (14)0.41694 (19)0.0636 (9)
H9A0.90240.21030.44880.076*
C100.8075 (3)0.19145 (13)0.33879 (17)0.0541 (8)
H10A0.86920.21060.31810.065*
C110.6099 (3)0.35901 (11)0.26601 (16)0.0413 (7)
C120.3994 (3)0.07672 (11)0.28363 (15)0.0407 (7)
C130.5717 (3)0.41085 (12)0.21192 (17)0.0453 (7)
C140.5979 (3)0.46533 (13)0.2424 (2)0.0597 (8)
H14A0.63780.46990.29520.072*
C150.5654 (4)0.51291 (15)0.1954 (2)0.0732 (10)
H15A0.58290.54920.21670.088*
C160.5082 (4)0.50679 (18)0.1184 (3)0.0794 (11)
H16A0.48540.53890.08710.095*
C170.4839 (4)0.45370 (18)0.0866 (2)0.0762 (11)
H17A0.44520.44970.03370.091*
C180.5166 (3)0.40572 (14)0.13285 (19)0.0586 (8)
H18A0.50130.36970.11050.070*
C190.5259 (3)0.35298 (12)0.32558 (16)0.0413 (7)
N10.8190 (3)0.24611 (12)0.11230 (18)0.0611 (7)
N20.7279 (3)0.08570 (13)0.12585 (16)0.0633 (7)
N30.5067 (2)0.22612 (9)0.15372 (12)0.0408 (5)
N40.7028 (2)0.16517 (9)0.28896 (13)0.0411 (5)
N50.6013 (2)0.30583 (9)0.22205 (13)0.0428 (6)
H5B0.67650.29120.21930.051*
N60.5169 (2)0.10664 (9)0.26913 (13)0.0425 (6)
H6A0.52360.10540.22220.051*
C200.4470 (3)0.39598 (13)0.34225 (18)0.0525 (8)
H20A0.43660.42980.31420.063*
C210.3834 (3)0.38893 (16)0.4007 (2)0.0714 (10)
H21A0.33130.41840.41210.086*
C220.3957 (3)0.33925 (16)0.4420 (2)0.0686 (10)
H22A0.35250.33500.48130.082*
C230.4724 (3)0.29587 (15)0.42496 (18)0.0589 (8)
H23A0.48110.26190.45260.071*
C240.5366 (3)0.30271 (12)0.36678 (17)0.0484 (7)
H24A0.58790.27300.35520.058*
C250.7599 (3)0.36597 (12)0.31007 (17)0.0451 (7)
C260.8008 (3)0.37622 (16)0.3884 (2)0.0721 (10)
H26A0.73710.37810.41680.087*
C270.9352 (4)0.3837 (2)0.4253 (2)0.1057 (16)
H27A0.96140.39170.47810.127*
C281.0291 (4)0.3796 (2)0.3850 (3)0.1009 (15)
H28A1.12000.38280.41060.121*
C290.9910 (4)0.37064 (17)0.3065 (3)0.0862 (12)
H29A1.05560.36850.27870.103*
C300.8563 (3)0.36475 (13)0.2689 (2)0.0624 (9)
H30A0.83010.35990.21530.075*
C310.3252 (3)0.11809 (12)0.32560 (16)0.0422 (7)
C320.2881 (3)0.10467 (13)0.39223 (18)0.0539 (8)
H32A0.30920.06900.41490.065*
C330.2197 (3)0.14399 (15)0.4256 (2)0.0660 (9)
H33A0.19530.13440.47060.079*
C340.1878 (3)0.19659 (15)0.3933 (2)0.0644 (9)
H34A0.14160.22270.41600.077*
C350.2242 (3)0.21059 (14)0.3277 (2)0.0647 (9)
H35A0.20230.24620.30510.078*
C360.2935 (3)0.17186 (13)0.29476 (19)0.0554 (8)
H36A0.31960.18220.25060.066*
C370.3108 (3)0.06214 (11)0.20148 (16)0.0426 (7)
C380.1758 (3)0.07570 (13)0.17557 (18)0.0530 (8)
H38A0.13250.09300.20910.064*
C390.1050 (3)0.06387 (15)0.1007 (2)0.0650 (9)
H39A0.01380.07280.08420.078*
C400.1669 (4)0.03915 (14)0.0502 (2)0.0655 (9)
H40A0.11930.03280.00110.079*
C410.2990 (3)0.02375 (13)0.07534 (19)0.0612 (9)
H41A0.34140.00640.04130.073*
C420.3699 (3)0.03371 (12)0.15082 (17)0.0519 (8)
H42A0.45860.02120.16820.062*
C430.4392 (3)0.02037 (11)0.32687 (16)0.0423 (7)
C440.3388 (3)0.01635 (13)0.33673 (17)0.0530 (8)
H44A0.24880.00650.31650.064*
C450.3707 (4)0.06708 (14)0.3760 (2)0.0665 (9)
H45A0.30210.09060.38290.080*
C460.5015 (4)0.08334 (15)0.4049 (2)0.0716 (10)
H46A0.52250.11730.43210.086*
C470.6017 (4)0.04883 (15)0.3930 (2)0.0705 (10)
H47A0.69120.05990.41140.085*
C480.5707 (3)0.00223 (13)0.35413 (18)0.0562 (8)
H48A0.63990.02490.34610.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0444 (2)0.0463 (2)0.0411 (2)0.00194 (17)0.01515 (17)0.00311 (17)
O10.0695 (15)0.0810 (16)0.0498 (14)0.0109 (13)0.0223 (12)0.0027 (12)
O20.0553 (13)0.0595 (13)0.0568 (15)0.0055 (10)0.0233 (11)0.0067 (11)
O30.098 (2)0.099 (2)0.099 (2)0.0251 (16)0.0539 (17)0.0166 (16)
O40.0573 (14)0.0686 (15)0.0732 (16)0.0058 (12)0.0190 (12)0.0129 (13)
O50.0578 (14)0.0532 (13)0.0527 (13)0.0010 (11)0.0152 (11)0.0071 (10)
O60.128 (2)0.0669 (17)0.102 (2)0.0222 (16)0.0274 (17)0.0336 (16)
C10.0405 (16)0.0413 (16)0.0351 (16)0.0014 (13)0.0085 (13)0.0023 (13)
C20.0410 (18)0.0467 (17)0.0522 (19)0.0032 (14)0.0077 (14)0.0053 (14)
C30.0402 (18)0.059 (2)0.054 (2)0.0035 (15)0.0021 (14)0.0142 (16)
C40.049 (2)0.056 (2)0.054 (2)0.0098 (16)0.0073 (15)0.0042 (16)
C50.054 (2)0.0521 (19)0.0468 (19)0.0041 (15)0.0043 (15)0.0056 (15)
C60.0386 (16)0.0419 (16)0.0406 (17)0.0023 (13)0.0104 (13)0.0033 (13)
C70.0486 (18)0.0594 (19)0.0399 (18)0.0063 (15)0.0124 (14)0.0010 (15)
C80.057 (2)0.073 (2)0.0378 (18)0.0028 (17)0.0073 (15)0.0057 (16)
C90.051 (2)0.086 (3)0.047 (2)0.0190 (17)0.0004 (15)0.0067 (17)
C100.0410 (17)0.071 (2)0.049 (2)0.0131 (15)0.0099 (15)0.0019 (16)
C110.0383 (16)0.0398 (16)0.0454 (17)0.0019 (12)0.0101 (13)0.0033 (13)
C120.0421 (16)0.0418 (16)0.0397 (16)0.0035 (13)0.0132 (13)0.0011 (13)
C130.0384 (16)0.0505 (18)0.0488 (19)0.0000 (13)0.0144 (14)0.0034 (15)
C140.070 (2)0.048 (2)0.061 (2)0.0015 (16)0.0172 (17)0.0029 (17)
C150.084 (3)0.050 (2)0.096 (3)0.0018 (18)0.043 (2)0.010 (2)
C160.085 (3)0.068 (3)0.095 (3)0.018 (2)0.042 (2)0.034 (2)
C170.080 (3)0.091 (3)0.057 (2)0.001 (2)0.0185 (19)0.027 (2)
C180.061 (2)0.060 (2)0.057 (2)0.0063 (16)0.0188 (17)0.0061 (17)
C190.0325 (15)0.0474 (17)0.0432 (17)0.0051 (13)0.0087 (12)0.0058 (14)
N10.0648 (19)0.0613 (18)0.066 (2)0.0014 (15)0.0325 (16)0.0043 (15)
N20.078 (2)0.0576 (19)0.0553 (18)0.0114 (17)0.0187 (16)0.0052 (15)
N30.0425 (14)0.0441 (14)0.0345 (13)0.0003 (11)0.0080 (11)0.0007 (11)
N40.0339 (13)0.0483 (14)0.0403 (14)0.0022 (10)0.0085 (11)0.0015 (11)
N50.0343 (13)0.0444 (14)0.0501 (15)0.0017 (10)0.0116 (11)0.0081 (11)
N60.0426 (13)0.0522 (14)0.0340 (13)0.0088 (11)0.0125 (11)0.0026 (11)
C200.0459 (18)0.0470 (18)0.069 (2)0.0013 (14)0.0224 (16)0.0036 (15)
C210.058 (2)0.066 (2)0.103 (3)0.0010 (18)0.044 (2)0.016 (2)
C220.062 (2)0.084 (3)0.072 (2)0.017 (2)0.0383 (19)0.011 (2)
C230.0515 (19)0.069 (2)0.056 (2)0.0105 (17)0.0125 (16)0.0095 (17)
C240.0420 (17)0.0520 (19)0.0526 (19)0.0002 (14)0.0149 (14)0.0020 (15)
C250.0407 (16)0.0427 (17)0.0506 (19)0.0059 (13)0.0098 (14)0.0013 (14)
C260.050 (2)0.108 (3)0.053 (2)0.0233 (19)0.0054 (16)0.004 (2)
C270.065 (3)0.168 (5)0.070 (3)0.044 (3)0.007 (2)0.021 (3)
C280.042 (2)0.139 (4)0.107 (4)0.023 (2)0.005 (2)0.023 (3)
C290.048 (2)0.101 (3)0.115 (4)0.017 (2)0.030 (2)0.011 (3)
C300.0460 (19)0.069 (2)0.075 (2)0.0109 (16)0.0199 (17)0.0081 (18)
C310.0402 (16)0.0474 (17)0.0379 (16)0.0058 (13)0.0084 (13)0.0039 (14)
C320.0589 (19)0.0527 (19)0.053 (2)0.0003 (15)0.0193 (16)0.0007 (15)
C330.070 (2)0.077 (3)0.059 (2)0.0062 (19)0.0326 (18)0.0098 (19)
C340.058 (2)0.061 (2)0.080 (3)0.0018 (17)0.0297 (19)0.0191 (19)
C350.066 (2)0.050 (2)0.079 (3)0.0017 (17)0.0206 (19)0.0037 (18)
C360.064 (2)0.051 (2)0.055 (2)0.0001 (16)0.0232 (16)0.0024 (15)
C370.0432 (17)0.0407 (16)0.0442 (17)0.0090 (13)0.0122 (13)0.0029 (13)
C380.0500 (19)0.0558 (19)0.052 (2)0.0069 (15)0.0112 (15)0.0018 (15)
C390.048 (2)0.072 (2)0.065 (2)0.0051 (17)0.0020 (17)0.0020 (19)
C400.073 (3)0.068 (2)0.047 (2)0.0184 (19)0.0016 (18)0.0012 (17)
C410.068 (2)0.061 (2)0.057 (2)0.0164 (18)0.0189 (18)0.0173 (17)
C420.0513 (19)0.0510 (19)0.052 (2)0.0061 (15)0.0119 (15)0.0088 (15)
C430.0446 (18)0.0426 (16)0.0407 (16)0.0005 (13)0.0128 (13)0.0014 (13)
C440.0511 (19)0.0503 (19)0.057 (2)0.0014 (15)0.0133 (15)0.0083 (16)
C450.081 (3)0.049 (2)0.073 (2)0.0089 (18)0.026 (2)0.0060 (18)
C460.088 (3)0.051 (2)0.072 (3)0.010 (2)0.015 (2)0.0142 (18)
C470.067 (2)0.060 (2)0.081 (3)0.0165 (19)0.0123 (19)0.0123 (19)
C480.052 (2)0.055 (2)0.063 (2)0.0017 (16)0.0175 (16)0.0007 (16)
Geometric parameters (Å, º) top
Ni1—O52.050 (2)N5—H5B0.8600
Ni1—O22.0607 (19)N6—H6A0.8600
Ni1—N32.061 (2)C20—C211.380 (4)
Ni1—N42.062 (2)C20—H20A0.9300
Ni1—O42.133 (2)C21—C221.368 (5)
Ni1—O12.150 (2)C21—H21A0.9300
O1—N11.254 (3)C22—C231.370 (4)
O2—N11.289 (3)C22—H22A0.9300
O3—N11.213 (3)C23—C241.380 (4)
O4—N21.258 (3)C23—H23A0.9300
O5—N21.287 (3)C24—H24A0.9300
O6—N21.211 (3)C25—C261.372 (4)
C1—N31.353 (3)C25—C301.382 (4)
C1—N51.361 (3)C26—C271.377 (5)
C1—C21.403 (3)C26—H26A0.9300
C2—C31.360 (4)C27—C281.353 (6)
C2—H2A0.9300C27—H27A0.9300
C3—C41.384 (4)C28—C291.369 (6)
C3—H3A0.9300C28—H28A0.9300
C4—C51.354 (4)C29—C301.379 (5)
C4—H4A0.9300C29—H29A0.9300
C5—N31.355 (3)C30—H30A0.9300
C5—H5A0.9300C31—C321.379 (4)
C6—N61.354 (3)C31—C361.381 (4)
C6—N41.363 (3)C32—C331.387 (4)
C6—C71.392 (4)C32—H32A0.9300
C7—C81.365 (4)C33—C341.365 (5)
C7—H7A0.9300C33—H33A0.9300
C8—C91.379 (4)C34—C351.362 (5)
C8—H8A0.9300C34—H34A0.9300
C9—C101.356 (4)C35—C361.379 (4)
C9—H9A0.9300C35—H35A0.9300
C10—N41.352 (3)C36—H36A0.9300
C10—H10A0.9300C37—C381.380 (4)
C11—N51.464 (3)C37—C421.387 (4)
C11—C131.539 (4)C38—C391.373 (4)
C11—C191.545 (4)C38—H38A0.9300
C11—C251.545 (4)C39—C401.363 (5)
C12—N61.478 (3)C39—H39A0.9300
C12—C431.532 (4)C40—C411.363 (4)
C12—C311.546 (4)C40—H40A0.9300
C12—C371.549 (4)C41—C421.374 (4)
C13—C181.382 (4)C41—H41A0.9300
C13—C141.388 (4)C42—H42A0.9300
C14—C151.384 (4)C43—C481.379 (4)
C14—H14A0.9300C43—C441.391 (4)
C15—C161.354 (5)C44—C451.377 (4)
C15—H15A0.9300C44—H44A0.9300
C16—C171.364 (5)C45—C461.362 (5)
C16—H16A0.9300C45—H45A0.9300
C17—C181.384 (4)C46—C471.370 (5)
C17—H17A0.9300C46—H46A0.9300
C18—H18A0.9300C47—C481.380 (4)
C19—C201.375 (4)C47—H47A0.9300
C19—C241.379 (4)C48—H48A0.9300
O5—Ni1—O2146.32 (8)C1—N5—C11127.5 (2)
O5—Ni1—N398.53 (9)C1—N5—H5B116.3
O2—Ni1—N3104.58 (8)C11—N5—H5B116.3
O5—Ni1—N4102.92 (8)C6—N6—C12128.5 (2)
O2—Ni1—N498.69 (9)C6—N6—H6A115.7
N3—Ni1—N496.00 (8)C12—N6—H6A115.7
O5—Ni1—O461.58 (8)C19—C20—C21120.0 (3)
O2—Ni1—O491.55 (9)C19—C20—H20A120.0
N3—Ni1—O4159.34 (9)C21—C20—H20A120.0
N4—Ni1—O494.17 (9)C22—C21—C20121.0 (3)
O5—Ni1—O194.26 (9)C22—C21—H21A119.5
O2—Ni1—O161.40 (8)C20—C21—H21A119.5
N3—Ni1—O191.46 (9)C21—C22—C23119.3 (3)
N4—Ni1—O1159.99 (9)C21—C22—H22A120.3
O4—Ni1—O184.95 (9)C23—C22—H22A120.3
N1—O1—Ni189.87 (18)C22—C23—C24119.9 (3)
N1—O2—Ni192.94 (17)C22—C23—H23A120.0
N2—O4—Ni190.24 (17)C24—C23—H23A120.0
N2—O5—Ni193.21 (17)C19—C24—C23120.9 (3)
N3—C1—N5116.2 (2)C19—C24—H24A119.5
N3—C1—C2120.3 (2)C23—C24—H24A119.5
N5—C1—C2123.5 (3)C26—C25—C30118.5 (3)
C3—C2—C1119.7 (3)C26—C25—C11122.4 (3)
C3—C2—H2A120.1C30—C25—C11119.1 (3)
C1—C2—H2A120.1C25—C26—C27120.7 (3)
C2—C3—C4120.2 (3)C25—C26—H26A119.7
C2—C3—H3A119.9C27—C26—H26A119.7
C4—C3—H3A119.9C28—C27—C26120.3 (4)
C5—C4—C3117.6 (3)C28—C27—H27A119.9
C5—C4—H4A121.2C26—C27—H27A119.9
C3—C4—H4A121.2C27—C28—C29120.3 (4)
C4—C5—N3124.3 (3)C27—C28—H28A119.9
C4—C5—H5A117.9C29—C28—H28A119.9
N3—C5—H5A117.9C28—C29—C30119.7 (4)
N6—C6—N4116.0 (2)C28—C29—H29A120.2
N6—C6—C7123.4 (2)C30—C29—H29A120.2
N4—C6—C7120.6 (3)C29—C30—C25120.5 (3)
C8—C7—C6119.8 (3)C29—C30—H30A119.7
C8—C7—H7A120.1C25—C30—H30A119.7
C6—C7—H7A120.1C32—C31—C36117.6 (3)
C7—C8—C9119.9 (3)C32—C31—C12124.0 (3)
C7—C8—H8A120.1C36—C31—C12118.3 (2)
C9—C8—H8A120.1C31—C32—C33120.4 (3)
C10—C9—C8117.9 (3)C31—C32—H32A119.8
C10—C9—H9A121.0C33—C32—H32A119.8
C8—C9—H9A121.0C34—C33—C32120.8 (3)
N4—C10—C9124.3 (3)C34—C33—H33A119.6
N4—C10—H10A117.8C32—C33—H33A119.6
C9—C10—H10A117.8C35—C34—C33119.5 (3)
N5—C11—C13111.5 (2)C35—C34—H34A120.3
N5—C11—C19109.0 (2)C33—C34—H34A120.3
C13—C11—C19114.1 (2)C34—C35—C36119.9 (3)
N5—C11—C25106.0 (2)C34—C35—H35A120.0
C13—C11—C25107.0 (2)C36—C35—H35A120.0
C19—C11—C25108.9 (2)C35—C36—C31121.7 (3)
N6—C12—C43112.1 (2)C35—C36—H36A119.1
N6—C12—C31108.5 (2)C31—C36—H36A119.1
C43—C12—C31113.4 (2)C38—C37—C42117.9 (3)
N6—C12—C37104.1 (2)C38—C37—C12123.8 (3)
C43—C12—C37107.5 (2)C42—C37—C12118.3 (3)
C31—C12—C37110.8 (2)C39—C38—C37120.6 (3)
C18—C13—C14117.8 (3)C39—C38—H38A119.7
C18—C13—C11122.8 (3)C37—C38—H38A119.7
C14—C13—C11119.4 (3)C40—C39—C38120.7 (3)
C15—C14—C13120.9 (3)C40—C39—H39A119.7
C15—C14—H14A119.6C38—C39—H39A119.7
C13—C14—H14A119.6C41—C40—C39119.6 (3)
C16—C15—C14120.2 (4)C41—C40—H40A120.2
C16—C15—H15A119.9C39—C40—H40A120.2
C14—C15—H15A119.9C40—C41—C42120.2 (3)
C15—C16—C17120.2 (4)C40—C41—H41A119.9
C15—C16—H16A119.9C42—C41—H41A119.9
C17—C16—H16A119.9C41—C42—C37120.8 (3)
C16—C17—C18120.4 (4)C41—C42—H42A119.6
C16—C17—H17A119.8C37—C42—H42A119.6
C18—C17—H17A119.8C48—C43—C44117.1 (3)
C13—C18—C17120.6 (3)C48—C43—C12123.5 (2)
C13—C18—H18A119.7C44—C43—C12119.3 (2)
C17—C18—H18A119.7C45—C44—C43120.9 (3)
C20—C19—C24118.7 (3)C45—C44—H44A119.5
C20—C19—C11123.5 (3)C43—C44—H44A119.5
C24—C19—C11117.7 (2)C46—C45—C44121.0 (3)
O3—N1—O1123.5 (3)C46—C45—H45A119.5
O3—N1—O2121.0 (3)C44—C45—H45A119.5
O1—N1—O2115.5 (2)C45—C46—C47118.9 (3)
O6—N2—O4124.3 (3)C45—C46—H46A120.5
O6—N2—O5121.0 (3)C47—C46—H46A120.5
O4—N2—O5114.7 (3)C46—C47—C48120.5 (3)
C1—N3—C5117.8 (2)C46—C47—H47A119.8
C1—N3—Ni1126.62 (18)C48—C47—H47A119.8
C5—N3—Ni1115.33 (19)C43—C48—C47121.4 (3)
C10—N4—C6117.4 (2)C43—C48—H48A119.3
C10—N4—Ni1114.90 (18)C47—C48—H48A119.3
C6—N4—Ni1127.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O20.862.162.994 (3)165
N6—H6A···O50.862.223.048 (3)162

Experimental details

Crystal data
Chemical formula[Ni(NO3)2(C24H20N2)2]
Mr855.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.287 (2), 23.462 (5), 17.868 (4)
β (°) 105.266 (3)
V3)4160.3 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.53 × 0.52 × 0.47
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.733, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
20535, 7279, 4928
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.01
No. of reflections7279
No. of parameters550
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Selected bond lengths (Å) top
Ni1—O52.050 (2)Ni1—N42.062 (2)
Ni1—O22.0607 (19)Ni1—O42.133 (2)
Ni1—N32.061 (2)Ni1—O12.150 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O20.862.162.994 (3)164.8
N6—H6A···O50.862.223.048 (3)161.6
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Y., Huang, C.-Y., Zhu, Z.-M., Yu, X.-L. & You, W.-S. (2006). Acta Cryst. E62, m3347–m3348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-N. (2008). Acta Cryst. E64, m357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G.-N., Fang, Y., Huang, C.-Y. & You, W.-S. (2007). Acta Cryst. E63, m2247.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds