organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,5-di­phenyl­furan-3,4-di­carboxyl­ate

aDepartment of Chemistry & Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China, and b712th Research Institute, CSIC, Wuhan 430064, People's Republic of China
*Correspondence e-mail: hushengli168@126.com

(Received 20 October 2010; accepted 4 November 2010; online 10 November 2010)

In the title compound, C22H20O5, the substituted benzene rings are twisted away from the furan ring, making dihedral angles of 54.91 (14) and 20.96 (15)° with the furan ring. The dihedral angle between the two benzene rings is 46.89 (13)°. One ethyl group of one eth­oxy­carbonyl unit is disordered over two sets of sites with occupancies of 0.56 (12) and 0.44 (12). In the crystal, weak intra­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For background to the applications of furan-3,4-dicarb­oxy­lic acid and its esters, see: Deshpande et al. (2002[Deshpande, A. M., Natu, A. A. & Argade, N. P. (2002). Synthesis, 8, 1010-1012.]). For related structures, see: Hu & Wu (2005[Hu, S.-L. & Wu, A.-X. (2005). Acta Cryst. E61, o2030-o2032.]) Hu et al. (2005[Hu, S.-L., Wang, Z.-G. & Wu, A.-X. (2005). Acta Cryst. E61, o2801-o2803.]). For the synthesis, see: Wu et al. (1997[Wu, A., Wang, M. & Pan, X. (1997). Synth. Commun. 12, 2087-2091.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20O5

  • Mr = 364.38

  • Orthorhombic, P b c a

  • a = 11.9535 (8) Å

  • b = 17.0116 (12) Å

  • c = 18.9219 (14) Å

  • V = 3847.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.993

  • 19957 measured reflections

  • 3778 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.160

  • S = 1.01

  • 3778 reflections

  • 268 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3 0.93 2.56 3.453 (4) 161

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Furan-3,4-dicarboxylic acid and its esters have been used as starting materials in the synthesis of several bioactive natural products and several pharmacologically useful molecules, preparation of complexes with rare earth metal ions and also as a potential dienes in Diels-Alder reactions for the synthesis of several novel heterocycles (Deshpande et al., 2002). The crystal structures of some furan-3,4-dicarboxylic acid diethyl esters have been reported previously (Hu & Wu, 2005; Hu et al., 2005). In this paper, we report the crystal structure of the title compound, (I). In compound (I), the C1–C6 and C11–C16 phenyl rings form dihedral angles of 54.91 (14) and 20.96 (15)°, respectively with the furan ring, Fig 1. The dihedral angle between the two benzene rings is 46.89 (13)°. In the crystal structure, weak intramolecular C4—H4···O3 hydrogen bonds link the molecules into chains along the c axis (Table 1 and Fig. 2).

Related literature top

For background to the applications of furan-3,4-dicarboxylic acid and its esters, see: Deshpande et al. (2002). For related structures, see: Hu & Wu (2005) Hu et al. (2005). For the synthesis, see: Wu et al. (1997).

Experimental top

Compound (I) was synthesized according to the literature procedure (Wu et al., 1997). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature.

Refinement top

The C21/C22 ethyl group of an ethyl carboxylate unit is disordered over two positions with occupancies 0.56 (12)/0.44 (12). Suitable restraints were applied to the O—C and C—C distances involving the disordered atoms. The H atoms were placed in idealized positions and constrained to ride on their parent atoms,with C—H distances in the range 0.97–0.97 Å, and with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for others. Each methyl group was allowed to rotate freely about its C—C bond.

Structure description top

Furan-3,4-dicarboxylic acid and its esters have been used as starting materials in the synthesis of several bioactive natural products and several pharmacologically useful molecules, preparation of complexes with rare earth metal ions and also as a potential dienes in Diels-Alder reactions for the synthesis of several novel heterocycles (Deshpande et al., 2002). The crystal structures of some furan-3,4-dicarboxylic acid diethyl esters have been reported previously (Hu & Wu, 2005; Hu et al., 2005). In this paper, we report the crystal structure of the title compound, (I). In compound (I), the C1–C6 and C11–C16 phenyl rings form dihedral angles of 54.91 (14) and 20.96 (15)°, respectively with the furan ring, Fig 1. The dihedral angle between the two benzene rings is 46.89 (13)°. In the crystal structure, weak intramolecular C4—H4···O3 hydrogen bonds link the molecules into chains along the c axis (Table 1 and Fig. 2).

For background to the applications of furan-3,4-dicarboxylic acid and its esters, see: Deshpande et al. (2002). For related structures, see: Hu & Wu (2005) Hu et al. (2005). For the synthesis, see: Wu et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis.
Diethyl 2,5-diphenylfuran-3,4-dicarboxylate top
Crystal data top
C22H20O5F(000) = 1536
Mr = 364.38Dx = 1.258 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1354 reflections
a = 11.9535 (8) Åθ = 2.3–16.5°
b = 17.0116 (12) ŵ = 0.09 mm1
c = 18.9219 (14) ÅT = 293 K
V = 3847.7 (5) Å3Block, colorless
Z = 80.40 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3778 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.965, Tmax = 0.993k = 1820
19957 measured reflectionsl = 2317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3778 reflectionsΔρmax = 0.25 e Å3
268 parametersΔρmin = 0.27 e Å3
6 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (4)
Crystal data top
C22H20O5V = 3847.7 (5) Å3
Mr = 364.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.9535 (8) ŵ = 0.09 mm1
b = 17.0116 (12) ÅT = 293 K
c = 18.9219 (14) Å0.40 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1952 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.993Rint = 0.081
19957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
3778 reflectionsΔρmin = 0.27 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8016 (2)0.14397 (15)0.62303 (14)0.0490 (7)
C20.8864 (3)0.17700 (17)0.58313 (15)0.0605 (8)
H20.95790.18170.60210.073*
C30.8659 (4)0.2028 (2)0.51602 (17)0.0791 (10)
H30.92340.22520.48980.095*
C40.7618 (4)0.1959 (2)0.48719 (18)0.0840 (11)
H40.74830.21410.44170.101*
C50.6774 (3)0.1621 (2)0.52514 (18)0.0820 (11)
H50.60670.15690.50510.098*
C60.6963 (3)0.13579 (18)0.59302 (16)0.0665 (9)
H60.63870.11260.61860.080*
C70.8238 (2)0.11805 (15)0.69580 (14)0.0492 (7)
C80.7797 (2)0.13356 (15)0.76053 (14)0.0482 (7)
C90.8438 (2)0.08957 (16)0.81084 (14)0.0502 (7)
C100.9221 (2)0.04934 (16)0.77404 (14)0.0523 (7)
C111.0088 (2)0.00776 (16)0.79305 (15)0.0527 (7)
C121.0976 (3)0.02123 (18)0.74782 (17)0.0644 (8)
H121.10250.00580.70520.077*
C131.1795 (3)0.0752 (2)0.7664 (2)0.0765 (10)
H131.23940.08410.73610.092*
C141.1728 (3)0.1154 (2)0.8287 (2)0.0823 (11)
H141.22770.15190.84040.099*
C151.0860 (3)0.10230 (19)0.87366 (19)0.0791 (10)
H151.08200.12950.91620.095*
C161.0039 (3)0.04870 (17)0.85632 (16)0.0664 (9)
H160.94490.03990.88730.080*
C170.6899 (2)0.18876 (18)0.77946 (16)0.0570 (8)
C180.5443 (3)0.27088 (19)0.73529 (17)0.0713 (9)
H18A0.57070.31810.75870.086*
H18B0.48720.24680.76450.086*
C190.4984 (3)0.2902 (2)0.66417 (18)0.0901 (11)
H19A0.55390.31790.63720.135*
H19B0.43320.32270.66940.135*
H19C0.47850.24260.64010.135*
C200.8287 (3)0.08891 (18)0.88887 (16)0.0598 (8)
O10.91184 (16)0.06707 (10)0.70331 (9)0.0542 (5)
O20.63606 (18)0.21673 (12)0.72406 (10)0.0703 (6)
O30.66800 (19)0.20603 (17)0.83882 (12)0.1034 (9)
O40.7383 (2)0.04851 (17)0.90669 (11)0.1010 (9)
O50.89136 (19)0.11776 (13)0.93023 (11)0.0773 (7)
C220.6437 (8)0.0896 (6)1.0062 (4)0.108 (3)0.56
H22A0.68580.13761.00730.163*0.56
H22B0.61790.07741.05300.163*0.56
H22C0.58060.09560.97530.163*0.56
C210.7149 (11)0.0258 (6)0.9805 (5)0.088 (4)0.56
H21A0.67620.02430.98260.106*0.56
H21B0.78340.02231.00780.106*0.56
C21'0.7110 (15)0.0659 (11)0.9813 (5)0.107 (6)0.44
H21C0.70150.12200.98820.128*0.44
H21D0.77000.04751.01230.128*0.44
C22'0.6045 (8)0.0235 (7)0.9961 (5)0.116 (4)0.44
H22D0.54450.04790.97050.173*0.44
H22E0.58880.02551.04580.173*0.44
H22F0.61150.03040.98150.173*0.44
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0605 (18)0.0467 (16)0.0398 (16)0.0013 (14)0.0019 (14)0.0015 (13)
C20.072 (2)0.0598 (19)0.0498 (19)0.0033 (16)0.0079 (16)0.0032 (15)
C30.106 (3)0.078 (2)0.053 (2)0.002 (2)0.013 (2)0.0133 (17)
C40.124 (3)0.081 (3)0.047 (2)0.024 (2)0.003 (2)0.0108 (18)
C50.088 (3)0.105 (3)0.053 (2)0.015 (2)0.012 (2)0.006 (2)
C60.068 (2)0.083 (2)0.0479 (19)0.0009 (17)0.0025 (16)0.0035 (17)
C70.0581 (18)0.0435 (16)0.0458 (18)0.0024 (14)0.0003 (14)0.0012 (13)
C80.0561 (18)0.0496 (17)0.0389 (16)0.0037 (14)0.0023 (14)0.0003 (13)
C90.0573 (17)0.0552 (17)0.0380 (16)0.0107 (15)0.0010 (14)0.0001 (13)
C100.0598 (19)0.0561 (19)0.0411 (17)0.0076 (16)0.0020 (15)0.0014 (14)
C110.0583 (19)0.0511 (17)0.0486 (18)0.0080 (15)0.0070 (15)0.0027 (14)
C120.065 (2)0.059 (2)0.069 (2)0.0058 (17)0.0023 (18)0.0043 (16)
C130.063 (2)0.073 (2)0.093 (3)0.0019 (19)0.0025 (19)0.004 (2)
C140.077 (3)0.070 (2)0.100 (3)0.0083 (19)0.024 (2)0.002 (2)
C150.093 (3)0.075 (2)0.069 (2)0.011 (2)0.018 (2)0.0121 (18)
C160.078 (2)0.064 (2)0.057 (2)0.0032 (18)0.0064 (17)0.0031 (16)
C170.062 (2)0.070 (2)0.0397 (18)0.0095 (16)0.0018 (15)0.0039 (15)
C180.068 (2)0.074 (2)0.072 (2)0.0157 (18)0.0038 (18)0.0095 (17)
C190.099 (3)0.096 (3)0.075 (3)0.025 (2)0.011 (2)0.002 (2)
C200.064 (2)0.070 (2)0.0456 (19)0.0010 (17)0.0030 (17)0.0004 (15)
O10.0654 (13)0.0538 (12)0.0434 (12)0.0046 (10)0.0026 (9)0.0025 (9)
O20.0822 (15)0.0820 (15)0.0465 (13)0.0269 (12)0.0012 (11)0.0039 (11)
O30.0985 (18)0.164 (3)0.0481 (15)0.0494 (17)0.0063 (13)0.0242 (15)
O40.0833 (17)0.174 (3)0.0456 (14)0.0452 (18)0.0023 (12)0.0138 (15)
O50.0858 (16)0.0948 (17)0.0513 (14)0.0113 (13)0.0116 (12)0.0124 (12)
C220.122 (8)0.127 (8)0.076 (6)0.025 (6)0.022 (5)0.004 (5)
C210.081 (7)0.103 (9)0.081 (7)0.008 (5)0.003 (5)0.018 (5)
C21'0.121 (12)0.162 (17)0.036 (6)0.034 (12)0.029 (6)0.015 (8)
C22'0.119 (9)0.105 (9)0.123 (9)0.006 (7)0.049 (7)0.033 (7)
Geometric parameters (Å, º) top
C1—C21.384 (4)C15—C161.379 (4)
C1—C61.387 (4)C15—H150.9300
C1—C71.470 (4)C16—H160.9300
C2—C31.366 (4)C17—O31.190 (3)
C2—H20.9300C17—O21.319 (3)
C3—C41.364 (5)C18—O21.448 (3)
C3—H30.9300C18—C191.491 (4)
C4—C51.365 (5)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.379 (4)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—C81.359 (3)C20—O51.189 (3)
C7—O11.371 (3)C20—O41.324 (4)
C8—C91.433 (4)O4—C211.475 (8)
C8—C171.470 (4)O4—C21'1.479 (8)
C9—C101.353 (4)C22—C211.462 (9)
C9—C201.487 (4)C22—H22A0.9600
C10—O11.378 (3)C22—H22B0.9600
C10—C111.465 (4)C22—H22C0.9600
C11—C121.383 (4)C21—H21A0.9700
C11—C161.386 (4)C21—H21B0.9700
C12—C131.387 (4)C21'—C22'1.490 (10)
C12—H120.9300C21'—H21C0.9700
C13—C141.365 (5)C21'—H21D0.9700
C13—H130.9300C22'—H22D0.9600
C14—C151.360 (5)C22'—H22E0.9600
C14—H140.9300C22'—H22F0.9600
C2—C1—C6118.8 (3)C15—C16—C11120.5 (3)
C2—C1—C7120.0 (3)C15—C16—H16119.7
C6—C1—C7121.2 (3)C11—C16—H16119.7
C3—C2—C1120.4 (3)O3—C17—O2123.6 (3)
C3—C2—H2119.8O3—C17—C8123.2 (3)
C1—C2—H2119.8O2—C17—C8113.1 (2)
C4—C3—C2120.5 (3)O2—C18—C19106.7 (3)
C4—C3—H3119.7O2—C18—H18A110.4
C2—C3—H3119.7C19—C18—H18A110.4
C3—C4—C5120.0 (3)O2—C18—H18B110.4
C3—C4—H4120.0C19—C18—H18B110.4
C5—C4—H4120.0H18A—C18—H18B108.6
C4—C5—C6120.4 (3)C18—C19—H19A109.5
C4—C5—H5119.8C18—C19—H19B109.5
C6—C5—H5119.8H19A—C19—H19B109.5
C5—C6—C1119.8 (3)C18—C19—H19C109.5
C5—C6—H6120.1H19A—C19—H19C109.5
C1—C6—H6120.1H19B—C19—H19C109.5
C8—C7—O1109.1 (2)O5—C20—O4124.1 (3)
C8—C7—C1135.7 (3)O5—C20—C9125.0 (3)
O1—C7—C1115.2 (2)O4—C20—C9110.8 (3)
C7—C8—C9106.8 (2)C7—O1—C10107.9 (2)
C7—C8—C17128.8 (3)C17—O2—C18118.8 (2)
C9—C8—C17124.2 (2)C20—O4—C21122.1 (6)
C10—C9—C8107.0 (2)C20—O4—C21'108.6 (5)
C10—C9—C20126.2 (3)C21—O4—C21'26.8 (8)
C8—C9—C20126.8 (3)C22—C21—O4103.4 (7)
C9—C10—O1109.1 (2)C22—C21—H21A111.1
C9—C10—C11134.3 (3)O4—C21—H21A111.1
O1—C10—C11116.5 (2)C22—C21—H21B111.1
C12—C11—C16118.9 (3)O4—C21—H21B111.1
C12—C11—C10120.1 (3)H21A—C21—H21B109.1
C16—C11—C10121.0 (3)O4—C21'—C22'105.7 (8)
C11—C12—C13119.7 (3)O4—C21'—H21C110.6
C11—C12—H12120.2C22'—C21'—H21C110.6
C13—C12—H12120.2O4—C21'—H21D110.6
C14—C13—C12120.6 (3)C22'—C21'—H21D110.6
C14—C13—H13119.7H21C—C21'—H21D108.7
C12—C13—H13119.7C21'—C22'—H22D109.5
C15—C14—C13120.2 (3)C21'—C22'—H22E109.5
C15—C14—H14119.9H22D—C22'—H22E109.5
C13—C14—H14119.9C21'—C22'—H22F109.5
C14—C15—C16120.1 (3)H22D—C22'—H22F109.5
C14—C15—H15119.9H22E—C22'—H22F109.5
C16—C15—H15119.9
C6—C1—C2—C31.6 (4)C11—C12—C13—C140.3 (5)
C7—C1—C2—C3178.6 (3)C12—C13—C14—C150.6 (5)
C1—C2—C3—C40.4 (5)C13—C14—C15—C160.5 (5)
C2—C3—C4—C50.8 (5)C14—C15—C16—C110.0 (5)
C3—C4—C5—C60.8 (5)C12—C11—C16—C150.4 (4)
C4—C5—C6—C10.4 (5)C10—C11—C16—C15180.0 (3)
C2—C1—C6—C51.5 (4)C7—C8—C17—O3169.1 (3)
C7—C1—C6—C5178.7 (3)C9—C8—C17—O35.6 (5)
C2—C1—C7—C8124.2 (4)C7—C8—C17—O211.2 (4)
C6—C1—C7—C856.0 (5)C9—C8—C17—O2174.0 (2)
C2—C1—C7—O153.9 (3)C10—C9—C20—O569.8 (4)
C6—C1—C7—O1125.9 (3)C8—C9—C20—O5109.1 (4)
O1—C7—C8—C90.1 (3)C10—C9—C20—O4107.2 (3)
C1—C7—C8—C9178.2 (3)C8—C9—C20—O473.8 (4)
O1—C7—C8—C17175.3 (2)C8—C7—O1—C100.9 (3)
C1—C7—C8—C172.8 (5)C1—C7—O1—C10179.4 (2)
C7—C8—C9—C100.6 (3)C9—C10—O1—C71.3 (3)
C17—C8—C9—C10176.3 (2)C11—C10—O1—C7177.2 (2)
C7—C8—C9—C20178.5 (3)O3—C17—O2—C180.6 (5)
C17—C8—C9—C202.8 (4)C8—C17—O2—C18179.0 (2)
C8—C9—C10—O11.2 (3)C19—C18—O2—C17178.4 (3)
C20—C9—C10—O1178.0 (3)O5—C20—O4—C218.8 (6)
C8—C9—C10—C11176.9 (3)C9—C20—O4—C21168.3 (5)
C20—C9—C10—C114.0 (5)O5—C20—O4—C21'17.0 (11)
C9—C10—C11—C12160.6 (3)C9—C20—O4—C21'166.0 (10)
O1—C10—C11—C1221.5 (4)C20—O4—C21—C2293.6 (10)
C9—C10—C11—C1619.1 (5)C21'—O4—C21—C2227.6 (18)
O1—C10—C11—C16158.9 (3)C20—O4—C21'—C22'175.9 (12)
C16—C11—C12—C130.2 (4)C21—O4—C21'—C22'58.8 (17)
C10—C11—C12—C13179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.563.453 (4)161

Experimental details

Crystal data
Chemical formulaC22H20O5
Mr364.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.9535 (8), 17.0116 (12), 18.9219 (14)
V3)3847.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.965, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
19957, 3778, 1952
Rint0.081
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.01
No. of reflections3778
No. of parameters268
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.563.453 (4)161
 

Acknowledgements

We are grateful to Hubei Normal University for financial support.

References

First citationBruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshpande, A. M., Natu, A. A. & Argade, N. P. (2002). Synthesis, 8, 1010–1012.  CrossRef Google Scholar
First citationHu, S.-L., Wang, Z.-G. & Wu, A.-X. (2005). Acta Cryst. E61, o2801–o2803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, S.-L. & Wu, A.-X. (2005). Acta Cryst. E61, o2030–o2032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, A., Wang, M. & Pan, X. (1997). Synth. Commun. 12, 2087–2091.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds