organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[p-Phenyl­enebis(methyl­­idene­aza­ne­di­yl)]dipyridinium bis­­(hydrogensulfate) dihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 November 2010; accepted 17 November 2010; online 27 November 2010)

The cation of the title salt, C18H20N42+·2HSO4·2H2O, lies on a center of inversion with the mid-point directly in the middle of the p-phenyl­ene ring. Within the hydrogensulfate ion, the S—O(H) bond is the longest of the S—O bonds. The dihedral angle between the central and terminal ring of the cation is 78.6 (2)°. In the crystal, the cation, anion and water mol­ecule inter­act by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the synthesis and structure of 1,4-bis­(pyridine-2-amino­meth­yl)benzene, see: Zou et al. (2003[Zou, R.-Y., Xu, F.-B., Li, Q.-S., Song, H.-B., Lv, H. & Zhang, Z.-Z. (2003). Acta Cryst. E59, o1312-o1313.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N42+·2HSO4·2H2O

  • Mr = 522.55

  • Triclinic, [P \overline 1]

  • a = 7.1718 (5) Å

  • b = 9.3010 (7) Å

  • c = 9.5113 (5) Å

  • α = 97.648 (2)°

  • β = 92.340 (2)°

  • γ = 114.005 (2)°

  • V = 571.25 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan]) Tmin = 0.930, Tmax = 0.949

  • 5648 measured reflections

  • 2583 independent reflections

  • 1624 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.143

  • S = 1.14

  • 2583 reflections

  • 169 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1wi 0.84 (1) 1.75 (1) 2.592 (4) 178 (5)
O1w—H11⋯O2 0.84 (1) 1.93 (2) 2.749 (3) 164 (5)
O1w—H12⋯O4ii 0.84 (1) 1.98 (1) 2.813 (3) 174 (5)
N2—H2⋯O1 0.89 (1) 2.02 (2) 2.844 (3) 154 (3)
N1—H1⋯O4iii 0.88 (1) 2.03 (1) 2.903 (3) 170 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2; (iii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis complements other reports of the coordinating ability of 1,4-bis(2-pyridylaminomethyl)benzene, a relatively flexible N-donor ligand having aromatic as well as aliphatic donor sites. The structure of the neutral ligand has been reported (Zou et al., 2003). Protonation by a strong acid, sulfuric acid, occurs at both pyridyl nitrogen atoms to yield the hydrogensulfate salt, C18H20N42+ 2(HSO4)-.2H2O (Scheme I, Fig. 1). The cation lies on a center-of-inversion with the mid-point directly in the middle of the p-phenylene ring. The hydrogensulfate anion bears a hydrogen atom, so that the S–OH bond is the longest of the S–O bonds. The cation, anion and water molecule interact by O–H···O and N–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

Related literature top

For the synthesis and structure of 1,4-bis(pyridine-2-aminomethyl)benzene, see: Zou et al. (2003).

Experimental top

1,4-Bis(2-pyridylaminomethyl)benzene (10 mmol, 2.90 g) was dissolved in methanol (50 ml). Strong sulfuric acid was added until the pH was 3. The solution was filtered; colorless crystals were isolated after several days.

Refinement top

Carbon-bound hydrogen atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino/ammonium and water H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 and O–H 0.84 + 0.01 Å; their temperature factors were refined.

Structure description top

The synthesis complements other reports of the coordinating ability of 1,4-bis(2-pyridylaminomethyl)benzene, a relatively flexible N-donor ligand having aromatic as well as aliphatic donor sites. The structure of the neutral ligand has been reported (Zou et al., 2003). Protonation by a strong acid, sulfuric acid, occurs at both pyridyl nitrogen atoms to yield the hydrogensulfate salt, C18H20N42+ 2(HSO4)-.2H2O (Scheme I, Fig. 1). The cation lies on a center-of-inversion with the mid-point directly in the middle of the p-phenylene ring. The hydrogensulfate anion bears a hydrogen atom, so that the S–OH bond is the longest of the S–O bonds. The cation, anion and water molecule interact by O–H···O and N–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

For the synthesis and structure of 1,4-bis(pyridine-2-aminomethyl)benzene, see: Zou et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C18H20N42+ 2(HSO4)-.2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The cation lies on a center-of-inversion.
2,2'-[p-Phenylenebis(methylideneazanediyl)]dipyridinium bis(hydrogensulfate) dihydrate top
Crystal data top
C18H20N42+·2HSO4·2H2OZ = 1
Mr = 522.55F(000) = 274
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1718 (5) ÅCell parameters from 3948 reflections
b = 9.3010 (7) Åθ = 3.1–27.4°
c = 9.5113 (5) ŵ = 0.30 mm1
α = 97.648 (2)°T = 293 K
β = 92.340 (2)°Prism, colorless
γ = 114.005 (2)°0.25 × 0.21 × 0.18 mm
V = 571.25 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2583 independent reflections
Radiation source: fine-focus sealed tube1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 98
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.930, Tmax = 0.949l = 1212
5648 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.3231P]
where P = (Fo2 + 2Fc2)/3
2583 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.48 e Å3
5 restraintsΔρmin = 0.42 e Å3
Crystal data top
C18H20N42+·2HSO4·2H2Oγ = 114.005 (2)°
Mr = 522.55V = 571.25 (7) Å3
Triclinic, P1Z = 1
a = 7.1718 (5) ÅMo Kα radiation
b = 9.3010 (7) ŵ = 0.30 mm1
c = 9.5113 (5) ÅT = 293 K
α = 97.648 (2)°0.25 × 0.21 × 0.18 mm
β = 92.340 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1624 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.949Rint = 0.024
5648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.48 e Å3
2583 reflectionsΔρmin = 0.42 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19334 (11)0.92763 (8)0.76081 (7)0.0379 (2)
O10.1234 (3)0.7575 (2)0.7264 (2)0.0508 (5)
O20.2506 (5)0.9842 (3)0.9097 (2)0.0767 (8)
O30.3889 (4)1.0040 (3)0.6846 (3)0.0627 (7)
H30.481 (5)0.981 (5)0.719 (4)0.094*
O40.0542 (3)0.9850 (3)0.7002 (3)0.0566 (6)
O1W0.3282 (4)1.0635 (4)1.2016 (3)0.0730 (8)
H110.286 (7)1.023 (6)1.1157 (19)0.110*
H120.218 (4)1.055 (6)1.235 (5)0.110*
N10.1175 (4)0.3172 (3)0.7485 (2)0.0418 (6)
H10.112 (5)0.220 (2)0.740 (4)0.063*
N20.2258 (4)0.5652 (3)0.8961 (2)0.0388 (5)
H20.202 (5)0.606 (4)0.821 (2)0.058*
C10.5953 (5)0.6591 (3)0.4870 (3)0.0409 (7)
H1A0.65880.76650.47870.049*
C20.4067 (5)0.6003 (3)0.5401 (3)0.0417 (7)
H2A0.34440.66870.56680.050*
C30.3092 (4)0.4410 (3)0.5541 (3)0.0363 (6)
C40.1038 (5)0.3747 (4)0.6143 (3)0.0432 (7)
H4A0.05370.45730.63010.052*
H4B0.00570.28750.54520.052*
C50.1854 (4)0.4078 (3)0.8764 (3)0.0342 (6)
C60.2159 (4)0.3435 (4)0.9964 (3)0.0407 (6)
H60.19070.23620.98740.049*
C70.2830 (5)0.4399 (4)1.1269 (3)0.0492 (8)
H70.30200.39701.20640.059*
C80.3230 (5)0.6011 (4)1.1422 (3)0.0502 (8)
H80.36890.66641.23080.060*
C90.2939 (4)0.6600 (4)1.0261 (3)0.0453 (7)
H90.32060.76761.03450.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0398 (4)0.0353 (4)0.0421 (4)0.0194 (3)0.0045 (3)0.0058 (3)
O10.0561 (13)0.0329 (11)0.0647 (14)0.0198 (10)0.0081 (10)0.0079 (9)
O20.106 (2)0.0816 (19)0.0359 (13)0.0403 (17)0.0082 (12)0.0100 (11)
O30.0481 (14)0.0637 (16)0.0861 (18)0.0248 (12)0.0202 (12)0.0361 (13)
O40.0494 (13)0.0527 (14)0.0795 (16)0.0314 (11)0.0020 (11)0.0175 (11)
O1W0.0499 (15)0.116 (2)0.0588 (16)0.0458 (16)0.0023 (12)0.0032 (15)
N10.0508 (15)0.0357 (13)0.0414 (13)0.0204 (12)0.0084 (10)0.0059 (10)
N20.0420 (13)0.0386 (14)0.0403 (13)0.0204 (11)0.0020 (10)0.0096 (10)
C10.0555 (18)0.0352 (15)0.0354 (15)0.0226 (13)0.0055 (12)0.0047 (11)
C20.0557 (18)0.0433 (17)0.0371 (15)0.0322 (15)0.0059 (12)0.0042 (12)
C30.0449 (16)0.0423 (16)0.0243 (13)0.0220 (13)0.0009 (10)0.0025 (10)
C40.0469 (17)0.0506 (18)0.0346 (15)0.0241 (14)0.0008 (11)0.0033 (12)
C50.0284 (13)0.0360 (15)0.0400 (15)0.0138 (11)0.0075 (10)0.0096 (11)
C60.0418 (16)0.0412 (16)0.0472 (17)0.0216 (13)0.0103 (12)0.0187 (12)
C70.0398 (16)0.073 (2)0.0443 (17)0.0278 (15)0.0096 (12)0.0258 (15)
C80.0475 (18)0.060 (2)0.0428 (17)0.0244 (16)0.0010 (13)0.0023 (14)
C90.0443 (17)0.0401 (17)0.0500 (17)0.0184 (13)0.0012 (13)0.0009 (13)
Geometric parameters (Å, º) top
S1—O21.425 (2)C1—H1A0.9300
S1—O11.437 (2)C2—C31.385 (4)
S1—O41.443 (2)C2—H2A0.9300
S1—O31.551 (2)C3—C1i1.390 (4)
O3—H30.84 (1)C3—C41.517 (4)
O1W—H110.84 (1)C4—H4A0.9700
O1W—H120.84 (1)C4—H4B0.9700
N1—C51.331 (4)C5—C61.406 (4)
N1—C41.462 (4)C6—C71.371 (4)
N1—H10.88 (1)C6—H60.9300
N2—C51.356 (3)C7—C81.394 (5)
N2—C91.362 (4)C7—H70.9300
N2—H20.89 (1)C8—C91.341 (4)
C1—C21.382 (4)C8—H80.9300
C1—C3i1.390 (4)C9—H90.9300
O2—S1—O1112.24 (15)C1i—C3—C4119.7 (3)
O2—S1—O4113.33 (16)N1—C4—C3112.3 (2)
O1—S1—O4113.05 (14)N1—C4—H4A109.1
O2—S1—O3107.05 (17)C3—C4—H4A109.1
O1—S1—O3107.22 (14)N1—C4—H4B109.1
O4—S1—O3103.15 (13)C3—C4—H4B109.1
S1—O3—H3109 (3)H4A—C4—H4B107.9
H11—O1W—H12101 (5)N1—C5—N2121.3 (2)
C5—N1—C4125.7 (2)N1—C5—C6121.2 (3)
C5—N1—H1117 (2)N2—C5—C6117.5 (2)
C4—N1—H1115 (2)C7—C6—C5119.6 (3)
C5—N2—C9122.4 (2)C7—C6—H6120.2
C5—N2—H2118 (2)C5—C6—H6120.2
C9—N2—H2120 (2)C6—C7—C8121.0 (3)
C2—C1—C3i120.5 (3)C6—C7—H7119.5
C2—C1—H1A119.7C8—C7—H7119.5
C3i—C1—H1A119.7C9—C8—C7118.4 (3)
C1—C2—C3120.9 (3)C9—C8—H8120.8
C1—C2—H2A119.6C7—C8—H8120.8
C3—C2—H2A119.6C8—C9—N2121.2 (3)
C2—C3—C1i118.6 (3)C8—C9—H9119.4
C2—C3—C4121.7 (3)N2—C9—H9119.4
C3i—C1—C2—C30.3 (5)C9—N2—C5—N1179.5 (3)
C1—C2—C3—C1i0.3 (4)C9—N2—C5—C60.2 (4)
C1—C2—C3—C4179.0 (2)N1—C5—C6—C7179.0 (3)
C5—N1—C4—C380.0 (3)N2—C5—C6—C70.3 (4)
C2—C3—C4—N1115.8 (3)C5—C6—C7—C80.5 (4)
C1i—C3—C4—N163.5 (3)C6—C7—C8—C90.2 (5)
C4—N1—C5—N28.5 (4)C7—C8—C9—N20.3 (5)
C4—N1—C5—C6172.2 (3)C5—N2—C9—C80.5 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1wii0.84 (1)1.75 (1)2.592 (4)178 (5)
O1w—H11···O20.84 (1)1.93 (2)2.749 (3)164 (5)
O1w—H12···O4iii0.84 (1)1.98 (1)2.813 (3)174 (5)
N2—H2···O10.89 (1)2.02 (2)2.844 (3)154 (3)
N1—H1···O4iv0.88 (1)2.03 (1)2.903 (3)170 (3)
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x, y+2, z+2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H20N42+·2HSO4·2H2O
Mr522.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1718 (5), 9.3010 (7), 9.5113 (5)
α, β, γ (°)97.648 (2), 92.340 (2), 114.005 (2)
V3)571.25 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.930, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
5648, 2583, 1624
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.143, 1.14
No. of reflections2583
No. of parameters169
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1wi0.84 (1)1.75 (1)2.592 (4)178 (5)
O1w—H11···O20.84 (1)1.93 (2)2.749 (3)164 (5)
O1w—H12···O4ii0.84 (1)1.98 (1)2.813 (3)174 (5)
N2—H2···O10.89 (1)2.02 (2)2.844 (3)154 (3)
N1—H1···O4iii0.88 (1)2.03 (1)2.903 (3)170 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x, y1, z.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang Education Department (No. 11531274), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, R.-Y., Xu, F.-B., Li, Q.-S., Song, H.-B., Lv, H. & Zhang, Z.-Z. (2003). Acta Cryst. E59, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds