organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Di­ethyl­amino-6-[(Z)-(4-hy­dr­oxy­anilino)methyl­­idene]cyclo­hexa-2,4-dienone

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bSinop Faculty of Education, Sinop University, Sinop, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 3 November 2010; accepted 8 November 2010; online 13 November 2010)

In the mol­ecule of the title compound, C17H20N2O2, the aromatic rings are oriented at a dihedral angle of 6.23 (22)°. Intra­molecular N—H⋯O hydrogen bonding involving the amine H atom and the carbonyl O atom affects the conformation of the mol­ecule. One of the ethyl arms is disordered over two conformations, with occupancies of 0.59 (2) and 0.41 (2). The crystal packing is stabilized by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, and weak C—H⋯π inter­actions.

Related literature

For general background to Schiff bases, see: Odabaşoğlu et al. (2004[Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142-o144.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Maviridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Misra et al. (1981[Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.]); Agarwal et al. (1983[Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22, 308-310.]); Varma et al. (1986[Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Pandey et al. (1999[Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. 7, 385-389.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041-2051.]); Moustakali-Mavridis et al. (1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]). For related strucures: Ersanlı et al. (2003[Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.]); Şahin et al. (2005[Şahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2005). Acta Cryst. E61, o1579-o1581.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O2

  • Mr = 284.35

  • Monoclinic, P 21 /c

  • a = 8.2648 (4) Å

  • b = 11.8968 (4) Å

  • c = 16.6149 (7) Å

  • β = 112.400 (3)°

  • V = 1510.39 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.44 × 0.26 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.979

  • 18967 measured reflections

  • 3143 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.189

  • S = 1.06

  • 3143 reflections

  • 208 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.90 (3) 1.80 (3) 2.574 (2) 142 (2)
O1—H1A⋯O2i 0.87 (4) 1.75 (4) 2.599 (2) 165 (4)
C16A—H16A⋯O2ii 0.96 2.52 3.306 (7) 139
C5—H6⋯Cg1iii 0.93 2.93 3.799 (3) 156
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions.Some Schiff base derivatives are also known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandey et al., 1999); antifungal (Singh & Dash 1988; Varma et al., 1986); antitumor (Hodnett & Dunn 1970; Misra et al., 1981; Agarwal et al., 1983) and as herbicides (Samadhiya & Halve, 2001). In additin, Schiff bases have been used widely as ligands in the field of coordinatin chemistry (Calligaris et al., 1972). There are two caracteri properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). These properties result from proton transfer from the O atom to the imin N atom (Hadjoudis et al., 1987; Xu et al., 1994).

In the molecule of (I), the C13=O2 and N1—C7 bond lengths of 1.301 (2) and 1.307 (3) Å, respectively are in good agreement with those observed in 2-[(2-hydroxy-4-nitrophenyl)aminomethylene]cyclohexa-3,5-dien-1(2H)-one [1.298 (2) and 1.308 (2) Å; Ersanlı et al., 2003] and 2-Hydroxy-6-[(2-methoxyphenyl)aminomethylene]cyclohexa-2,4-dienone [1.2931 (17) and 1.3043 (19) Å; Şahin et al., 2005]. The study of Schiff bases has led to the proposal that molecules exhibiting thermochromism are planar, while those exhibiting photochromism are non-planar. This planarity of the molecule allows the proton to be transferred through the hydrogen bond in the ground state with a small energy requirement (Odabaşoǧlu et al., 2004; Hadjoudis et al., 1987). The dihedral angle between benzene rings A(C1—C6) and B(C8—C13) is 6.49 (22)° (Fig.1). These two rings are twisted slightly about the methylene amino group with torsion angles of -0.5 (3)° [C2—C1—N1—C7] and 179.48 (18)° [N1—C7—C8—C9], respectively. C16 was disordered over two positions A and B (C16A and C16B) wiht the occupancy factors refined to 0.59 (2) and 0.41 (2). Intramolecular N1—H1A···O2 hydrogen bonding contributes to the overall planarity of the molecule. In crystal packing, the weak [C5—H6···Cg1(x,- 1/2 - y, - 1/2 + z)] interaction, and the hydrogen bonds [C16A—H16A···O2(1 - x,1/2 + y,1/2 - z)] and [O1—H1A···O2(1 + x,1/2 - y,1/2 + z)] are listed in Table 1 and labelled in Fig.2.

Related literature top

For general background to Schiff bases, see: Odabaşoǧlu et al. (2004); Hadjoudis et al. (1987); Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988); Pandey et al. (1999); El-Masry et al. (2000); Samadhiya & Halve (2001); Xu et al. (1994); Calligaris et al. (1972); Cohen et al. (1964); Moustakali-Mavridis et al. (1978). For related strucures: Ersanlı et al. (2003); Şahin et al. (2005).

Experimental top

The compound (Z)-6-[(4-hydroxyphenylamino)methylene]-3 -(diethylamino)cyclohexa-2,4-dienone was prepared by refluxing a mixture of a solution containing 5-(diethylamino)-2-hydroxybenzaldehyde (0.5 g, 2.59 mmol) in 20 ml e thanol and a solution containing 4-hydroxyaniline (0.28 g, 2.59 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of the title compound were obtained by slow evaporation from ethyl alcohol (yield % 73; m.p. 468–470 K).

Refinement top

All H atoms were placed in calculated positions except H1A and H1B which were located in a difference fourier map. All carbon-bound H atoms were refined using a riding model with C—H = 0.93 to 0.97 Å and Uiso(H) = 1.2–1.5 Ueq (C).

Structure description top

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions.Some Schiff base derivatives are also known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandey et al., 1999); antifungal (Singh & Dash 1988; Varma et al., 1986); antitumor (Hodnett & Dunn 1970; Misra et al., 1981; Agarwal et al., 1983) and as herbicides (Samadhiya & Halve, 2001). In additin, Schiff bases have been used widely as ligands in the field of coordinatin chemistry (Calligaris et al., 1972). There are two caracteri properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). These properties result from proton transfer from the O atom to the imin N atom (Hadjoudis et al., 1987; Xu et al., 1994).

In the molecule of (I), the C13=O2 and N1—C7 bond lengths of 1.301 (2) and 1.307 (3) Å, respectively are in good agreement with those observed in 2-[(2-hydroxy-4-nitrophenyl)aminomethylene]cyclohexa-3,5-dien-1(2H)-one [1.298 (2) and 1.308 (2) Å; Ersanlı et al., 2003] and 2-Hydroxy-6-[(2-methoxyphenyl)aminomethylene]cyclohexa-2,4-dienone [1.2931 (17) and 1.3043 (19) Å; Şahin et al., 2005]. The study of Schiff bases has led to the proposal that molecules exhibiting thermochromism are planar, while those exhibiting photochromism are non-planar. This planarity of the molecule allows the proton to be transferred through the hydrogen bond in the ground state with a small energy requirement (Odabaşoǧlu et al., 2004; Hadjoudis et al., 1987). The dihedral angle between benzene rings A(C1—C6) and B(C8—C13) is 6.49 (22)° (Fig.1). These two rings are twisted slightly about the methylene amino group with torsion angles of -0.5 (3)° [C2—C1—N1—C7] and 179.48 (18)° [N1—C7—C8—C9], respectively. C16 was disordered over two positions A and B (C16A and C16B) wiht the occupancy factors refined to 0.59 (2) and 0.41 (2). Intramolecular N1—H1A···O2 hydrogen bonding contributes to the overall planarity of the molecule. In crystal packing, the weak [C5—H6···Cg1(x,- 1/2 - y, - 1/2 + z)] interaction, and the hydrogen bonds [C16A—H16A···O2(1 - x,1/2 + y,1/2 - z)] and [O1—H1A···O2(1 + x,1/2 - y,1/2 + z)] are listed in Table 1 and labelled in Fig.2.

For general background to Schiff bases, see: Odabaşoǧlu et al. (2004); Hadjoudis et al. (1987); Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988); Pandey et al. (1999); El-Masry et al. (2000); Samadhiya & Halve (2001); Xu et al. (1994); Calligaris et al. (1972); Cohen et al. (1964); Moustakali-Mavridis et al. (1978). For related strucures: Ersanlı et al. (2003); Şahin et al. (2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Only the major disorder component C16A are displayed. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (I), hydrogen bonds and C—H···π interaction are drawn as dashed lines. [Symmetry codes: (i) 1 - x,1/2 + y, 1/2 + z; (ii) x + 1,1/2 - y, 1/2 - z; (iii) x,1/2 - y,1/2 + z]
3-Diethylamino-6-[(Z)-(4-hydroxyanilino)methylidene]cyclohexa-2,4- dienone top
Crystal data top
C17H20N2O2F(000) = 608
Mr = 284.35Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18967 reflections
a = 8.2648 (4) Åθ = 1.7–28.0°
b = 11.8968 (4) ŵ = 0.08 mm1
c = 16.6149 (7) ÅT = 296 K
β = 112.400 (3)°Prism, brown
V = 1510.39 (11) Å30.54 × 0.44 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3143 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.2°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.957, Tmax = 0.979l = 2020
18967 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0969P)2 + 0.3716P]
where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.37 e Å3
13 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H20N2O2V = 1510.39 (11) Å3
Mr = 284.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2648 (4) ŵ = 0.08 mm1
b = 11.8968 (4) ÅT = 296 K
c = 16.6149 (7) Å0.54 × 0.44 × 0.26 mm
β = 112.400 (3)°
Data collection top
Stoe IPDS 2
diffractometer
3143 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2416 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.979Rint = 0.067
18967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06513 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
3143 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8028 (2)0.31443 (16)0.65717 (13)0.0483 (5)
C20.9660 (3)0.35845 (19)0.70654 (14)0.0549 (5)
H31.01260.41630.68440.066*
C31.0587 (3)0.31624 (19)0.78840 (14)0.0581 (5)
H21.16800.34630.82120.070*
C40.9927 (3)0.22989 (19)0.82301 (13)0.0550 (5)
C50.8278 (3)0.1876 (2)0.77383 (16)0.0627 (6)
H60.78000.13090.79630.075*
C60.7352 (3)0.22939 (19)0.69203 (15)0.0593 (6)
H50.62530.20010.65950.071*
C70.7361 (2)0.42738 (17)0.52483 (13)0.0501 (5)
H70.83860.46890.54950.060*
C80.6253 (2)0.44989 (16)0.43902 (12)0.0470 (5)
C90.6675 (3)0.53469 (18)0.39085 (14)0.0536 (5)
H90.76880.57660.41800.064*
C100.5666 (3)0.55735 (19)0.30686 (14)0.0567 (5)
H100.60000.61340.27740.068*
C110.4090 (3)0.49573 (19)0.26311 (13)0.0556 (5)
C120.3648 (3)0.41193 (19)0.30976 (13)0.0552 (5)
H120.26380.37010.28160.066*
C130.4654 (2)0.38791 (17)0.39687 (12)0.0473 (5)
C140.1382 (4)0.4570 (2)0.13497 (16)0.0802 (8)
H15A0.06000.50230.08750.096*
H15B0.08190.44470.17590.096*
C150.3476 (4)0.6042 (3)0.12686 (17)0.0855 (8)
H14A0.40630.66710.16340.103*
H14B0.24160.63190.08150.103*
C16A0.4682 (17)0.5521 (6)0.0854 (7)0.096 (3)0.59 (2)
H16A0.49600.60780.05080.144*0.59 (2)
H16B0.40970.49000.04910.144*0.59 (2)
H16C0.57410.52620.13040.144*0.59 (2)
C16B0.388 (3)0.5630 (9)0.0567 (10)0.097 (4)0.41 (2)
H16D0.41410.62490.02670.145*0.41 (2)
H16E0.28880.52240.01710.145*0.41 (2)
H16F0.48680.51370.07850.145*0.41 (2)
C170.1651 (5)0.3472 (3)0.1001 (2)0.1033 (11)
H17A0.05430.31020.07250.155*
H17B0.24060.30130.14680.155*
H17C0.21770.35880.05830.155*
N10.7013 (2)0.35026 (14)0.57193 (11)0.0500 (4)
H1B0.597 (3)0.316 (2)0.5437 (17)0.066 (7)*
N20.3028 (3)0.51988 (19)0.17918 (12)0.0712 (6)
O11.0820 (2)0.18478 (17)0.90278 (11)0.0723 (5)
H1A1.193 (5)0.197 (3)0.919 (3)0.131 (14)*
O20.41712 (18)0.31201 (13)0.43958 (9)0.0573 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (9)0.0490 (11)0.0465 (10)0.0055 (8)0.0073 (8)0.0005 (8)
C20.0445 (10)0.0592 (12)0.0530 (12)0.0014 (9)0.0097 (9)0.0059 (10)
C30.0429 (10)0.0648 (13)0.0548 (12)0.0007 (9)0.0053 (9)0.0002 (10)
C40.0488 (10)0.0650 (13)0.0471 (11)0.0128 (9)0.0135 (9)0.0064 (9)
C50.0546 (11)0.0642 (14)0.0655 (14)0.0015 (10)0.0185 (11)0.0146 (11)
C60.0444 (10)0.0603 (13)0.0619 (13)0.0036 (9)0.0076 (9)0.0058 (10)
C70.0429 (9)0.0485 (10)0.0525 (11)0.0005 (8)0.0109 (8)0.0046 (9)
C80.0449 (9)0.0468 (10)0.0456 (10)0.0028 (8)0.0129 (8)0.0024 (8)
C90.0497 (10)0.0532 (11)0.0560 (12)0.0039 (9)0.0178 (9)0.0026 (9)
C100.0634 (12)0.0543 (12)0.0568 (12)0.0037 (10)0.0279 (10)0.0028 (10)
C110.0632 (12)0.0575 (12)0.0430 (10)0.0009 (10)0.0167 (9)0.0002 (9)
C120.0554 (11)0.0583 (12)0.0428 (10)0.0078 (9)0.0086 (9)0.0013 (9)
C130.0471 (10)0.0473 (10)0.0433 (10)0.0010 (8)0.0125 (8)0.0015 (8)
C140.0868 (16)0.0904 (19)0.0479 (13)0.0054 (12)0.0081 (12)0.0082 (12)
C150.119 (2)0.0810 (18)0.0530 (14)0.0084 (16)0.0290 (15)0.0098 (13)
C16A0.097 (3)0.096 (3)0.096 (3)0.0016 (10)0.0374 (14)0.0005 (10)
C16B0.097 (4)0.097 (4)0.096 (4)0.0010 (10)0.0381 (18)0.0011 (10)
C170.138 (3)0.095 (2)0.0714 (19)0.017 (2)0.0339 (19)0.0090 (17)
N10.0400 (8)0.0524 (10)0.0467 (9)0.0004 (7)0.0044 (7)0.0006 (7)
N20.0859 (13)0.0756 (13)0.0445 (10)0.0067 (10)0.0161 (9)0.0084 (9)
O10.0591 (10)0.0981 (14)0.0537 (9)0.0155 (9)0.0147 (8)0.0213 (9)
O20.0523 (8)0.0624 (9)0.0452 (8)0.0123 (6)0.0050 (6)0.0069 (7)
Geometric parameters (Å, º) top
C1—C61.385 (3)C12—C131.397 (3)
C1—C21.387 (3)C12—H120.9300
C1—N11.409 (3)C13—O21.301 (2)
C2—C31.377 (3)C14—N21.479 (3)
C2—H30.9300C14—C171.481 (4)
C3—C41.387 (3)C14—H15A0.9700
C3—H20.9300C14—H15B0.9700
C4—O11.358 (3)C15—C16B1.415 (9)
C4—C51.389 (3)C15—N21.465 (3)
C5—C61.374 (3)C15—C16A1.541 (8)
C5—H60.9300C15—H14A0.9700
C6—H50.9300C15—H14B0.9700
C7—N11.307 (3)C16A—H16A0.9600
C7—C81.396 (3)C16A—H16B0.9600
C7—H70.9300C16A—H16C0.9600
C8—C91.412 (3)C16B—H16D0.9600
C8—C131.441 (3)C16B—H16E0.9600
C9—C101.352 (3)C16B—H16F0.9600
C9—H90.9300C17—H17A0.9600
C10—C111.429 (3)C17—H17B0.9600
C10—H100.9300C17—H17C0.9600
C11—N21.366 (3)N1—H1B0.90 (3)
C11—C121.394 (3)O1—H1A0.87 (4)
C6—C1—C2119.00 (19)N2—C14—H15A108.9
C6—C1—N1117.45 (17)C17—C14—H15A108.9
C2—C1—N1123.54 (19)N2—C14—H15B108.9
C3—C2—C1119.8 (2)C17—C14—H15B108.9
C3—C2—H3120.1H15A—C14—H15B107.8
C1—C2—H3120.1C16B—C15—N2116.3 (5)
C2—C3—C4121.39 (19)N2—C15—C16A110.1 (4)
C2—C3—H2119.3C16B—C15—H14A124.5
C4—C3—H2119.3N2—C15—H14A109.6
O1—C4—C3123.0 (2)C16A—C15—H14A109.6
O1—C4—C5118.5 (2)C16B—C15—H14B84.4
C3—C4—C5118.50 (19)N2—C15—H14B109.6
C6—C5—C4120.2 (2)C16A—C15—H14B109.6
C6—C5—H6119.9H14A—C15—H14B108.2
C4—C5—H6119.9C15—C16A—H16A109.5
C5—C6—C1121.10 (19)C15—C16A—H16B109.5
C5—C6—H5119.4H16A—C16A—H16B109.5
C1—C6—H5119.4C15—C16A—H16C109.5
N1—C7—C8122.57 (18)H16A—C16A—H16C109.5
N1—C7—H7118.7H16B—C16A—H16C109.5
C8—C7—H7118.7C15—C16B—H16D109.5
C7—C8—C9120.58 (18)C15—C16B—H16E109.5
C7—C8—C13121.43 (18)H16D—C16B—H16E109.5
C9—C8—C13118.00 (17)C15—C16B—H16F109.5
C10—C9—C8122.60 (19)H16D—C16B—H16F109.5
C10—C9—H9118.7H16E—C16B—H16F109.5
C8—C9—H9118.7C14—C17—H17A109.5
C9—C10—C11120.5 (2)C14—C17—H17B109.5
C9—C10—H10119.8H17A—C17—H17B109.5
C11—C10—H10119.8C14—C17—H17C109.5
N2—C11—C12121.0 (2)H17A—C17—H17C109.5
N2—C11—C10121.2 (2)H17B—C17—H17C109.5
C12—C11—C10117.73 (19)C7—N1—C1129.19 (18)
C11—C12—C13122.95 (19)C7—N1—H1B112.7 (16)
C11—C12—H12118.5C1—N1—H1B118.1 (16)
C13—C12—H12118.5C11—N2—C15122.7 (2)
O2—C13—C12121.47 (18)C11—N2—C14120.8 (2)
O2—C13—C8120.34 (17)C15—N2—C14116.4 (2)
C12—C13—C8118.20 (19)C4—O1—H1A111 (3)
N2—C14—C17113.2 (3)
C6—C1—C2—C30.9 (3)C11—C12—C13—O2177.4 (2)
N1—C1—C2—C3178.06 (19)C11—C12—C13—C82.5 (3)
C1—C2—C3—C40.1 (3)C7—C8—C13—O22.8 (3)
C2—C3—C4—O1178.7 (2)C9—C8—C13—O2177.25 (18)
C2—C3—C4—C51.3 (3)C7—C8—C13—C12177.39 (19)
O1—C4—C5—C6178.5 (2)C9—C8—C13—C122.6 (3)
C3—C4—C5—C61.5 (3)C8—C7—N1—C1176.75 (18)
C4—C5—C6—C10.5 (4)C6—C1—N1—C7179.4 (2)
C2—C1—C6—C50.7 (3)C2—C1—N1—C70.5 (3)
N1—C1—C6—C5178.3 (2)C12—C11—N2—C15177.6 (2)
N1—C7—C8—C9179.48 (18)C10—C11—N2—C154.1 (4)
N1—C7—C8—C130.5 (3)C12—C11—N2—C140.5 (4)
C7—C8—C9—C10178.19 (19)C10—C11—N2—C14178.9 (2)
C13—C8—C9—C101.8 (3)C16B—C15—N2—C11110.8 (10)
C8—C9—C10—C110.7 (3)C16A—C15—N2—C1183.7 (6)
C9—C10—C11—N2177.9 (2)C16B—C15—N2—C1466.3 (10)
C9—C10—C11—C120.4 (3)C16A—C15—N2—C1493.5 (6)
N2—C11—C12—C13177.0 (2)C17—C14—N2—C1181.1 (3)
C10—C11—C12—C131.4 (3)C17—C14—N2—C1596.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.90 (3)1.80 (3)2.574 (2)142 (2)
O1—H1A···O2i0.87 (4)1.75 (4)2.599 (2)165 (4)
C16A—H16A···O2ii0.962.523.306 (7)139
C5—H6···Cg1iii0.932.933.799 (3)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O2
Mr284.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.2648 (4), 11.8968 (4), 16.6149 (7)
β (°) 112.400 (3)
V3)1510.39 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.44 × 0.26
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.957, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18967, 3143, 2416
Rint0.067
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.189, 1.06
No. of reflections3143
No. of parameters208
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.90 (3)1.80 (3)2.574 (2)142 (2)
O1—H1A···O2i0.87 (4)1.75 (4)2.599 (2)165 (4)
C16A—H16A···O2ii0.962.523.306 (7)138.9
C5—H6···Cg1iii0.932.933.799 (3)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAgarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22, 308–310.  Google Scholar
First citationCalligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. 7, 385–389.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationErsanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Maviridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMisra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209–213.  CAS Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOdabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science PubMed Google Scholar
First citationŞahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2005). Acta Cryst. E61, o1579–o1581.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVarma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.  CAS Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds