organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 6-amino-3,4-di­hydro-2H-1,4-benzoxazine-4-carboxyl­ate

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: gnal8002bxg@yahoo.com.cn

(Received 11 November 2010; accepted 17 November 2010; online 24 November 2010)

The title mol­ecule, C13H18N2O3, contains a benzene ring fused to an oxazine ring and one tert-but­oxy­carbonyl group bound to the N atom of the oxazine ring. A weak intra­molecular C—H⋯O inter­action occurs. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds stack the mol­ecules down the b axis. Weak C—H⋯N contacts connect the stacks, generating a three-dimensional network.

Related literature

For the pharmacological properties of phenyl­morpholine derivatives, see: Albanese et al. (2003[Albanese, D., Landini, D., Lupi, V. & Penso, M. (2003). Ind. Eng. Chem. Res. 42, 680-686.]); La et al. (2008[La, D. S., Belzile, J., Bready, J. V., Coxon, A., DeMelfi, T., Doerr, N., Estrada, J., Flynn, J. C., Flynn, S. R., Graceffa, R. F., Harriman, S. P., Larrow, J. F., Long, A. M., Martin, M. W., Morrison, M. J., Patel, V. F., Roveto, P. M., Wang, L., Weiss, M. N., Whittington, D. A., Teffera, Y., Zhao, Z., Polverino, A. J. & Harmange, J.-C. (2008). J. Med. Chem. 51, 1695-1705.]); McCormick et al. (2008[McCormick, K. D., Boyce, C. W. & Shih, N.-Y. (2008). PCT/US2008/001776.]). For related structures, see: Chen et al. (2003[Chen, Y., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m429-m430.]); Olmstead et al. (2003[Olmstead, M. M., Troeltzsch, C. & Patten, T. E. (2003). Acta Cryst. E59, m502-m503.]); Vergeer et al. (1999[Vergeer, P., Kooijman, H., Schreurs, A. M. M., Kroon, J. & Grech, E. (1999). Acta Cryst. C55, 1822-1824.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O3

  • Mr = 250.29

  • Monoclinic, P 21 /n

  • a = 9.439 (4) Å

  • b = 7.941 (3) Å

  • c = 17.598 (7) Å

  • β = 97.235 (6)°

  • V = 1308.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 103 K

  • 0.37 × 0.27 × 0.21 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 13574 measured reflections

  • 3816 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.106

  • S = 1.00

  • 3816 reflections

  • 174 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3i 0.885 (17) 2.088 (17) 2.9581 (19) 167.4 (16)
C2—H2⋯O3 0.95 2.23 2.7981 (18) 117
C7—H7A⋯O1ii 0.99 2.55 3.364 (2) 139
C13—H13B⋯N2 0.98 2.61 3.586 (2) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an important phenylmorpholine derivative. Phenylmorpholine compounds are used as α2 C adrenergic receptor agonists. (McCormick et al., 2008). Numerous phenylmorpholine derivatives possess various other pharmacological properties. (Albanese, et al., 2003; La, et al., 2008).

We report here the crystal structure of the title compound. (Fig. 1). The title molecule of (I) contains a benzene ring fused to an oxazine ring and one tert-butoxycarbonyl bound to the N atom. The N1—C1 bond distance is 1.4230 (14)Å and agrees with literature values (Vergeer, et al., 1999; Chen, et al., 2003; Olmstead, et al., 2003). The six-membered heterocyclic ring adopts a half-chair conformation with atoms C7 and C8 lying out of the plane through the remaining four atoms by 0.3264 (14) and -0.4174 (13) Å, respectively.

In the crystal structure intermolecular N2—H2B···O3 and C7—H7···O1 hydrogen bonds stack the molecules down the b axis. Weak C13—H13B···N2 contacts connect the stacks generating a three-dimensional network, Table 1.

Related literature top

For the pharmacological properties of phenylmorpholine derivatives, see: Albanese et al. (2003); La et al. (2008); McCormick et al. (2008). For related structures, see: Chen et al. (2003); Olmstead et al. (2003); Vergeer et al. (1999).

Experimental top

The title compound was crystallized from a mixed solvent composed of dichloromethane and hexane (1:1); colorless block-shaped crystals were obtained after several days.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they were bonded, with C—H distances of 0.95Å (CH), 0.98Å (CH3) or 0.99Å (CH2), and with Uiso(H) =1.2 or 1.5 (methyl) Ueq of the parent atoms. The H-atoms bound to N were found in a difference map and allowed to refine freely.

Structure description top

The title compound, (I), is an important phenylmorpholine derivative. Phenylmorpholine compounds are used as α2 C adrenergic receptor agonists. (McCormick et al., 2008). Numerous phenylmorpholine derivatives possess various other pharmacological properties. (Albanese, et al., 2003; La, et al., 2008).

We report here the crystal structure of the title compound. (Fig. 1). The title molecule of (I) contains a benzene ring fused to an oxazine ring and one tert-butoxycarbonyl bound to the N atom. The N1—C1 bond distance is 1.4230 (14)Å and agrees with literature values (Vergeer, et al., 1999; Chen, et al., 2003; Olmstead, et al., 2003). The six-membered heterocyclic ring adopts a half-chair conformation with atoms C7 and C8 lying out of the plane through the remaining four atoms by 0.3264 (14) and -0.4174 (13) Å, respectively.

In the crystal structure intermolecular N2—H2B···O3 and C7—H7···O1 hydrogen bonds stack the molecules down the b axis. Weak C13—H13B···N2 contacts connect the stacks generating a three-dimensional network, Table 1.

For the pharmacological properties of phenylmorpholine derivatives, see: Albanese et al. (2003); La et al. (2008); McCormick et al. (2008). For related structures, see: Chen et al. (2003); Olmstead et al. (2003); Vergeer et al. (1999).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme with displacement ellipsoids drawn at the 50% probability level.
tert-Butyl 6-amino-3,4-dihydro-2H-1,4-benzoxazine-4-carboxylate top
Crystal data top
C13H18N2O3F(000) = 536
Mr = 250.29Dx = 1.270 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3844 reflections
a = 9.439 (4) Åθ = 3.6–30.0°
b = 7.941 (3) ŵ = 0.09 mm1
c = 17.598 (7) ÅT = 103 K
β = 97.235 (6)°Block, colorless
V = 1308.6 (8) Å30.37 × 0.27 × 0.21 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3118 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.035
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
Detector resolution: 28.5714 pixels mm-1h = 1313
φ and ω scansk = 1111
13574 measured reflectionsl = 2224
3816 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.506P]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H18N2O3V = 1308.6 (8) Å3
Mr = 250.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.439 (4) ŵ = 0.09 mm1
b = 7.941 (3) ÅT = 103 K
c = 17.598 (7) Å0.37 × 0.27 × 0.21 mm
β = 97.235 (6)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3118 reflections with I > 2σ(I)
13574 measured reflectionsRint = 0.035
3816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.41 e Å3
3816 reflectionsΔρmin = 0.19 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29075 (9)0.23440 (12)0.77441 (5)0.0238 (2)
O20.27308 (9)0.60469 (11)0.55727 (5)0.01769 (18)
O30.47393 (9)0.70065 (11)0.62807 (5)0.01852 (19)
N10.36964 (10)0.45345 (12)0.65823 (6)0.0148 (2)
N20.84770 (11)0.48161 (15)0.80355 (7)0.0226 (2)
C10.46953 (11)0.41260 (14)0.72306 (6)0.0138 (2)
C20.61108 (12)0.46877 (14)0.73224 (6)0.0153 (2)
H20.64150.54400.69560.018*
C30.70861 (12)0.41698 (15)0.79396 (7)0.0166 (2)
C40.66399 (13)0.30549 (15)0.84764 (7)0.0191 (2)
H40.72940.26840.88980.023*
C50.52391 (13)0.24943 (15)0.83905 (7)0.0200 (2)
H50.49410.17380.87570.024*
C60.42614 (12)0.30153 (15)0.77789 (7)0.0172 (2)
C70.18660 (13)0.31174 (17)0.71949 (8)0.0243 (3)
H7A0.15740.42120.73950.029*
H7B0.10100.23890.71050.029*
C80.24682 (13)0.33916 (16)0.64505 (7)0.0220 (3)
H8A0.27710.23010.62510.026*
H8B0.17280.38840.60660.026*
C90.37957 (11)0.59648 (14)0.61556 (6)0.0140 (2)
C100.27444 (13)0.74056 (16)0.49941 (7)0.0195 (2)
C110.25934 (15)0.91226 (17)0.53576 (8)0.0268 (3)
H11A0.17900.91020.56600.040*
H11B0.24190.99780.49550.040*
H11C0.34740.93950.56920.040*
C120.14095 (16)0.7002 (2)0.44419 (8)0.0338 (3)
H12A0.14900.58640.42360.051*
H12B0.13140.78170.40200.051*
H12C0.05670.70650.47140.051*
C130.40675 (16)0.7250 (2)0.45926 (8)0.0305 (3)
H13A0.49100.75760.49460.046*
H13B0.39770.79920.41440.046*
H13C0.41710.60820.44290.046*
H2A0.8731 (17)0.538 (2)0.7639 (10)0.030 (4)*
H2B0.9124 (19)0.408 (2)0.8234 (10)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (4)0.0260 (5)0.0295 (5)0.0026 (3)0.0048 (3)0.0108 (4)
O20.0174 (4)0.0176 (4)0.0170 (4)0.0026 (3)0.0021 (3)0.0026 (3)
O30.0171 (4)0.0165 (4)0.0210 (4)0.0041 (3)0.0015 (3)0.0022 (3)
N10.0124 (4)0.0144 (5)0.0174 (5)0.0023 (3)0.0006 (3)0.0006 (4)
N20.0170 (5)0.0221 (6)0.0268 (6)0.0006 (4)0.0040 (4)0.0055 (5)
C10.0147 (5)0.0122 (5)0.0146 (5)0.0021 (4)0.0023 (4)0.0006 (4)
C20.0159 (5)0.0137 (5)0.0164 (5)0.0012 (4)0.0029 (4)0.0006 (4)
C30.0164 (5)0.0145 (5)0.0184 (5)0.0022 (4)0.0007 (4)0.0026 (4)
C40.0220 (6)0.0182 (6)0.0167 (5)0.0054 (4)0.0002 (4)0.0012 (4)
C50.0243 (6)0.0180 (6)0.0185 (6)0.0027 (5)0.0057 (4)0.0045 (5)
C60.0161 (5)0.0162 (5)0.0201 (5)0.0009 (4)0.0057 (4)0.0012 (4)
C70.0151 (5)0.0241 (7)0.0337 (7)0.0021 (5)0.0025 (5)0.0094 (5)
C80.0191 (6)0.0200 (6)0.0257 (6)0.0085 (5)0.0015 (5)0.0034 (5)
C90.0136 (5)0.0147 (5)0.0138 (5)0.0014 (4)0.0022 (4)0.0015 (4)
C100.0216 (6)0.0199 (6)0.0160 (5)0.0003 (5)0.0017 (4)0.0041 (4)
C110.0323 (7)0.0191 (6)0.0280 (7)0.0036 (5)0.0006 (5)0.0032 (5)
C120.0350 (8)0.0345 (8)0.0274 (7)0.0065 (6)0.0143 (6)0.0071 (6)
C130.0328 (7)0.0392 (8)0.0209 (6)0.0035 (6)0.0090 (5)0.0066 (6)
Geometric parameters (Å, º) top
O1—C61.3789 (15)C5—H50.9500
O1—C71.4278 (15)C7—C81.5081 (19)
O2—C91.3443 (13)C7—H7A0.9900
O2—C101.4848 (15)C7—H7B0.9900
O3—C91.2152 (14)C8—H8A0.9900
N1—C91.3713 (15)C8—H8B0.9900
N1—C11.4230 (14)C10—C131.5154 (19)
N1—C81.4675 (15)C10—C111.5204 (19)
N2—C31.3999 (16)C10—C121.5253 (17)
N2—H2A0.887 (17)C11—H11A0.9800
N2—H2B0.884 (19)C11—H11B0.9800
C1—C21.3985 (16)C11—H11C0.9800
C1—C61.4058 (16)C12—H12A0.9800
C2—C31.3945 (16)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C3—C41.3977 (17)C13—H13A0.9800
C4—C51.3853 (18)C13—H13B0.9800
C4—H40.9500C13—H13C0.9800
C5—C61.3896 (17)
C6—O1—C7114.78 (10)N1—C8—H8A109.8
C9—O2—C10119.23 (9)C7—C8—H8A109.8
C9—N1—C1122.94 (9)N1—C8—H8B109.8
C9—N1—C8122.19 (10)C7—C8—H8B109.8
C1—N1—C8114.60 (9)H8A—C8—H8B108.3
C3—N2—H2A115.6 (10)O3—C9—O2124.46 (10)
C3—N2—H2B113.3 (12)O3—C9—N1124.31 (10)
H2A—N2—H2B113.7 (16)O2—C9—N1111.22 (9)
C2—C1—C6118.52 (10)O2—C10—C13109.84 (10)
C2—C1—N1123.15 (10)O2—C10—C11110.72 (10)
C6—C1—N1118.19 (10)C13—C10—C11113.31 (12)
C3—C2—C1121.55 (11)O2—C10—C12101.90 (10)
C3—C2—H2119.2C13—C10—C12110.43 (12)
C1—C2—H2119.2C11—C10—C12110.06 (11)
C2—C3—C4119.19 (11)C10—C11—H11A109.5
C2—C3—N2120.19 (11)C10—C11—H11B109.5
C4—C3—N2120.57 (11)H11A—C11—H11B109.5
C5—C4—C3119.64 (11)C10—C11—H11C109.5
C5—C4—H4120.2H11A—C11—H11C109.5
C3—C4—H4120.2H11B—C11—H11C109.5
C4—C5—C6121.37 (11)C10—C12—H12A109.5
C4—C5—H5119.3C10—C12—H12B109.5
C6—C5—H5119.3H12A—C12—H12B109.5
O1—C6—C5116.15 (11)C10—C12—H12C109.5
O1—C6—C1124.09 (10)H12A—C12—H12C109.5
C5—C6—C1119.73 (11)H12B—C12—H12C109.5
O1—C7—C8110.33 (10)C10—C13—H13A109.5
O1—C7—H7A109.6C10—C13—H13B109.5
C8—C7—H7A109.6H13A—C13—H13B109.5
O1—C7—H7B109.6C10—C13—H13C109.5
C8—C7—H7B109.6H13A—C13—H13C109.5
H7A—C7—H7B108.1H13B—C13—H13C109.5
N1—C8—C7109.19 (10)
C9—N1—C1—C226.57 (17)N1—C1—C6—O12.62 (17)
C8—N1—C1—C2159.29 (11)C2—C1—C6—C50.48 (17)
C9—N1—C1—C6157.74 (11)N1—C1—C6—C5175.41 (11)
C8—N1—C1—C616.40 (15)C6—O1—C7—C844.10 (15)
C6—C1—C2—C30.09 (17)C9—N1—C8—C7126.86 (12)
N1—C1—C2—C3175.59 (10)C1—N1—C8—C747.33 (14)
C1—C2—C3—C40.40 (17)O1—C7—C8—N161.83 (14)
C1—C2—C3—N2176.97 (11)C10—O2—C9—O35.54 (17)
C2—C3—C4—C50.49 (17)C10—O2—C9—N1173.22 (9)
N2—C3—C4—C5176.87 (11)C1—N1—C9—O30.71 (17)
C3—C4—C5—C60.10 (18)C8—N1—C9—O3174.42 (11)
C7—O1—C6—C5169.42 (11)C1—N1—C9—O2179.48 (10)
C7—O1—C6—C112.48 (17)C8—N1—C9—O26.81 (15)
C4—C5—C6—O1178.58 (11)C9—O2—C10—C1361.25 (14)
C4—C5—C6—C10.40 (18)C9—O2—C10—C1164.64 (14)
C2—C1—C6—O1178.52 (11)C9—O2—C10—C12178.33 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.885 (17)2.088 (17)2.9581 (19)167.4 (16)
C2—H2···O30.952.232.7981 (18)117
C7—H7A···O1ii0.992.553.364 (2)139
C13—H13B···N20.982.613.586 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H18N2O3
Mr250.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)9.439 (4), 7.941 (3), 17.598 (7)
β (°) 97.235 (6)
V3)1308.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.27 × 0.21
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13574, 3816, 3118
Rint0.035
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 1.00
No. of reflections3816
No. of parameters174
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.19

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.885 (17)2.088 (17)2.9581 (19)167.4 (16)
C2—H2···O30.952.232.7981 (18)117
C7—H7A···O1ii0.992.553.364 (2)139
C13—H13B···N20.982.613.586 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by the Key Medical Talents Program of Jiangsu Province (No. RC2007097).

References

First citationAlbanese, D., Landini, D., Lupi, V. & Penso, M. (2003). Ind. Eng. Chem. Res. 42, 680–686.  Web of Science CrossRef CAS Google Scholar
First citationChen, Y., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m429–m430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLa, D. S., Belzile, J., Bready, J. V., Coxon, A., DeMelfi, T., Doerr, N., Estrada, J., Flynn, J. C., Flynn, S. R., Graceffa, R. F., Harriman, S. P., Larrow, J. F., Long, A. M., Martin, M. W., Morrison, M. J., Patel, V. F., Roveto, P. M., Wang, L., Weiss, M. N., Whittington, D. A., Teffera, Y., Zhao, Z., Polverino, A. J. & Harmange, J.-C. (2008). J. Med. Chem. 51, 1695–1705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcCormick, K. D., Boyce, C. W. & Shih, N.-Y. (2008). PCT/US2008/001776.  Google Scholar
First citationOlmstead, M. M., Troeltzsch, C. & Patten, T. E. (2003). Acta Cryst. E59, m502–m503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVergeer, P., Kooijman, H., Schreurs, A. M. M., Kroon, J. & Grech, E. (1999). Acta Cryst. C55, 1822–1824.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds