organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10H-Pheno­thia­zine 5-oxide

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn

(Received 9 November 2010; accepted 17 November 2010; online 24 November 2010)

In the title compound, C12H9NOS, the sulfoxide O atom is disordered over two sites with occupancies of 0.907 (4) and 0.093 (4). The dihedral angle betweeen the two aromatic rings is 18.40 (14)°. Different types of supramolecular interactions including inter­molecular N—H⋯O hydrogen bonds and ππ contacts [centroid–centroid distances = 3.9096 (16) and 4.1423 (16) Å] between the aromatic rings of symmetry-related mol­ecules are observed in the crystal structure.

Related literature

For N-aryl­phenothia­zine structures, see: Chu & Van der Helm (1974[Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.], 1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.], 1976[Chu, S. S. C. & Van der Helm, D. (1976). Acta Cryst. B32, 1012-1016.]) and for N-aryl­phenothia­zine oxide structures, see: Chu et al. (1985[Chu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111-1114.]), Wang et al. (2009[Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.]). For a dioxophenothia­zinium cation co-crystallized with terephthalate trihydrate, see: Zhu et al. (2007[Zhu, D.-X., Sun, W., Yang, G.-F. & Ng, S. W. (2007). Acta Cryst. E63, o4830.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NOS

  • Mr = 215.26

  • Monoclinic, P 21 /c

  • a = 6.4482 (4) Å

  • b = 7.6610 (5) Å

  • c = 22.0956 (14) Å

  • β = 110.466 (2)°

  • V = 1022.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.895

  • 7632 measured reflections

  • 2361 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.175

  • S = 1.04

  • 2361 reflections

  • 146 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯O5i 0.86 2.10 2.856 (3) 146
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010)[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structures of N-arylphenothiazine (Chu & Van der Helm, 1974, 1975, 1976), N-arylphenothiazine oxides (Chu et al., 1985; Wang et al., 2009) and dioxide (Zhu et al., 2007) have been reported, yet that of phenothiazine or its oxide has not been reported. The title compound (I) was obtained by the oxidation of phenothiazine in THF solution in air.

In the structure of I (Fig. 1), the sulfoxide O atom is disordered over two sites and the occupancy factors are 0.907 (4) (boat-axial S—O) and 0.093 (4) (boat-equatorial S—O). The same disorder in 10-acetyl-10H-phenothiazine 5-oxide was reported recently (Wang et al., 2009). The weighted average S—O distance of 1.471 Å in I is comparable to 1.466 Å in 10-acetyl-10H-phenothiazine 5-oxide, 1.498 (2) Å in 10-methylphenothiazine 5-oxide, and longer than 1.446 Å for dioxophenothiazinium cation (Zhu et al. 2007). The significantly shorter N—C distances in I than those in other N-arylphenothiazines or oxides are due to N—H instead of N-aryl groups (see the following table). For the same reason the dihedral angle betweeen the two benzene rings 18.40 (14) ° in I is smaller than those in the other compounds.

N—C (Å) substituent (reference)

1.365 (3), 1.368 (3) H (this work)

1.402 (2), 1.455 (5) methyl (Chu & Van der Helm, 1974)

1.406 (4), 1.427 (4) ethyl (Chu & Van der Helm, 1975)

1.410 (2), 1.414 (2) isopropyl (Chu & Van der Helm, 1976)

1.428 (2), 1.436 (2) acetyl (Wang et al., 2009)

1.409 (3), 1.409 (3) 2-dimethylammonium-propyl (Zhu et al. 2007)

In the crystal structure (Fig. 2), intermolecular interactions N—H···O hydrogen bond and ππ contacts between the aromatic rings [centroid to centroid distances = 3.9096 (16) and 4.1423 (16) Å] of symmetry-related molecules are observed.

Related literature top

For N-arylphenothiazine structures, see: Chu & Van der Helm (1974, 1975, 1976) and for N-arylphenothiazine oxide structures, see: Chu et al. (1985), Wang et al. (2009). For a dioxophenothiazinium cation co-crystallized with terephthalate trihydrate, see: Zhu et al. (2007).

Experimental top

A mixture of 1,3,5-benzenetricarboxylic acid (0.5 mmol) and phenothiazine (0.5 mmol) was dissolved in 10 ml THF. The solution changed from colorless to red in air in several hours. Brown crystals were obtained by slow evaporation for about 4 days at room temperature.

Refinement top

The aromatic H atoms were generated geometrically (C—H 0.93, N—H 0.86 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The position of the oxygen atom is refined at two sites, with occupancy factors of 0.907 (4) and 0.093 (4).

Structure description top

The crystal structures of N-arylphenothiazine (Chu & Van der Helm, 1974, 1975, 1976), N-arylphenothiazine oxides (Chu et al., 1985; Wang et al., 2009) and dioxide (Zhu et al., 2007) have been reported, yet that of phenothiazine or its oxide has not been reported. The title compound (I) was obtained by the oxidation of phenothiazine in THF solution in air.

In the structure of I (Fig. 1), the sulfoxide O atom is disordered over two sites and the occupancy factors are 0.907 (4) (boat-axial S—O) and 0.093 (4) (boat-equatorial S—O). The same disorder in 10-acetyl-10H-phenothiazine 5-oxide was reported recently (Wang et al., 2009). The weighted average S—O distance of 1.471 Å in I is comparable to 1.466 Å in 10-acetyl-10H-phenothiazine 5-oxide, 1.498 (2) Å in 10-methylphenothiazine 5-oxide, and longer than 1.446 Å for dioxophenothiazinium cation (Zhu et al. 2007). The significantly shorter N—C distances in I than those in other N-arylphenothiazines or oxides are due to N—H instead of N-aryl groups (see the following table). For the same reason the dihedral angle betweeen the two benzene rings 18.40 (14) ° in I is smaller than those in the other compounds.

N—C (Å) substituent (reference)

1.365 (3), 1.368 (3) H (this work)

1.402 (2), 1.455 (5) methyl (Chu & Van der Helm, 1974)

1.406 (4), 1.427 (4) ethyl (Chu & Van der Helm, 1975)

1.410 (2), 1.414 (2) isopropyl (Chu & Van der Helm, 1976)

1.428 (2), 1.436 (2) acetyl (Wang et al., 2009)

1.409 (3), 1.409 (3) 2-dimethylammonium-propyl (Zhu et al. 2007)

In the crystal structure (Fig. 2), intermolecular interactions N—H···O hydrogen bond and ππ contacts between the aromatic rings [centroid to centroid distances = 3.9096 (16) and 4.1423 (16) Å] of symmetry-related molecules are observed.

For N-arylphenothiazine structures, see: Chu & Van der Helm (1974, 1975, 1976) and for N-arylphenothiazine oxide structures, see: Chu et al. (1985), Wang et al. (2009). For a dioxophenothiazinium cation co-crystallized with terephthalate trihydrate, see: Zhu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of I. Displacement ellipsoids are drawn at the 50% probabability level.
[Figure 2] Fig. 2. A perspective view of the crystal structure of I. Hydrogen atoms have been omitted for clarity.
10H-Phenothiazine 5-oxide top
Crystal data top
C12H9NOSF(000) = 448
Mr = 215.26Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3079 reflections
a = 6.4482 (4) Åθ = 2.7–27.3°
b = 7.6610 (5) ŵ = 0.29 mm1
c = 22.0956 (14) ÅT = 297 K
β = 110.466 (2)°Block, brown
V = 1022.62 (11) Å30.50 × 0.50 × 0.40 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2361 independent reflections
Radiation source: fine-focus sealed tube1962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scanθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.871, Tmax = 0.895k = 99
7632 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.098P)2 + 0.4384P]
where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H9NOSV = 1022.62 (11) Å3
Mr = 215.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4482 (4) ŵ = 0.29 mm1
b = 7.6610 (5) ÅT = 297 K
c = 22.0956 (14) Å0.50 × 0.50 × 0.40 mm
β = 110.466 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1962 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.895Rint = 0.029
7632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0636 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2361 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S50.42382 (10)0.16598 (9)0.58407 (3)0.0511 (3)
O50.5476 (3)0.3348 (3)0.60011 (10)0.0515 (6)0.907 (4)
O5'0.537 (2)0.0431 (17)0.5773 (6)0.024 (4)0.093 (4)
N100.0212 (3)0.2763 (3)0.59516 (10)0.0465 (5)
H10A0.12560.33630.60090.056*
C10.1959 (5)0.3230 (3)0.48155 (14)0.0563 (7)
H1A0.31970.36770.48850.068*
C20.1951 (6)0.3105 (4)0.42027 (16)0.0695 (9)
H2A0.31820.34720.38590.083*
C30.0141 (7)0.2438 (4)0.40843 (15)0.0746 (10)
H3A0.01690.23320.36620.090*
C4A0.1721 (4)0.2076 (3)0.52193 (12)0.0459 (6)
C40.1689 (6)0.1936 (4)0.45877 (15)0.0624 (8)
H4A0.29170.15000.45090.075*
C5A0.3231 (4)0.1236 (3)0.64649 (12)0.0458 (6)
C60.4605 (5)0.0291 (4)0.69942 (15)0.0621 (8)
H6A0.59040.02020.69790.075*
C70.4058 (6)0.0086 (4)0.75312 (16)0.0750 (9)
H7A0.49740.05540.78800.090*
C80.2155 (7)0.0822 (4)0.75575 (15)0.0725 (9)
H8A0.18070.06990.79300.087*
C9A0.1255 (4)0.1936 (3)0.64756 (12)0.0433 (5)
C90.0752 (5)0.1739 (4)0.70411 (15)0.0592 (7)
H9A0.05330.22320.70670.071*
C10A0.0122 (4)0.2694 (3)0.53439 (12)0.0429 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0328 (4)0.0552 (4)0.0649 (5)0.0046 (2)0.0165 (3)0.0057 (3)
O50.0265 (9)0.0631 (13)0.0647 (13)0.0072 (8)0.0156 (9)0.0056 (9)
O5'0.024 (4)0.025 (4)0.025 (4)0.0011 (10)0.0089 (16)0.0008 (10)
N100.0303 (9)0.0531 (12)0.0573 (13)0.0056 (9)0.0166 (9)0.0031 (10)
C10.0421 (14)0.0503 (14)0.0633 (17)0.0057 (11)0.0018 (12)0.0081 (12)
C20.067 (2)0.0634 (18)0.0589 (18)0.0144 (15)0.0016 (15)0.0080 (14)
C30.096 (3)0.073 (2)0.0481 (17)0.026 (2)0.0172 (17)0.0066 (15)
C4A0.0401 (13)0.0447 (12)0.0511 (14)0.0055 (10)0.0139 (11)0.0057 (10)
C40.0675 (19)0.0626 (17)0.0614 (17)0.0154 (14)0.0279 (15)0.0152 (14)
C5A0.0364 (12)0.0416 (12)0.0532 (14)0.0010 (10)0.0077 (10)0.0025 (10)
C60.0524 (16)0.0517 (15)0.0674 (18)0.0074 (12)0.0024 (13)0.0060 (13)
C70.080 (2)0.0612 (19)0.063 (2)0.0008 (17)0.0001 (17)0.0118 (15)
C80.095 (3)0.0701 (19)0.0504 (17)0.0125 (18)0.0227 (17)0.0062 (14)
C9A0.0352 (12)0.0415 (12)0.0502 (14)0.0050 (9)0.0113 (10)0.0005 (10)
C90.0559 (17)0.0644 (17)0.0630 (17)0.0101 (13)0.0278 (14)0.0038 (13)
C10A0.0333 (11)0.0391 (11)0.0526 (14)0.0056 (9)0.0101 (10)0.0009 (10)
Geometric parameters (Å, º) top
S5—O5'1.233 (13)C4A—C10A1.393 (3)
S5—O51.496 (2)C4A—C41.393 (4)
S5—C5A1.748 (3)C4—H4A0.9300
S5—C4A1.750 (3)C5A—C9A1.390 (3)
N10—C10A1.365 (3)C5A—C61.397 (4)
N10—C9A1.368 (3)C6—C71.360 (5)
N10—H10A0.8600C6—H6A0.9300
C1—C21.359 (5)C7—C81.370 (5)
C1—C10A1.403 (3)C7—H7A0.9300
C1—H1A0.9300C8—C91.376 (5)
C2—C31.380 (5)C8—H8A0.9300
C2—H2A0.9300C9A—C91.404 (4)
C3—C41.364 (5)C9—H9A0.9300
C3—H3A0.9300
O5'—S5—O5113.5 (6)C4A—C4—H4A120.0
O5'—S5—C5A110.7 (6)C9A—C5A—C6120.1 (3)
O5—S5—C5A106.75 (12)C9A—C5A—S5122.5 (2)
O5'—S5—C4A118.1 (6)C6—C5A—S5117.0 (2)
O5—S5—C4A107.46 (12)C7—C6—C5A120.5 (3)
C5A—S5—C4A98.86 (12)C7—C6—H6A119.7
C10A—N10—C9A124.1 (2)C5A—C6—H6A119.7
C10A—N10—H10A118.0C6—C7—C8119.9 (3)
C9A—N10—H10A118.0C6—C7—H7A120.0
C2—C1—C10A120.8 (3)C8—C7—H7A120.0
C2—C1—H1A119.6C7—C8—C9120.9 (3)
C10A—C1—H1A119.6C7—C8—H8A119.5
C1—C2—C3120.8 (3)C9—C8—H8A119.5
C1—C2—H2A119.6N10—C9A—C5A122.1 (2)
C3—C2—H2A119.6N10—C9A—C9119.8 (2)
C4—C3—C2119.9 (3)C5A—C9A—C9118.2 (2)
C4—C3—H3A120.1C8—C9—C9A120.2 (3)
C2—C3—H3A120.1C8—C9—H9A119.9
C10A—C4A—C4120.6 (3)C9A—C9—H9A119.9
C10A—C4A—S5121.9 (2)N10—C10A—C4A122.7 (2)
C4—C4A—S5117.2 (2)N10—C10A—C1119.6 (2)
C3—C4—C4A120.1 (3)C4A—C10A—C1117.7 (3)
C3—C4—H4A120.0
C10A—C1—C2—C30.3 (4)C5A—C6—C7—C80.6 (5)
C1—C2—C3—C41.6 (5)C6—C7—C8—C91.5 (5)
O5'—S5—C4A—C10A145.5 (7)C10A—N10—C9A—C5A13.3 (4)
O5—S5—C4A—C10A84.5 (2)C10A—N10—C9A—C9165.2 (2)
C5A—S5—C4A—C10A26.3 (2)C6—C5A—C9A—N10175.3 (2)
O5'—S5—C4A—C440.9 (7)S5—C5A—C9A—N1011.0 (3)
O5—S5—C4A—C489.1 (2)C6—C5A—C9A—C93.2 (4)
C5A—S5—C4A—C4160.1 (2)S5—C5A—C9A—C9170.48 (19)
C2—C3—C4—C4A0.8 (5)C7—C8—C9—C9A0.0 (5)
C10A—C4A—C4—C31.3 (4)N10—C9A—C9—C8176.2 (3)
S5—C4A—C4—C3172.4 (2)C5A—C9A—C9—C82.3 (4)
O5'—S5—C5A—C9A151.4 (7)C9A—N10—C10A—C4A13.6 (4)
O5—S5—C5A—C9A84.6 (2)C9A—N10—C10A—C1165.2 (2)
C4A—S5—C5A—C9A26.7 (2)C4—C4A—C10A—N10176.3 (2)
O5'—S5—C5A—C634.7 (7)S5—C4A—C10A—N1010.4 (3)
O5—S5—C5A—C689.3 (2)C4—C4A—C10A—C12.5 (4)
C4A—S5—C5A—C6159.4 (2)S5—C4A—C10A—C1170.87 (18)
C9A—C5A—C6—C71.8 (4)C2—C1—C10A—N10177.1 (2)
S5—C5A—C6—C7172.2 (2)C2—C1—C10A—C4A1.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O5i0.862.102.856 (3)146
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H9NOS
Mr215.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)6.4482 (4), 7.6610 (5), 22.0956 (14)
β (°) 110.466 (2)
V3)1022.62 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.871, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
7632, 2361, 1962
Rint0.029
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.175, 1.04
No. of reflections2361
No. of parameters146
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···O5i0.862.102.856 (3)146.1
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We are grateful for financial support by the National Natural Science Foundation of China (Nos. 20471049, 21071117) and NFFTBS (No. J1030415).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111–1114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1976). Acta Cryst. B32, 1012–1016.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, D.-X., Sun, W., Yang, G.-F. & Ng, S. W. (2007). Acta Cryst. E63, o4830.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds