organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(Furan-2-yl­methyl­­idene)-8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 3 November 2010; accepted 6 November 2010; online 13 November 2010)

In the title mol­ecule, C18H15NO2, the carbazole unit is not planar [maximum deviation from mean plane = 0.236 (2) Å]. The pyrrole ring makes dihedral angles of 1.21 (10) and 16.74 (12)° with the benzene and the furan rings, respectively. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(10) loops.

Related literature

For the synthesis of hetero-annulated carbazoles, see: Knölker & Reddy (2002[Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4428.]). For the derivation of various hetero-annulated carbazoles, see: Sridharan et al. (2008[Sridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572-577.]); Danish & Rajendra Prasad (2004[Danish, I. A. & Rajendra Prasad, K. J. (2004). Indian J. Chem. Sect. B, 43, 618-623.], 2005[Danish, I. A. & Rajendra Prasad, K. J. (2005). Collect. Czech. Chem. Commun. 70, 223-236.]); Periyasami et al. (2008[Periyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2008). Bioorg. Med. Chem. Lett. 18, 2342-2345.], 2009[Periyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 959-966.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO2

  • Mr = 277.31

  • Orthorhombic, P b c a

  • a = 6.7353 (1) Å

  • b = 16.1393 (3) Å

  • c = 25.9549 (4) Å

  • V = 2821.38 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 295 K

  • 0.44 × 0.28 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.888, Tmax = 1.000

  • 6361 measured reflections

  • 2736 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.05

  • 2736 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.89 (3) 2.01 (3) 2.8969 (19) 176 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As a result of their significant potential as therapeutics, interest has grown in the development of methods for the efficient and rapid synthesis of the derivatives of various hetero-annulated carbazoles especially because the current methods, which involve multi-step reactions, lower yields, longer reaction times, and high cost of palladium (Knölker & Reddy (2002)) are unsatisfactory. Herein, therefore, we report the easily accessible synthon (E)-2-(furan-2-yl methylene)-8-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one to derive various hetero-annulated carbazoles (Sridharan et al., (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al., (2008, 2009)).

In the title molecule (Scheme I, Fig. 1), C18H15NO2, the carbazole unit is not planar. The pyrrole ring makes dihedral angles of 1.21 (10)° and 16.74 (12)° with the benzene and the furan rings respectively. The cyclohexene ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are q2=0.232 (2) Å, q3=-0.153 (2) Å, Q=0.278 (2) Å, θ=123.4 (4)° and φ=322.6 (5)°. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2).

Related literature top

For the synthesis of hetero-annulated carbazoles, see: Knölker & Reddy (2002). For the derivation of various hetero-annulated carbazoles, see: Sridharan et al. (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al. (2008, 2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 8-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (0.995 g, 0.005 mol) and furan-2-carbaldehyde (0.41 ml, 0.005 mol) was treated with 25 ml of a 5% ethanolic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from methanol to yield 90% (1.246 g) of the title compound. The pure compound was recrystallized from EtOAc.

Refinement top

The H atom bonded to N9 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(parent atom).

Structure description top

As a result of their significant potential as therapeutics, interest has grown in the development of methods for the efficient and rapid synthesis of the derivatives of various hetero-annulated carbazoles especially because the current methods, which involve multi-step reactions, lower yields, longer reaction times, and high cost of palladium (Knölker & Reddy (2002)) are unsatisfactory. Herein, therefore, we report the easily accessible synthon (E)-2-(furan-2-yl methylene)-8-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one to derive various hetero-annulated carbazoles (Sridharan et al., (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al., (2008, 2009)).

In the title molecule (Scheme I, Fig. 1), C18H15NO2, the carbazole unit is not planar. The pyrrole ring makes dihedral angles of 1.21 (10)° and 16.74 (12)° with the benzene and the furan rings respectively. The cyclohexene ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are q2=0.232 (2) Å, q3=-0.153 (2) Å, Q=0.278 (2) Å, θ=123.4 (4)° and φ=322.6 (5)°. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2).

For the synthesis of hetero-annulated carbazoles, see: Knölker & Reddy (2002). For the derivation of various hetero-annulated carbazoles, see: Sridharan et al. (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al. (2008, 2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(E)-2-(Furan-2-ylmethylidene)-8-methyl-2,3,4,9-tetrahydro-1H- carbazol-1-one top
Crystal data top
C18H15NO2Dx = 1.306 Mg m3
Mr = 277.31Melting point: 505 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 3160 reflections
a = 6.7353 (1) Åθ = 4.4–72.5°
b = 16.1393 (3) ŵ = 0.68 mm1
c = 25.9549 (4) ÅT = 295 K
V = 2821.38 (8) Å3Prism, pale-yellow
Z = 80.44 × 0.28 × 0.12 mm
F(000) = 1168
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2736 independent reflections
Radiation source: Enhance (Cu) X-ray Source2201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 72.7°, θmin = 5.7°
ω scansh = 58
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1913
Tmin = 0.888, Tmax = 1.000l = 3131
6361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0921P)2 + 0.408P]
where P = (Fo2 + 2Fc2)/3
2736 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H15NO2V = 2821.38 (8) Å3
Mr = 277.31Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 6.7353 (1) ŵ = 0.68 mm1
b = 16.1393 (3) ÅT = 295 K
c = 25.9549 (4) Å0.44 × 0.28 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2736 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2201 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 1.000Rint = 0.026
6361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2736 reflectionsΔρmin = 0.26 e Å3
195 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3691 (2)0.06478 (9)0.04131 (5)0.0638 (5)
O110.0871 (3)0.21485 (11)0.18520 (6)0.0810 (6)
N90.2678 (2)0.02422 (9)0.06403 (5)0.0489 (4)
C10.2176 (3)0.09332 (11)0.02148 (6)0.0475 (5)
C20.0821 (2)0.15134 (10)0.04916 (7)0.0473 (5)
C30.0829 (3)0.19426 (12)0.01982 (8)0.0605 (6)
C40.1653 (3)0.14925 (13)0.02677 (8)0.0615 (6)
C4A0.0102 (3)0.10045 (11)0.05422 (7)0.0508 (5)
C4B0.0102 (3)0.06700 (11)0.10466 (7)0.0537 (6)
C50.1417 (3)0.07341 (14)0.14698 (8)0.0679 (7)
C60.0955 (4)0.03192 (16)0.19083 (9)0.0735 (8)
C70.0762 (3)0.01716 (14)0.19432 (8)0.0681 (7)
C80.2108 (3)0.02535 (12)0.15467 (7)0.0561 (6)
C8A0.1646 (3)0.01922 (10)0.10952 (6)0.0497 (5)
C9A0.1612 (3)0.07363 (10)0.03084 (6)0.0466 (5)
C100.1218 (3)0.16433 (11)0.09919 (7)0.0518 (5)
C120.0226 (4)0.27239 (15)0.21183 (9)0.0775 (8)
C130.1434 (4)0.31065 (15)0.18050 (9)0.0736 (8)
C140.1132 (3)0.27681 (12)0.13083 (7)0.0586 (6)
C150.0280 (3)0.21920 (11)0.13515 (7)0.0551 (6)
C180.3917 (3)0.07814 (15)0.15847 (8)0.0718 (8)
H3A0.191530.204330.043550.0725*
H3B0.034170.247840.008560.0725*
H4A0.222230.189370.050350.0738*
H4B0.270670.112280.015790.0738*
H50.256540.105190.144800.0815*
H60.179300.036070.219190.0882*
H70.100150.045520.224890.0818*
H90.382 (4)0.0012 (13)0.0577 (9)0.063 (6)*
H100.225760.133040.112520.0622*
H120.012220.282610.246990.0931*
H130.232670.352330.189210.0884*
H140.179370.291870.100800.0704*
H18A0.391520.106870.190850.1077*
H18B0.507850.043890.156170.1077*
H18C0.392140.117660.130830.1077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0598 (8)0.0799 (9)0.0517 (7)0.0239 (7)0.0087 (6)0.0061 (6)
O110.0930 (12)0.0872 (11)0.0627 (9)0.0242 (9)0.0049 (8)0.0038 (8)
N90.0503 (8)0.0537 (8)0.0428 (7)0.0025 (7)0.0021 (6)0.0015 (6)
C10.0486 (9)0.0478 (9)0.0460 (9)0.0025 (7)0.0006 (7)0.0052 (7)
C20.0471 (9)0.0464 (8)0.0485 (9)0.0012 (7)0.0018 (7)0.0039 (7)
C30.0562 (10)0.0619 (11)0.0633 (12)0.0158 (9)0.0043 (9)0.0010 (9)
C40.0534 (10)0.0664 (11)0.0647 (12)0.0118 (9)0.0092 (9)0.0047 (9)
C4A0.0500 (9)0.0496 (9)0.0528 (10)0.0019 (7)0.0042 (7)0.0084 (8)
C4B0.0550 (10)0.0557 (10)0.0503 (10)0.0077 (8)0.0080 (8)0.0092 (8)
C50.0656 (12)0.0755 (13)0.0627 (12)0.0084 (10)0.0200 (10)0.0104 (10)
C60.0797 (15)0.0856 (15)0.0553 (12)0.0232 (12)0.0225 (11)0.0094 (11)
C70.0816 (15)0.0771 (13)0.0457 (10)0.0289 (12)0.0024 (10)0.0011 (9)
C80.0672 (11)0.0566 (10)0.0444 (9)0.0180 (9)0.0046 (8)0.0018 (8)
C8A0.0546 (9)0.0514 (9)0.0431 (9)0.0118 (8)0.0025 (7)0.0072 (7)
C9A0.0491 (8)0.0462 (8)0.0446 (9)0.0009 (7)0.0007 (7)0.0055 (7)
C100.0548 (9)0.0478 (9)0.0529 (10)0.0049 (8)0.0025 (8)0.0045 (7)
C120.0962 (16)0.0823 (14)0.0541 (12)0.0093 (13)0.0067 (12)0.0136 (11)
C130.0794 (14)0.0662 (13)0.0753 (15)0.0177 (11)0.0178 (12)0.0001 (11)
C140.0643 (11)0.0643 (11)0.0473 (10)0.0131 (9)0.0024 (8)0.0073 (8)
C150.0623 (10)0.0526 (9)0.0505 (10)0.0036 (8)0.0064 (8)0.0008 (8)
C180.0778 (14)0.0819 (15)0.0556 (12)0.0085 (12)0.0087 (10)0.0123 (10)
Geometric parameters (Å, º) top
O1—C11.232 (2)C8—C8A1.410 (2)
O11—C121.373 (3)C10—C151.433 (3)
O11—C151.361 (2)C12—C131.306 (4)
N9—C8A1.373 (2)C13—C141.415 (3)
N9—C9A1.376 (2)C14—C151.335 (3)
N9—H90.89 (3)C3—H3A0.9700
C1—C21.492 (2)C3—H3B0.9700
C1—C9A1.446 (2)C4—H4A0.9700
C2—C31.515 (3)C4—H4B0.9700
C2—C101.342 (3)C5—H50.9300
C3—C41.516 (3)C6—H60.9300
C4—C4A1.490 (3)C7—H70.9300
C4A—C9A1.374 (3)C10—H100.9300
C4A—C4B1.416 (3)C12—H120.9300
C4B—C51.415 (3)C13—H130.9300
C4B—C8A1.413 (3)C14—H140.9300
C5—C61.357 (3)C18—H18A0.9600
C6—C71.405 (3)C18—H18B0.9600
C7—C81.378 (3)C18—H18C0.9600
C8—C181.490 (3)
O1···N92.8930 (19)C14···H5iii3.0900
O1···N9i2.8969 (19)C14···H3A2.6000
O11···C7ii3.383 (3)C15···H3A2.8100
O1···H92.78 (2)C18···H92.90 (2)
O1···H9i2.01 (3)C18···H10i2.9700
O1···H102.3600H3A···C142.6000
N9···O12.8930 (19)H3A···C152.8100
N9···O1i2.8969 (19)H3A···H142.0500
C1···C4Aii3.529 (3)H3B···C4iii3.0300
C2···C8Aii3.577 (2)H3B···H4Aiii2.5700
C3···C143.181 (3)H4A···C2iv2.8900
C4A···C1ii3.529 (3)H4A···C10iv2.8800
C7···O11ii3.383 (3)H4A···H3Biv2.5700
C8···C15ii3.554 (3)H5···C13iv3.0800
C8···C10ii3.482 (3)H5···C14iv3.0900
C8A···C10ii3.545 (3)H6···C7vii2.9100
C8A···C2ii3.577 (2)H6···H7vii2.4600
C8A···C13iii3.550 (3)H7···H18A2.3700
C9A···C9Aii3.595 (2)H7···H6vi2.4600
C10···C8Aii3.545 (3)H9···O12.78 (2)
C10···C8ii3.482 (3)H9···C182.90 (2)
C13···C8Aiv3.550 (3)H9···O1i2.01 (3)
C14···C33.181 (3)H10···O12.3600
C15···C8ii3.554 (3)H10···C18i2.9700
C2···H4Aiii2.8900H10···H18Bi2.5600
C3···H142.7100H13···C6iv3.0800
C4···H3Biv3.0300H13···C7iv2.9600
C4A···H14iii3.0700H13···C8iv2.9600
C5···H18Bv3.0400H13···C8Aiv3.0100
C6···H18Bv3.0700H14···C32.7100
C6···H13iii3.0800H14···H3A2.0500
C7···H6vi2.9100H14···C4Aiv3.0700
C7···H13iii2.9600H14···C9Aiv3.0300
C8···H13iii2.9600H18A···H72.3700
C8A···H13iii3.0100H18B···C5viii3.0400
C9A···H14iii3.0300H18B···C6viii3.0700
C10···H4Aiii2.8800H18B···H10i2.5600
C13···H5iii3.0800
C12—O11—C15106.75 (18)C10—C15—C14133.61 (18)
C8A—N9—C9A107.96 (14)O11—C15—C10117.45 (17)
C9A—N9—H9127.2 (15)O11—C15—C14108.94 (17)
C8A—N9—H9124.8 (15)C2—C3—H3A108.00
O1—C1—C9A121.86 (17)C2—C3—H3B108.00
O1—C1—C2122.69 (15)C4—C3—H3A108.00
C2—C1—C9A115.44 (16)C4—C3—H3B108.00
C3—C2—C10124.13 (16)H3A—C3—H3B107.00
C1—C2—C3119.58 (16)C3—C4—H4A109.00
C1—C2—C10116.23 (15)C3—C4—H4B109.00
C2—C3—C4116.77 (16)C4A—C4—H4A109.00
C3—C4—C4A112.22 (17)C4A—C4—H4B109.00
C4B—C4A—C9A106.75 (16)H4A—C4—H4B108.00
C4—C4A—C4B130.07 (18)C4B—C5—H5121.00
C4—C4A—C9A122.99 (16)C6—C5—H5121.00
C5—C4B—C8A119.49 (17)C5—C6—H6119.00
C4A—C4B—C5133.62 (19)C7—C6—H6119.00
C4A—C4B—C8A106.89 (16)C6—C7—H7118.00
C4B—C5—C6118.1 (2)C8—C7—H7118.00
C5—C6—C7121.4 (2)C2—C10—H10115.00
C6—C7—C8123.2 (2)C15—C10—H10115.00
C7—C8—C8A115.26 (18)O11—C12—H12125.00
C8A—C8—C18121.82 (17)C13—C12—H12125.00
C7—C8—C18122.92 (18)C12—C13—H13126.00
N9—C8A—C8129.29 (17)C14—C13—H13126.00
C4B—C8A—C8122.45 (17)C13—C14—H14126.00
N9—C8A—C4B108.25 (14)C15—C14—H14126.00
C1—C9A—C4A124.50 (17)C8—C18—H18A109.00
N9—C9A—C1125.34 (17)C8—C18—H18B109.00
N9—C9A—C4A110.15 (14)C8—C18—H18C109.00
C2—C10—C15129.69 (17)H18A—C18—H18B109.00
O11—C12—C13110.0 (2)H18A—C18—H18C109.00
C12—C13—C14107.2 (2)H18B—C18—H18C109.00
C13—C14—C15107.15 (18)
C15—O11—C12—C130.0 (3)C9A—C4A—C4B—C8A0.8 (2)
C12—O11—C15—C10179.89 (19)C4—C4A—C9A—N9174.75 (17)
C12—O11—C15—C140.2 (2)C4—C4A—C9A—C14.0 (3)
C9A—N9—C8A—C4B0.28 (19)C4B—C4A—C9A—N90.6 (2)
C9A—N9—C8A—C8178.49 (18)C4B—C4A—C9A—C1179.32 (17)
C8A—N9—C9A—C1178.91 (17)C4A—C4B—C5—C6179.8 (2)
C8A—N9—C9A—C4A0.2 (2)C8A—C4B—C5—C61.0 (3)
O1—C1—C2—C3170.47 (17)C4A—C4B—C8A—N90.7 (2)
O1—C1—C2—C107.0 (3)C4A—C4B—C8A—C8178.22 (17)
C9A—C1—C2—C38.5 (2)C5—C4B—C8A—N9178.77 (17)
C9A—C1—C2—C10174.06 (16)C5—C4B—C8A—C82.4 (3)
O1—C1—C9A—N91.6 (3)C4B—C5—C6—C70.9 (3)
O1—C1—C9A—C4A176.90 (18)C5—C6—C7—C81.5 (4)
C2—C1—C9A—N9177.39 (15)C6—C7—C8—C8A0.1 (3)
C2—C1—C9A—C4A4.1 (3)C6—C7—C8—C18179.4 (2)
C1—C2—C3—C428.3 (2)C7—C8—C8A—N9179.62 (18)
C10—C2—C3—C4154.45 (18)C7—C8—C8A—C4B1.8 (3)
C1—C2—C10—C15176.11 (18)C18—C8—C8A—N91.1 (3)
C3—C2—C10—C151.2 (3)C18—C8—C8A—C4B177.53 (18)
C2—C3—C4—C4A33.9 (2)C2—C10—C15—O11174.38 (19)
C3—C4—C4A—C4B162.79 (19)C2—C10—C15—C145.2 (4)
C3—C4—C4A—C9A23.0 (3)O11—C12—C13—C140.2 (3)
C4—C4A—C4B—C56.5 (4)C12—C13—C14—C150.4 (3)
C4—C4A—C4B—C8A174.15 (19)C13—C14—C15—O110.4 (2)
C9A—C4A—C4B—C5178.5 (2)C13—C14—C15—C10180.0 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x1, y, z; (vi) x+1/2, y, z+1/2; (vii) x1/2, y, z+1/2; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.89 (3)2.01 (3)2.8969 (19)176 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H15NO2
Mr277.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)6.7353 (1), 16.1393 (3), 25.9549 (4)
V3)2821.38 (8)
Z8
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.44 × 0.28 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.888, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6361, 2736, 2201
Rint0.026
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.05
No. of reflections2736
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.89 (3)2.01 (3)2.8969 (19)176 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDanish, I. A. & Rajendra Prasad, K. J. (2004). Indian J. Chem. Sect. B, 43, 618–623.  Google Scholar
First citationDanish, I. A. & Rajendra Prasad, K. J. (2005). Collect. Czech. Chem. Commun. 70, 223–236.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4428.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPeriyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2008). Bioorg. Med. Chem. Lett. 18, 2342–2345.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeriyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 959–966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds