organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diclomezine: 6-(3,5-di­chloro-4-methyl­phen­yl)pyridazin-3(2H)-one

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, kmpark@gnu.ac.kr

(Received 12 November 2010; accepted 16 November 2010; online 20 November 2010)

In the title compound, C11H8Cl2N2O, the benzene and pyridazine rings are tilted by 8.6 (1)° relative to each other. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers. ππ contacts with centroid–centroid distances of 3.698 (2) and 3.751 (1) Å and halogen–halogen inter­actions [3.379 (1) Å] also stabilize the structure.

Related literature

For information on the toxicity and fungicidal properties of the title compound, see: Sankyo (1998[Sankyo (1998). J. Pestic. Sci., 13, 625-628]). For a related structure, see: Prout et al. (1994[Prout, K., Bannister, C., Burns, K., Chen, M., Warrington, B. H. & Vinter, J. G. (1994). Acta Cryst. B50, 71-85.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8Cl2N2O

  • Mr = 255.09

  • Monoclinic, P 21 /c

  • a = 9.745 (4) Å

  • b = 13.850 (5) Å

  • c = 8.481 (3) Å

  • β = 111.557 (6)°

  • V = 1064.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 173 K

  • 0.19 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.955

  • 10410 measured reflections

  • 2657 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.07

  • 2657 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.90 2.771 (2) 172
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Declomezine (systematic name: 6-(3,5-dichloro-4-methylphenyl)- 3(2H)-pyridazinone), is a well known fungicide (Sankyo 1998). In this paper, the structure of the title pyridazinone derivative is reported.

In the molecular structure of the title compound (Scheme 1, Fig. 1), the dihedral angle between the phenyl ring and the pyridazine ring is 8.6 (1) °, compared to the value of 18.0 ° in the similar compound 6-phenyl-3(2H)-pyridazinone (Prout et al., 1994). Bond lengths and angles observed here are also similar to those in 6-phenyl-3(2H)-pyridazinone.

In the crystal structure, as shown in Fig. 2, there are pair-wise intermolecular N—H···O hydrogen bonds (Table 1; symmetry code as in Fig. 2). Weak intermolecular ππ and halogen···halogen interactions also exist [Cg1···Cg2iv 3.75 Å, Cg2···Cg2v 3.70 Å and Cl1···Cl2iii 3.379 (1) Å; Cg1 and Cg2 are the centroids of the phenyl and pyridazine rings, respectively.]. These intermolecular interactions contribute to the stabilization of the packing.

Related literature top

For information on the toxicity and fungicidal properties of the title compound, see: Sankyo (1998). For a related structure, see: Prout et al. (1994).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(N) for pyrazine, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl protons.

Structure description top

Declomezine (systematic name: 6-(3,5-dichloro-4-methylphenyl)- 3(2H)-pyridazinone), is a well known fungicide (Sankyo 1998). In this paper, the structure of the title pyridazinone derivative is reported.

In the molecular structure of the title compound (Scheme 1, Fig. 1), the dihedral angle between the phenyl ring and the pyridazine ring is 8.6 (1) °, compared to the value of 18.0 ° in the similar compound 6-phenyl-3(2H)-pyridazinone (Prout et al., 1994). Bond lengths and angles observed here are also similar to those in 6-phenyl-3(2H)-pyridazinone.

In the crystal structure, as shown in Fig. 2, there are pair-wise intermolecular N—H···O hydrogen bonds (Table 1; symmetry code as in Fig. 2). Weak intermolecular ππ and halogen···halogen interactions also exist [Cg1···Cg2iv 3.75 Å, Cg2···Cg2v 3.70 Å and Cl1···Cl2iii 3.379 (1) Å; Cg1 and Cg2 are the centroids of the phenyl and pyridazine rings, respectively.]. These intermolecular interactions contribute to the stabilization of the packing.

For information on the toxicity and fungicidal properties of the title compound, see: Sankyo (1998). For a related structure, see: Prout et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular N—H···O hydrogen bonds, ππ and halogen—halogen interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. Cg1 and Cg2 are the centroids of the phenyl and pyridazine rings, respectively. (Symmetry codes: i) 1 - x, 1 - y, -z; ii) x, 0.5 - y, 1/2 + z; iii) -x, -1/2 + y, 1.5 - z; iv) 1 - x, 1 - y, 1 - z; v) -x, 1 - y, 1 - z; vi) -x, 1/2 + y, 1.5 - z; vii) x, 1.5 - y, 1/2 + z; viii) 1 - x, 1/2 + y, 0.5 - z; ix) 1 - x, -1/2 + y, 0.5 - z) .
6-(3,5-dichloro-4-methylphenyl)pyridazin-3(2H)-one top
Crystal data top
C11H8Cl2N2OF(000) = 520
Mr = 255.09Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3791 reflections
a = 9.745 (4) Åθ = 2.9–28.2°
b = 13.850 (5) ŵ = 0.59 mm1
c = 8.481 (3) ÅT = 173 K
β = 111.557 (6)°Block, colourless
V = 1064.7 (7) Å30.19 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2657 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.897, Tmax = 0.955k = 1817
10410 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.5573P]
where P = (Fo2 + 2Fc2)/3
2657 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H8Cl2N2OV = 1064.7 (7) Å3
Mr = 255.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.745 (4) ŵ = 0.59 mm1
b = 13.850 (5) ÅT = 173 K
c = 8.481 (3) Å0.19 × 0.09 × 0.08 mm
β = 111.557 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2038 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.955Rint = 0.042
10410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2657 reflectionsΔρmin = 0.26 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11909 (5)0.35378 (4)0.82090 (6)0.03367 (14)
Cl20.15267 (6)0.72198 (3)0.62638 (7)0.03884 (15)
O10.52503 (15)0.37232 (9)0.02888 (17)0.0290 (3)
N10.42007 (16)0.47759 (11)0.15589 (18)0.0240 (3)
H10.43130.52290.08880.029*
N20.35554 (16)0.50487 (11)0.26436 (18)0.0239 (3)
C10.47026 (19)0.38769 (13)0.1379 (2)0.0234 (4)
C20.45389 (19)0.31751 (13)0.2541 (2)0.0258 (4)
H20.48930.25360.25430.031*
C30.38829 (19)0.34224 (13)0.3631 (2)0.0246 (4)
H30.37600.29540.43870.029*
C40.33735 (18)0.43848 (12)0.3652 (2)0.0214 (3)
C50.26737 (18)0.47099 (12)0.4848 (2)0.0218 (3)
C60.22820 (18)0.40586 (13)0.5865 (2)0.0239 (4)
H60.24360.33860.57810.029*
C70.16682 (18)0.43931 (13)0.6996 (2)0.0243 (4)
C80.13991 (18)0.53629 (13)0.7192 (2)0.0241 (4)
C90.17893 (19)0.59892 (13)0.6130 (2)0.0254 (4)
C100.23982 (18)0.56857 (13)0.4983 (2)0.0238 (4)
H100.26300.61430.42840.029*
C110.0760 (2)0.57125 (15)0.8451 (2)0.0332 (4)
H11C0.15570.58160.95510.050*
H11A0.00720.52290.85730.050*
H11B0.02350.63210.80530.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0373 (3)0.0338 (3)0.0379 (3)0.00164 (19)0.0233 (2)0.0084 (2)
Cl20.0529 (3)0.0248 (2)0.0479 (3)0.0092 (2)0.0292 (3)0.0019 (2)
O10.0396 (7)0.0248 (7)0.0304 (7)0.0001 (5)0.0220 (6)0.0012 (5)
N10.0319 (8)0.0224 (7)0.0227 (8)0.0001 (6)0.0157 (6)0.0023 (6)
N20.0283 (7)0.0235 (7)0.0240 (8)0.0003 (6)0.0147 (6)0.0006 (6)
C10.0247 (8)0.0223 (8)0.0242 (9)0.0025 (6)0.0101 (7)0.0022 (7)
C20.0304 (9)0.0192 (8)0.0292 (10)0.0006 (7)0.0127 (8)0.0000 (7)
C30.0286 (9)0.0219 (9)0.0250 (9)0.0022 (7)0.0120 (7)0.0017 (7)
C40.0222 (8)0.0216 (8)0.0210 (8)0.0020 (6)0.0087 (7)0.0003 (7)
C50.0202 (8)0.0243 (9)0.0203 (8)0.0014 (6)0.0068 (6)0.0003 (7)
C60.0239 (8)0.0230 (9)0.0265 (9)0.0003 (7)0.0112 (7)0.0009 (7)
C70.0226 (8)0.0285 (9)0.0231 (9)0.0019 (7)0.0099 (7)0.0037 (7)
C80.0197 (8)0.0303 (9)0.0220 (9)0.0008 (7)0.0072 (7)0.0012 (7)
C90.0261 (9)0.0233 (9)0.0266 (9)0.0038 (7)0.0096 (7)0.0002 (7)
C100.0241 (8)0.0244 (9)0.0246 (9)0.0010 (7)0.0109 (7)0.0037 (7)
C110.0374 (10)0.0373 (11)0.0296 (10)0.0043 (8)0.0178 (8)0.0001 (9)
Geometric parameters (Å, º) top
Cl1—C71.7404 (18)C5—C101.391 (3)
Cl2—C91.733 (2)C5—C61.395 (2)
O1—C11.244 (2)C6—C71.384 (2)
N1—N21.345 (2)C6—H60.9500
N1—C11.367 (2)C7—C81.390 (3)
N1—H10.8800C8—C91.400 (3)
N2—C41.311 (2)C8—C111.500 (2)
C1—C21.435 (3)C9—C101.378 (2)
C2—C31.347 (3)C10—H100.9500
C2—H20.9500C11—H11C0.9800
C3—C41.425 (2)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.485 (2)
N2—N1—C1127.50 (15)C7—C6—H6120.1
N2—N1—H1116.2C5—C6—H6120.1
C1—N1—H1116.2C6—C7—C8123.71 (16)
C4—N2—N1117.27 (15)C6—C7—Cl1117.35 (14)
O1—C1—N1120.54 (16)C8—C7—Cl1118.93 (14)
O1—C1—C2125.54 (17)C7—C8—C9114.45 (16)
N1—C1—C2113.92 (16)C7—C8—C11122.88 (17)
C3—C2—C1120.00 (17)C9—C8—C11122.67 (17)
C3—C2—H2120.0C10—C9—C8123.67 (17)
C1—C2—H2120.0C10—C9—Cl2117.27 (14)
C2—C3—C4120.11 (16)C8—C9—Cl2119.06 (14)
C2—C3—H3119.9C9—C10—C5120.05 (16)
C4—C3—H3119.9C9—C10—H10120.0
N2—C4—C3121.12 (16)C5—C10—H10120.0
N2—C4—C5116.03 (15)C8—C11—H11C109.5
C3—C4—C5122.79 (15)C8—C11—H11A109.5
C10—C5—C6118.21 (16)H11C—C11—H11A109.5
C10—C5—C4120.12 (15)C8—C11—H11B109.5
C6—C5—C4121.67 (16)H11C—C11—H11B109.5
C7—C6—C5119.90 (17)H11A—C11—H11B109.5
C1—N1—N2—C40.2 (3)C4—C5—C6—C7178.27 (15)
N2—N1—C1—O1178.37 (16)C5—C6—C7—C80.3 (3)
N2—N1—C1—C22.0 (3)C5—C6—C7—Cl1179.41 (13)
O1—C1—C2—C3177.86 (17)C6—C7—C8—C90.6 (3)
N1—C1—C2—C32.6 (2)Cl1—C7—C8—C9178.51 (13)
C1—C2—C3—C41.1 (3)C6—C7—C8—C11178.75 (17)
N1—N2—C4—C31.9 (2)Cl1—C7—C8—C112.2 (2)
N1—N2—C4—C5179.33 (14)C7—C8—C9—C100.3 (3)
C2—C3—C4—N21.3 (3)C11—C8—C9—C10178.98 (17)
C2—C3—C4—C5178.51 (16)C7—C8—C9—Cl2179.37 (13)
N2—C4—C5—C106.9 (2)C11—C8—C9—Cl20.1 (2)
C3—C4—C5—C10170.44 (16)C8—C9—C10—C50.8 (3)
N2—C4—C5—C6173.38 (16)Cl2—C9—C10—C5178.26 (13)
C3—C4—C5—C69.3 (3)C6—C5—C10—C91.7 (3)
C10—C5—C6—C71.5 (3)C4—C5—C10—C9178.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.902.771 (2)172
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H8Cl2N2O
Mr255.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.745 (4), 13.850 (5), 8.481 (3)
β (°) 111.557 (6)
V3)1064.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.19 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
10410, 2657, 2038
Rint0.042
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.07
No. of reflections2657
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.902.771 (2)172.2
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0009089).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationProut, K., Bannister, C., Burns, K., Chen, M., Warrington, B. H. & Vinter, J. G. (1994). Acta Cryst. B50, 71–85.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSankyo (1998). J. Pestic. Sci., 13, 625–628  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds