metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl­hydrazinium (6-carb­­oxy­pyridine-2-carboxyl­ato)(pyridine-2,6-di­carboxyl­ato)cobaltate(II)–pyridine-2,6-dicarb­­oxy­lic acid–water (1/1/3)

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and cDepartment of Chemistry, Faculty of Science, Payame Noor University, Qom, Iran
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 8 November 2010; accepted 18 November 2010; online 24 November 2010)

The asymmetric unit of the title compound, (C6H9N2)[Co(C7H3NO4)(C7H4NO4)]·C7H5NO4·3H2O, contains one (6-carb­oxy­pyridine-2-carboxyl­ato)(pyridine-2,6-dicarboxyl­ato)cobaltate(II) anion, one phenyl­hydrazinium cation, one pyridine-2,6-dicarb­oxy­lic acid mol­ecule and three uncoordin­ated water mol­ecules, part of which are disordered. The CoII ion is coordinated by a pyridine-2,6-dicarboxyl­ate ion and a 6-carb­oxy­pyridine-2-carboxyl­ate ligand almost perpendicular to each other [the angle between the least-squares planes is 87.38 (4)°] and is surrounded by two O atoms and two N atoms in the equatorial plane and two O atoms in axial positions, resulting in a distorted octa­hedral coordination geometry. There is an extensive three-dimensional network of O—H⋯O and N—H⋯O hydrogen bonds, which link the components.

Related literature

For related cobalt, copper and cadmium complexes containing 2,6-dicarboxyl­ato ligands, see: Aghabozorg et al. (2008[Aghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008). J. Chem. Crystallogr. 38, 135-145.]); Aghabozorg et al. (2009[Aghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826-m827.]); Moghimi et al. (2002[Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002). Can. J. Chem. 80, 1687-1696.]). For an isotypic series of five related M(II) complexes, see: MacDonald et al. (2004[MacDonald, J. C., Luo, M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203-1209.]). For the supra­molecular chemistry and crystal structures of five bis­(imidazolium 2,6-pyridine­dicarboxyl­ate)M(II) complexes, see: MacDonald et al. (2000[MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)[Co(C7H3NO4)(C7H4NO4)]·C7H5NO4·3H2O

  • Mr = 720.47

  • Triclinic, [P \overline 1]

  • a = 8.8019 (4) Å

  • b = 12.2378 (5) Å

  • c = 14.6559 (7) Å

  • α = 101.080 (2)°

  • β = 91.351 (3)°

  • γ = 98.749 (3)°

  • V = 1528.95 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.25 × 0.12 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.825, Tmax = 0.999

  • 27004 measured reflections

  • 5526 independent reflections

  • 4198 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.167

  • S = 1.13

  • 5526 reflections

  • 462 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.017 (2)
Co1—N2 2.033 (2)
Co1—O5 2.090 (2)
Co1—O1 2.148 (2)
Co1—O3 2.175 (2)
Co1—O7 2.281 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O14 0.82 1.67 2.491 (4) 174
O13—H13A⋯O6i 0.85 (2) 2.29 (2) 2.917 (4) 131 (3)
O13—H13B⋯O4ii 0.85 (3) 2.09 (2) 2.926 (4) 168 (3)
O14—H14A⋯O4ii 0.85 (2) 1.80 (2) 2.645 (4) 174 (3)
O14—H14B⋯O15 0.85 (3) 1.98 (4) 2.658 (6) 136 (4)
O9—H9⋯O2iii 0.82 1.70 2.520 (3) 173
O11—H11A⋯O13iv 0.82 1.84 2.634 (4) 163
N4—H4A⋯O6i 0.89 2.06 2.935 (3) 167
N4—H4A⋯O5i 0.89 2.53 2.993 (3) 113
N4—H4A⋯O11v 0.89 2.58 3.011 (3) 110
N4—H4B⋯O10vi 0.89 2.05 2.834 (3) 146
N4—H4C⋯O9v 0.89 2.41 2.964 (3) 121
N5—H5A⋯O1vii 0.99 (3) 2.12 (3) 3.060 (3) 158 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y, z-1; (vi) -x+1, -y+2, -z+1; (vii) x, y+1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many complexes containing pyridine-2,6-dicarboxylate, CoII ions and various bases have been reported (Aghabozorg et al. 2008, 2009; Moghimi et al., 2002; MacDonald et al., 2004, 2000).

In the title compound (I), Fig. 1, the metal ion CoII is six-coordinated by two pyridine-2,6-dicarboxylate ligands, with -2 and -1 negative charges (Table 1). Both ligands are tridentate and the coordination sphere around the cobalt is a distorted octahedral with the N—Co—N angle equal to 177.68 (9)°. The angle between the least-squares plane of the non-H atoms of the two ligands is 87.38 (4)°. Each complex of total charge -1 is accompanied in the asymmetric unit cell by one phenylhydrazinium ion as a counter ion, a neutral pyridine-2,6-dicarboxylic acid molecule and three water molecules. In the cation the terminal N4 is deviated by 1.188 (3)Å from the C22—C27 plane. The bond angle sum around N5 is 327°, indicative of a sp3 hybridization for this atom. There is an extensive three-dimensional network of H-bonds linking the molecules and ions together. Water O13 links the cobalt complexes along the b axis and water O14 links the cobalt complexes along the a axis. The neutral acidic molecule is H-bonded to the complex and the cation shares the NH and NH3 hydrogen atoms with two symmetry related complexes and the neutral acid molecule (Table 2 and Fig. 2).

Related literature top

For related cobalt, copper and cadmium complexes containing 2,6-dicarboxylato ligands, see: Aghabozorg et al. (2008); Aghabozorg et al. (2009); Moghimi et al. (2002). For an isotypic series of five related M(II) complexes, see: MacDonald et al. (2004). For the supramolecular chemistry and crystal structures of five bis(imidazolium 2,6-pyridinedicarboxylate)M(II) complexes, see: MacDonald et al. (2000).

Experimental top

From a solution of phenylhydrazine (0.4 mmol) and of pyridine-2,6-dicarboxylic acid (0.4 mmol) in THF (30 ml), a white precipitate was obtained. By mixing the precipitate with cobalt (II) nitrate (0.2 mmol) in water (25 ml), brown crystals of the title compound were obtained after allowing the mixture to stand for 2 weeks at room temperature.

Refinement top

The occupancy of water O atoms, O15 and O16, refined to near 50%, so that at the final stages of refinement the sum of their occupancies was set to one. H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å (aromatic) and 0.98 Å (CH) and with Uiso(H) = 1.2 Ueq(C). H atoms of water molecules O13 an O14 were located in a difference Fourier map and refined as riding with O—H = 0.85 (1) Å, H—H = 1.34 (1) Å and Uiso(H) = 1.5Ueq(O). The H atoms of the remaining water molecule disordered over two sites could not be located. H atoms of hydroxyl and hydrazinium groups were located in a difference electron density map but O–H were refined using AFIX 147 and NH3 H atoms using AFIX 137 in SHELXL97. The coordinates of H atom attached to N5 were freely refined, Uiso(H5) = 1.2 Ueq(N5).

Structure description top

Many complexes containing pyridine-2,6-dicarboxylate, CoII ions and various bases have been reported (Aghabozorg et al. 2008, 2009; Moghimi et al., 2002; MacDonald et al., 2004, 2000).

In the title compound (I), Fig. 1, the metal ion CoII is six-coordinated by two pyridine-2,6-dicarboxylate ligands, with -2 and -1 negative charges (Table 1). Both ligands are tridentate and the coordination sphere around the cobalt is a distorted octahedral with the N—Co—N angle equal to 177.68 (9)°. The angle between the least-squares plane of the non-H atoms of the two ligands is 87.38 (4)°. Each complex of total charge -1 is accompanied in the asymmetric unit cell by one phenylhydrazinium ion as a counter ion, a neutral pyridine-2,6-dicarboxylic acid molecule and three water molecules. In the cation the terminal N4 is deviated by 1.188 (3)Å from the C22—C27 plane. The bond angle sum around N5 is 327°, indicative of a sp3 hybridization for this atom. There is an extensive three-dimensional network of H-bonds linking the molecules and ions together. Water O13 links the cobalt complexes along the b axis and water O14 links the cobalt complexes along the a axis. The neutral acidic molecule is H-bonded to the complex and the cation shares the NH and NH3 hydrogen atoms with two symmetry related complexes and the neutral acid molecule (Table 2 and Fig. 2).

For related cobalt, copper and cadmium complexes containing 2,6-dicarboxylato ligands, see: Aghabozorg et al. (2008); Aghabozorg et al. (2009); Moghimi et al. (2002). For an isotypic series of five related M(II) complexes, see: MacDonald et al. (2004). For the supramolecular chemistry and crystal structures of five bis(imidazolium 2,6-pyridinedicarboxylate)M(II) complexes, see: MacDonald et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell showing the H-bonds as dashed lines. H atoms not involved in H-bonding were omitted for clarity. Also omitted were the disordered water O atoms.
Phenylhydrazinium (6-carboxypyridine-2-carboxylato)(pyridine-2,6-dicarboxylato)cobaltate(II)- pyridine-2,6-dicarboxylic acid–water (1/1/3) top
Crystal data top
(C6H9N2)[Co(C7H3NO4)(C7H4NO4)]·C7H5NO4·3H2OZ = 2
Mr = 720.47F(000) = 742
Triclinic, P1Dx = 1.565 Mg m3
a = 8.8019 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2378 (5) ÅCell parameters from 8005 reflections
c = 14.6559 (7) Åθ = 2.8–25.2°
α = 101.080 (2)°µ = 0.64 mm1
β = 91.351 (3)°T = 293 K
γ = 98.749 (3)°Block, brown
V = 1528.95 (12) Å30.25 × 0.12 × 0.12 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5526 independent reflections
Radiation source: fine-focus sealed tube4198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.825, Tmax = 0.999k = 1414
27004 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.1037P)2]
where P = (Fo2 + 2Fc2)/3
5526 reflections(Δ/σ)max = 0.002
462 parametersΔρmax = 0.71 e Å3
6 restraintsΔρmin = 0.78 e Å3
Crystal data top
(C6H9N2)[Co(C7H3NO4)(C7H4NO4)]·C7H5NO4·3H2Oγ = 98.749 (3)°
Mr = 720.47V = 1528.95 (12) Å3
Triclinic, P1Z = 2
a = 8.8019 (4) ÅMo Kα radiation
b = 12.2378 (5) ŵ = 0.64 mm1
c = 14.6559 (7) ÅT = 293 K
α = 101.080 (2)°0.25 × 0.12 × 0.12 mm
β = 91.351 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4198 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.999Rint = 0.038
27004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.71 e Å3
5526 reflectionsΔρmin = 0.78 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.08241 (5)0.11526 (3)0.27416 (3)0.03986 (15)
N10.0353 (3)0.20143 (19)0.17546 (17)0.0321 (5)
N20.1315 (3)0.0232 (2)0.36950 (16)0.0333 (6)
O10.1988 (3)0.04183 (18)0.15618 (15)0.0439 (5)
O20.2202 (3)0.03896 (18)0.00472 (16)0.0467 (6)
O30.0290 (3)0.2509 (2)0.34757 (17)0.0604 (7)
O40.1504 (3)0.3913 (2)0.32449 (19)0.0718 (8)
O50.1078 (3)0.0133 (2)0.25722 (17)0.0549 (6)
O60.2095 (3)0.1669 (2)0.30695 (18)0.0554 (6)
O70.3082 (3)0.2062 (2)0.35125 (17)0.0533 (6)
O80.4774 (3)0.1909 (2)0.46295 (19)0.0645 (7)
H80.51930.25220.45380.097*
O130.7224 (4)0.5896 (2)0.2939 (2)0.0735 (8)
H13A0.767 (4)0.6505 (12)0.328 (2)0.110*
H13B0.765 (3)0.5383 (15)0.310 (3)0.110*
O140.6225 (4)0.3733 (3)0.4384 (2)0.0911 (10)
H14A0.696 (2)0.384 (3)0.4033 (16)0.137*
H14B0.606 (4)0.4388 (13)0.464 (3)0.137*
O150.7032 (9)0.5579 (4)0.5692 (4)0.111 (3)0.600 (6)
O160.0711 (12)0.3917 (6)0.5180 (5)0.100 (4)0.400 (6)
C10.1723 (3)0.0746 (2)0.0823 (2)0.0344 (7)
C20.0767 (3)0.1683 (2)0.0894 (2)0.0315 (6)
C30.0373 (4)0.2194 (3)0.0181 (2)0.0388 (7)
H30.06510.19470.04240.047*
C40.0448 (4)0.3087 (3)0.0388 (2)0.0430 (8)
H40.07250.34480.00790.052*
C50.0851 (4)0.3435 (3)0.1288 (2)0.0437 (8)
H50.13930.40350.14370.052*
C60.0434 (3)0.2873 (2)0.1966 (2)0.0355 (7)
C70.0777 (4)0.3123 (3)0.2975 (2)0.0472 (8)
C80.1070 (4)0.0855 (3)0.3071 (2)0.0413 (8)
C90.0315 (3)0.0679 (2)0.3749 (2)0.0357 (7)
C100.0559 (4)0.1344 (3)0.4379 (2)0.0417 (8)
H100.01380.19880.44040.050*
C110.1854 (4)0.1037 (3)0.4969 (2)0.0465 (8)
H110.20370.14740.54010.056*
C120.2878 (4)0.0085 (3)0.4920 (2)0.0438 (8)
H120.37550.01370.53180.053*
C130.2571 (3)0.0526 (3)0.4267 (2)0.0388 (7)
C140.3519 (4)0.1574 (3)0.4096 (2)0.0441 (8)
N30.5452 (3)0.71742 (19)0.98841 (17)0.0336 (6)
O90.3803 (3)0.88505 (18)1.00552 (14)0.0423 (5)
H90.33520.93911.00610.063*
O100.3851 (3)0.88449 (19)0.85355 (16)0.0494 (6)
O110.6360 (3)0.6510 (2)1.14056 (17)0.0620 (7)
H11A0.68070.63531.18490.093*
O120.7558 (3)0.5215 (2)1.0602 (2)0.0749 (8)
C160.4987 (3)0.7465 (2)0.9112 (2)0.0354 (7)
C170.5231 (4)0.6919 (3)0.8224 (2)0.0458 (8)
H170.48900.71640.77040.055*
C180.5987 (4)0.6008 (3)0.8129 (3)0.0550 (9)
H180.61610.56170.75410.066*
C190.6486 (4)0.5682 (3)0.8917 (3)0.0475 (8)
H190.70060.50680.88720.057*
C200.6203 (3)0.6280 (2)0.9773 (2)0.0378 (7)
C150.4154 (3)0.8466 (2)0.9206 (2)0.0353 (7)
C210.6782 (4)0.5948 (3)1.0634 (3)0.0456 (8)
N40.5745 (3)0.8905 (2)0.17482 (17)0.0379 (6)
H4A0.63510.86160.21010.057*
H4B0.62560.95370.16190.057*
H4C0.54590.84100.12210.057*
N50.4388 (3)0.9152 (2)0.22451 (19)0.0416 (6)
H5A0.373 (4)0.950 (3)0.186 (2)0.050*
C220.3461 (4)0.8152 (2)0.2400 (2)0.0367 (7)
C230.1992 (4)0.7818 (3)0.1991 (2)0.0488 (9)
H230.16240.82240.15820.059*
C240.1081 (4)0.6894 (3)0.2185 (3)0.0580 (10)
H240.00910.66770.19100.070*
C250.1611 (5)0.6277 (3)0.2787 (3)0.0599 (11)
H250.09900.56440.29130.072*
C260.3070 (5)0.6615 (3)0.3196 (3)0.0566 (10)
H260.34320.62080.36060.068*
C270.4004 (4)0.7545 (3)0.3010 (2)0.0483 (8)
H270.49910.77650.32900.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0464 (3)0.0381 (2)0.0397 (3)0.0132 (2)0.0000 (2)0.01435 (19)
N10.0308 (12)0.0296 (12)0.0389 (14)0.0099 (10)0.0025 (11)0.0103 (10)
N20.0325 (13)0.0362 (13)0.0320 (13)0.0088 (11)0.0009 (11)0.0062 (10)
O10.0504 (13)0.0434 (12)0.0459 (13)0.0248 (10)0.0005 (10)0.0152 (10)
O20.0571 (14)0.0433 (12)0.0446 (13)0.0251 (11)0.0051 (11)0.0068 (10)
O30.0909 (19)0.0574 (15)0.0440 (14)0.0353 (14)0.0181 (13)0.0174 (12)
O40.104 (2)0.0577 (15)0.0709 (18)0.0476 (15)0.0441 (16)0.0228 (13)
O50.0472 (14)0.0600 (15)0.0607 (15)0.0037 (12)0.0168 (12)0.0258 (13)
O60.0474 (14)0.0505 (14)0.0652 (16)0.0032 (12)0.0096 (12)0.0138 (12)
O70.0584 (15)0.0524 (14)0.0492 (14)0.0025 (12)0.0069 (12)0.0202 (12)
O80.0483 (15)0.0739 (19)0.0680 (17)0.0122 (13)0.0157 (13)0.0254 (15)
O130.090 (2)0.0642 (17)0.0686 (19)0.0135 (16)0.0180 (16)0.0220 (15)
O140.097 (2)0.076 (2)0.088 (2)0.0165 (18)0.0360 (19)0.0076 (18)
O150.196 (7)0.056 (3)0.082 (4)0.050 (4)0.017 (4)0.006 (3)
O160.175 (9)0.061 (5)0.050 (5)0.001 (5)0.032 (5)0.002 (4)
C10.0299 (15)0.0291 (15)0.0440 (18)0.0072 (12)0.0010 (13)0.0050 (13)
C20.0296 (14)0.0272 (14)0.0377 (17)0.0064 (12)0.0018 (12)0.0055 (12)
C30.0424 (17)0.0395 (17)0.0370 (17)0.0112 (14)0.0000 (14)0.0102 (14)
C40.0484 (19)0.0414 (17)0.0454 (19)0.0167 (15)0.0020 (15)0.0170 (15)
C50.0425 (18)0.0367 (16)0.058 (2)0.0165 (14)0.0052 (16)0.0165 (15)
C60.0357 (16)0.0267 (14)0.0470 (18)0.0088 (12)0.0075 (14)0.0111 (13)
C70.057 (2)0.0402 (18)0.050 (2)0.0163 (16)0.0156 (17)0.0155 (15)
C80.0385 (17)0.0402 (18)0.0445 (19)0.0089 (15)0.0032 (14)0.0055 (15)
C90.0366 (16)0.0356 (16)0.0352 (16)0.0121 (13)0.0035 (13)0.0028 (13)
C100.0446 (18)0.0393 (17)0.0446 (19)0.0113 (14)0.0047 (15)0.0126 (14)
C110.0488 (19)0.053 (2)0.0465 (19)0.0175 (16)0.0058 (16)0.0241 (16)
C120.0386 (17)0.062 (2)0.0354 (17)0.0181 (16)0.0019 (14)0.0139 (15)
C130.0322 (16)0.0497 (18)0.0360 (17)0.0120 (14)0.0028 (13)0.0081 (14)
C140.0376 (18)0.052 (2)0.0418 (19)0.0032 (15)0.0008 (15)0.0095 (16)
N30.0318 (13)0.0267 (12)0.0436 (15)0.0073 (10)0.0022 (11)0.0081 (10)
O90.0508 (13)0.0435 (12)0.0390 (12)0.0241 (10)0.0050 (10)0.0109 (10)
O100.0688 (16)0.0441 (13)0.0418 (13)0.0214 (12)0.0017 (11)0.0150 (10)
O110.0911 (19)0.0541 (14)0.0491 (15)0.0348 (14)0.0068 (14)0.0137 (12)
O120.090 (2)0.0721 (17)0.083 (2)0.0550 (16)0.0105 (16)0.0316 (15)
C160.0360 (16)0.0297 (15)0.0401 (17)0.0055 (13)0.0023 (13)0.0058 (13)
C170.053 (2)0.0431 (18)0.0412 (19)0.0128 (16)0.0045 (16)0.0041 (15)
C180.065 (2)0.049 (2)0.049 (2)0.0212 (18)0.0111 (18)0.0050 (17)
C190.0490 (19)0.0331 (16)0.060 (2)0.0140 (15)0.0082 (17)0.0027 (15)
C200.0343 (16)0.0282 (15)0.0509 (19)0.0073 (13)0.0026 (14)0.0063 (13)
C150.0331 (16)0.0316 (15)0.0415 (18)0.0046 (13)0.0010 (13)0.0085 (13)
C210.0457 (19)0.0328 (16)0.062 (2)0.0110 (15)0.0006 (16)0.0145 (15)
N40.0375 (14)0.0356 (13)0.0411 (15)0.0069 (11)0.0027 (11)0.0089 (11)
N50.0447 (15)0.0362 (14)0.0466 (16)0.0124 (12)0.0043 (13)0.0095 (12)
C220.0430 (17)0.0337 (16)0.0337 (16)0.0103 (14)0.0060 (14)0.0032 (13)
C230.048 (2)0.049 (2)0.048 (2)0.0101 (17)0.0021 (16)0.0062 (16)
C240.048 (2)0.056 (2)0.065 (3)0.0004 (18)0.0050 (18)0.0026 (19)
C250.072 (3)0.041 (2)0.061 (2)0.0036 (19)0.025 (2)0.0023 (18)
C260.081 (3)0.046 (2)0.046 (2)0.014 (2)0.0116 (19)0.0153 (16)
C270.055 (2)0.049 (2)0.0430 (19)0.0095 (17)0.0043 (16)0.0129 (16)
Geometric parameters (Å, º) top
Co1—N12.017 (2)C12—C131.368 (4)
Co1—N22.033 (2)C12—H120.9300
Co1—O52.090 (2)C13—C141.487 (5)
Co1—O12.148 (2)N3—C161.323 (4)
Co1—O32.175 (2)N3—C201.348 (3)
Co1—O72.281 (2)O9—C151.304 (4)
N1—C21.325 (4)O9—H90.8200
N1—C61.337 (3)O10—C151.206 (4)
N2—C91.327 (4)O11—C211.300 (4)
N2—C131.332 (4)O11—H11A0.8200
O1—C11.254 (4)O12—C211.202 (4)
O2—C11.244 (4)C16—C171.382 (4)
O3—C71.257 (4)C16—C151.507 (4)
O4—C71.247 (4)C17—C181.369 (4)
O5—C81.251 (4)C17—H170.9300
O6—C81.238 (4)C18—C191.376 (5)
O7—C141.219 (4)C18—H180.9300
O8—C141.303 (4)C19—C201.375 (4)
O8—H80.8200C19—H190.9300
O13—H13A0.85 (2)C20—C211.498 (4)
O13—H13B0.85 (3)N4—N51.454 (3)
O14—H14A0.85 (2)N4—H4A0.8900
O14—H14B0.85 (3)N4—H4B0.8900
C1—C21.512 (4)N4—H4C0.8900
C2—C31.380 (4)N5—C221.424 (4)
C3—C41.390 (4)N5—H5A0.99 (3)
C3—H30.9300C22—C231.380 (5)
C4—C51.377 (5)C22—C271.386 (4)
C4—H40.9300C23—C241.365 (5)
C5—C61.385 (4)C23—H230.9300
C5—H50.9300C24—C251.382 (5)
C6—C71.500 (4)C24—H240.9300
C8—C91.517 (4)C25—C261.373 (6)
C9—C101.375 (4)C25—H250.9300
C10—C111.373 (5)C26—C271.376 (5)
C10—H100.9300C26—H260.9300
C11—C121.376 (5)C27—H270.9300
C11—H110.9300
N1—Co1—N2177.68 (9)C13—C12—C11118.1 (3)
N1—Co1—O5102.10 (9)C13—C12—H12121.0
N2—Co1—O577.14 (9)C11—C12—H12121.0
N1—Co1—O176.28 (8)N2—C13—C12122.1 (3)
N2—Co1—O1101.57 (8)N2—C13—C14111.1 (3)
O5—Co1—O196.18 (10)C12—C13—C14126.8 (3)
N1—Co1—O375.72 (9)O7—C14—O8125.3 (3)
N2—Co1—O3106.53 (9)O7—C14—C13120.2 (3)
O5—Co1—O397.68 (10)O8—C14—C13114.5 (3)
O1—Co1—O3150.78 (9)C16—N3—C20116.3 (3)
N1—Co1—O7107.38 (9)C15—O9—H9109.5
N2—Co1—O773.46 (9)C21—O11—H11A109.5
O5—Co1—O7150.47 (9)N3—C16—C17124.3 (3)
O1—Co1—O792.35 (9)N3—C16—C15118.0 (3)
O3—Co1—O788.12 (10)C17—C16—C15117.7 (3)
C2—N1—C6121.0 (2)C18—C17—C16118.3 (3)
C2—N1—Co1119.22 (18)C18—C17—H17120.8
C6—N1—Co1119.7 (2)C16—C17—H17120.8
C9—N2—C13119.9 (3)C17—C18—C19118.9 (3)
C9—N2—Co1117.7 (2)C17—C18—H18120.5
C13—N2—Co1122.4 (2)C19—C18—H18120.5
C1—O1—Co1115.10 (17)C20—C19—C18118.8 (3)
C7—O3—Co1115.3 (2)C20—C19—H19120.6
C8—O5—Co1116.8 (2)C18—C19—H19120.6
C14—O7—Co1112.8 (2)N3—C20—C19123.3 (3)
C14—O8—H8109.5N3—C20—C21117.7 (3)
H13A—O13—H13B105 (3)C19—C20—C21119.0 (3)
H14A—O14—H14B105 (3)O10—C15—O9125.0 (3)
O2—C1—O1126.1 (3)O10—C15—C16120.9 (3)
O2—C1—C2117.5 (3)O9—C15—C16114.1 (3)
O1—C1—C2116.4 (3)O12—C21—O11123.5 (3)
N1—C2—C3121.4 (3)O12—C21—C20122.3 (3)
N1—C2—C1112.3 (2)O11—C21—C20114.2 (3)
C3—C2—C1126.4 (3)N5—N4—H4A109.5
C2—C3—C4118.3 (3)N5—N4—H4B109.5
C2—C3—H3120.9H4A—N4—H4B109.5
C4—C3—H3120.9N5—N4—H4C109.5
C5—C4—C3119.8 (3)H4A—N4—H4C109.5
C5—C4—H4120.1H4B—N4—H4C109.5
C3—C4—H4120.1C22—N5—N4111.7 (2)
C4—C5—C6118.7 (3)C22—N5—H5A106 (2)
C4—C5—H5120.7N4—N5—H5A109.6 (19)
C6—C5—H5120.7C23—C22—C27119.7 (3)
N1—C6—C5120.8 (3)C23—C22—N5120.5 (3)
N1—C6—C7112.8 (2)C27—C22—N5119.6 (3)
C5—C6—C7126.4 (3)C24—C23—C22120.1 (3)
O4—C7—O3125.9 (3)C24—C23—H23120.0
O4—C7—C6117.9 (3)C22—C23—H23120.0
O3—C7—C6116.2 (3)C23—C24—C25120.8 (4)
O6—C8—O5125.9 (3)C23—C24—H24119.6
O6—C8—C9118.3 (3)C25—C24—H24119.6
O5—C8—C9115.8 (3)C26—C25—C24118.9 (4)
N2—C9—C10121.3 (3)C26—C25—H25120.5
N2—C9—C8112.5 (3)C24—C25—H25120.5
C10—C9—C8126.2 (3)C25—C26—C27121.1 (4)
C11—C10—C9118.7 (3)C25—C26—H26119.4
C11—C10—H10120.7C27—C26—H26119.4
C9—C10—H10120.7C26—C27—C22119.3 (3)
C10—C11—C12120.0 (3)C26—C27—H27120.3
C10—C11—H11120.0C22—C27—H27120.3
C12—C11—H11120.0
N2—Co1—N1—C215 (2)Co1—O3—C7—O4176.8 (3)
O5—Co1—N1—C286.1 (2)Co1—O3—C7—C63.6 (4)
O1—Co1—N1—C27.4 (2)N1—C6—C7—O4179.8 (3)
O3—Co1—N1—C2178.9 (2)C5—C6—C7—O40.3 (5)
O7—Co1—N1—C295.6 (2)N1—C6—C7—O30.1 (4)
N2—Co1—N1—C6161 (2)C5—C6—C7—O3180.0 (3)
O5—Co1—N1—C690.7 (2)Co1—O5—C8—O6179.7 (3)
O1—Co1—N1—C6175.8 (2)Co1—O5—C8—C91.3 (4)
O3—Co1—N1—C64.3 (2)C13—N2—C9—C101.0 (4)
O7—Co1—N1—C687.7 (2)Co1—N2—C9—C10179.7 (2)
N1—Co1—N2—C970 (2)C13—N2—C9—C8177.8 (2)
O5—Co1—N2—C91.2 (2)Co1—N2—C9—C80.9 (3)
O1—Co1—N2—C992.6 (2)O6—C8—C9—N2178.8 (3)
O3—Co1—N2—C995.5 (2)O5—C8—C9—N20.3 (4)
O7—Co1—N2—C9178.4 (2)O6—C8—C9—C100.1 (5)
N1—Co1—N2—C13111 (2)O5—C8—C9—C10178.4 (3)
O5—Co1—N2—C13177.5 (2)N2—C9—C10—C111.1 (5)
O1—Co1—N2—C1388.8 (2)C8—C9—C10—C11177.5 (3)
O3—Co1—N2—C1383.1 (2)C9—C10—C11—C120.3 (5)
O7—Co1—N2—C130.3 (2)C10—C11—C12—C130.6 (5)
N1—Co1—O1—C17.2 (2)C9—N2—C13—C120.0 (4)
N2—Co1—O1—C1171.9 (2)Co1—N2—C13—C12178.7 (2)
O5—Co1—O1—C193.8 (2)C9—N2—C13—C14179.4 (2)
O3—Co1—O1—C124.1 (3)Co1—N2—C13—C140.7 (3)
O7—Co1—O1—C1114.5 (2)C11—C12—C13—N20.8 (5)
N1—Co1—O3—C74.2 (3)C11—C12—C13—C14179.9 (3)
N2—Co1—O3—C7175.2 (3)Co1—O7—C14—O8179.7 (3)
O5—Co1—O3—C796.4 (3)Co1—O7—C14—C132.4 (4)
O1—Co1—O3—C721.3 (4)N2—C13—C14—O72.2 (4)
O7—Co1—O3—C7112.7 (3)C12—C13—C14—O7177.2 (3)
N1—Co1—O5—C8176.4 (2)N2—C13—C14—O8179.7 (3)
N2—Co1—O5—C81.4 (2)C12—C13—C14—O80.9 (5)
O1—Co1—O5—C899.1 (2)C20—N3—C16—C170.4 (4)
O3—Co1—O5—C8106.7 (2)C20—N3—C16—C15179.5 (3)
O7—Co1—O5—C86.8 (4)N3—C16—C17—C180.8 (5)
N1—Co1—O7—C14176.3 (2)C15—C16—C17—C18179.9 (3)
N2—Co1—O7—C141.4 (2)C16—C17—C18—C190.7 (5)
O5—Co1—O7—C147.0 (4)C17—C18—C19—C200.2 (5)
O1—Co1—O7—C1499.9 (2)C16—N3—C20—C190.1 (5)
O3—Co1—O7—C14109.3 (2)C16—N3—C20—C21178.4 (3)
Co1—O1—C1—O2175.8 (2)C18—C19—C20—N30.2 (5)
Co1—O1—C1—C26.0 (3)C18—C19—C20—C21178.3 (3)
C6—N1—C2—C31.4 (4)N3—C16—C15—O10171.8 (3)
Co1—N1—C2—C3175.3 (2)C17—C16—C15—O107.3 (5)
C6—N1—C2—C1176.7 (3)N3—C16—C15—O98.7 (4)
Co1—N1—C2—C16.6 (3)C17—C16—C15—O9172.1 (3)
O2—C1—C2—N1178.4 (3)N3—C20—C21—O12174.5 (3)
O1—C1—C2—N10.0 (4)C19—C20—C21—O124.1 (5)
O2—C1—C2—C30.4 (5)N3—C20—C21—O116.2 (4)
O1—C1—C2—C3178.0 (3)C19—C20—C21—O11175.2 (3)
N1—C2—C3—C41.2 (5)N4—N5—C22—C23115.4 (3)
C1—C2—C3—C4176.6 (3)N4—N5—C22—C2768.4 (4)
C2—C3—C4—C50.2 (5)C27—C22—C23—C240.1 (5)
C3—C4—C5—C60.6 (5)N5—C22—C23—C24176.3 (3)
C2—N1—C6—C50.6 (4)C22—C23—C24—C250.3 (5)
Co1—N1—C6—C5176.1 (2)C23—C24—C25—C260.7 (6)
C2—N1—C6—C7179.5 (3)C24—C25—C26—C270.5 (5)
Co1—N1—C6—C73.8 (3)C25—C26—C27—C220.1 (5)
C4—C5—C6—N10.4 (5)C23—C22—C27—C260.2 (5)
C4—C5—C6—C7179.5 (3)N5—C22—C27—C26176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O140.821.672.491 (4)174
O13—H13A···O6i0.85 (2)2.29 (2)2.917 (4)131 (3)
O13—H13B···O4ii0.85 (3)2.09 (2)2.926 (4)168 (3)
O14—H14A···O4ii0.85 (2)1.80 (2)2.645 (4)174 (3)
O14—H14B···O150.85 (3)1.98 (4)2.658 (6)136 (4)
O9—H9···O2iii0.821.702.520 (3)173
O11—H11A···O13iv0.821.842.634 (4)163
N4—H4A···O6i0.892.062.935 (3)167
N4—H4A···O5i0.892.532.993 (3)113
N4—H4A···O11v0.892.583.011 (3)110
N4—H4B···O10vi0.892.052.834 (3)146
N4—H4C···O9v0.892.412.964 (3)121
N5—H5A···O1vii0.99 (3)2.12 (3)3.060 (3)158 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y, z1; (vi) x+1, y+2, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)[Co(C7H3NO4)(C7H4NO4)]·C7H5NO4·3H2O
Mr720.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8019 (4), 12.2378 (5), 14.6559 (7)
α, β, γ (°)101.080 (2), 91.351 (3), 98.749 (3)
V3)1528.95 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.25 × 0.12 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.825, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
27004, 5526, 4198
Rint0.038
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.167, 1.13
No. of reflections5526
No. of parameters462
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.78

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Co1—N12.017 (2)Co1—O12.148 (2)
Co1—N22.033 (2)Co1—O32.175 (2)
Co1—O52.090 (2)Co1—O72.281 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O140.821.672.491 (4)174.0
O13—H13A···O6i0.85 (2)2.29 (2)2.917 (4)131 (3)
O13—H13B···O4ii0.85 (3)2.09 (2)2.926 (4)168 (3)
O14—H14A···O4ii0.85 (2)1.80 (2)2.645 (4)174 (3)
O14—H14B···O150.85 (3)1.98 (4)2.658 (6)136 (4)
O9—H9···O2iii0.821.702.520 (3)172.6
O11—H11A···O13iv0.821.842.634 (4)163.0
N4—H4A···O6i0.892.062.935 (3)166.7
N4—H4A···O5i0.892.532.993 (3)113.0
N4—H4A···O11v0.892.583.011 (3)110.3
N4—H4B···O10vi0.892.052.834 (3)146.2
N4—H4C···O9v0.892.412.964 (3)120.6
N5—H5A···O1vii0.99 (3)2.12 (3)3.060 (3)158 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y, z1; (vi) x+1, y+2, z+1; (vii) x, y+1, z.
 

Acknowledgements

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE through project PTDC/FIS/102284/2008-Fundação para a Ciência e a Tecnologia (FCT).

References

First citationAghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008). J. Chem. Crystallogr. 38, 135–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonald, J. C., Luo, M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002). Can. J. Chem. 80, 1687–1696.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds