organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(2,2′:6′,2′′-terpyridin-4′-yl)benzene

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, bDepartment of Physics, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and cDepartamento de Química Fundamental, UFPE, 50590-470, Recife, PE, Brazil
*Correspondence e-mail: filipe.paz@ua.pt

(Received 12 November 2010; accepted 16 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, C36H24N6, comprises a whole mol­ecule. Supra­molecular inter­actions between neighbouring mol­ecules are essentially ππ stacking inter­actions with small inter­planar distances [3.5140 (15) and 3.6041 (15) Å]. The central phenyl­ene ring is tilted with respect to the two pyridine substituents, subtending angles of 36.17 (11) and 34.95 (11)°. Three of the peripheral pyridine substituents are almost coplanar with the central pyridines [dihedral angles = 5.10 (12)-8.21 (12)°], but one subtends an angle of 24.86 (12)°.

Related literature

For coordination polymers having the title compound as a bridging ligand, see: Jones et al. (2010[Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491-494.]); Koo et al. (2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]). For oligomeric coordination compounds having the title compound as bridging ligand, see: Maekawa et al. (2004[Maekawa, M., Minematsu, T., Konada, H., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2004). Inorg. Chim. Acta, 357, 3456-3472.]); Schmittel et al. (2005[Schmittel, M., Kalsani, V., Kishore, R. S. K., Cölfen, H. & Bats, J. W. (2005). J. Am. Chem. Soc. 127, 11544-11545.], 2006[Schmittel, M., Kalsani, V., Mal, P. & Bats, J. W. (2006). Inorg. Chem. 45, 6370-6377.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related work from our research group showing the motivation to use aromatic ligands for the design of photoluminescent materials, see: Girginova et al. (2007[Girginova, P. I., Paz, F. A. A., Soares-Santos, P. C. R., Ferreira, R. A. S., Carlos, L. D., Amaral, V. S., Klinowski, J., Nogueira, H. I. S. & Trindade, T. (2007). Eur. J. Inorg. Chem. pp. 4238-4246.]); Lima et al. (2006[Lima, P. P., Ferreira, R. A. S., Freire, R. O., Paz, F. A. A., Fu, L. S., Alves, S., Carlos, L. D. & Malta, O. L. (2006). ChemPhysChem, 7, 735-746.], 2009[Lima, P. P., Paz, F. A. A., Ferreira, R. A. S., Bermudez, V. D. & Carlos, L. D. (2009). Chem. Mater. 21, 5099-5111.]); Shi et al. (2008[Shi, F. N., Cunha-Silva, L., Ferreira, R. A. S., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]). For absolute structure, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]).

[Scheme 1]

Experimental

Crystal data
  • C36H24N6

  • Mr = 540.61

  • Orthorhombic, P c a 21

  • a = 9.8493 (2) Å

  • b = 10.0626 (2) Å

  • c = 26.0488 (4) Å

  • V = 2581.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.14 × 0.10 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.992

  • 39767 measured reflections

  • 3543 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.03

  • 3543 reflections

  • 379 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (C36H24N6, see Scheme) can be employed as a ligand in supramolecular chemistry given its hexahapticity and ability to form intermetallic bridges. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, that only five crystal structures in which this molecule is used as a ligand are known. While some of these compounds correspond to discrete complexes, namely two dinuclear complexes of zinc and iridium (Schmittel et al., 2006; Maekawa et al., 2004) and a tetranuclear complex of zinc (Schmittel et al., 2005), other two correspond to coordination polymers: a one-dimensional polymer of copper and a three-dimensional framework containing copper and molybdenum (Jones et al., 2010; Koo et al., 2003). Following our interest in the design and synthesis of novel lanthanide photoluminescent complexes (Lima et al., 2006; Lima et al., 2009) and coordination polymers (Shi et al., 2008; Girginova et al., 2007), we isolated crystals of the title compound as a by-product of hydrothermal synthesis.

Despite of the various possible molecular symmetry elements, the asymmetric unit comprises one whole molecule of the title compound (Figure 1). Both terpyridine (terpy) substituents have the three N-atoms in mutual trans conformation. The central benzene ring forms angles of 36.17 (11) and 34.95 (11)° with the two neighbouring pyridine (py) substituents, which are almost coplanar [angle between rings 1.22 (11)°]. The terminal py rings subtend small angles with each central py: while three of these dihedral angles are in the 5.10 (12)-8.21 (12)° range, the fourth is slightly larger and measured as 24.86 (12)°. The crystal packing (Figure 2) is mainly driven by the need to effectively fill the available space (van der Waals contacts) in conjunction with a couple of strong π-π stacking interactions. The latter interactions occur between the central py rings and two terminal ones of neighbouring molecular units: distance between centroids of 3.5140 (15) and 3.6041 (15) Å. These interactions (green dashed lines in Figure 2) promote the formation of a two-dimensional supramolecular layer in the ab plane.

Related literature top

For coordination polymers having the title compound as a bridging ligand, see: Jones et al. (2010); Koo et al. (2003). For oligomeric coordination compounds having the title compound as bridging ligand, see: Maekawa et al. (2004); Schmittel et al. (2005); Schmittel et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For related work from our research group showing the motivation to use aromatic ligands for the design of photoluminescent materials, see: Girginova et al. (2007); Lima et al. (2006, 2009); Shi et al. (2008). For absolute strucure, see: Flack (1983).

Experimental top

All chemicals have been purchased from commercial sources and were used as received without any further purification: Eu2O3 (Sigma-Aldrich, 99.99% purity) and 4',4''''-(1,4-phenylene)bis(2,2':6',2''-terpyridine) (pbt, Sigma-Aldrich, 96% purity, C36H24N6).

A mixture containing pbt (ca 0.4 mmol, 0.2162 g) and Eu2O3 (ca 0.1 mmol, 0.0352 g) in ca 4 ml of distilled water was stirred at ambient temperature for 5 minutes. The suspension was then transferred to a 8 ml teflon-lined stainless reaction vessel. The reaction took place at 180 °C for approximately 48 h. Large yellow crystals of unreacted pbt were directly isolated from the contents of the vessel, and were washed with copious amounts of water and ethanol before drying under vacuum.

Refinement top

Hydrogen atoms bound to aromatic carbon atoms were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent carbon atom.

A total of 3381 estimated Friedel pairs have been merged and were not used as independent data for the structure refinement. Prior to this strategy, the Flack parameter (Flack, 1983) converged to 0.0 (2).

Structure description top

The title compound (C36H24N6, see Scheme) can be employed as a ligand in supramolecular chemistry given its hexahapticity and ability to form intermetallic bridges. A survey in the Cambridge Structural Database (Allen, 2002) revealed, however, that only five crystal structures in which this molecule is used as a ligand are known. While some of these compounds correspond to discrete complexes, namely two dinuclear complexes of zinc and iridium (Schmittel et al., 2006; Maekawa et al., 2004) and a tetranuclear complex of zinc (Schmittel et al., 2005), other two correspond to coordination polymers: a one-dimensional polymer of copper and a three-dimensional framework containing copper and molybdenum (Jones et al., 2010; Koo et al., 2003). Following our interest in the design and synthesis of novel lanthanide photoluminescent complexes (Lima et al., 2006; Lima et al., 2009) and coordination polymers (Shi et al., 2008; Girginova et al., 2007), we isolated crystals of the title compound as a by-product of hydrothermal synthesis.

Despite of the various possible molecular symmetry elements, the asymmetric unit comprises one whole molecule of the title compound (Figure 1). Both terpyridine (terpy) substituents have the three N-atoms in mutual trans conformation. The central benzene ring forms angles of 36.17 (11) and 34.95 (11)° with the two neighbouring pyridine (py) substituents, which are almost coplanar [angle between rings 1.22 (11)°]. The terminal py rings subtend small angles with each central py: while three of these dihedral angles are in the 5.10 (12)-8.21 (12)° range, the fourth is slightly larger and measured as 24.86 (12)°. The crystal packing (Figure 2) is mainly driven by the need to effectively fill the available space (van der Waals contacts) in conjunction with a couple of strong π-π stacking interactions. The latter interactions occur between the central py rings and two terminal ones of neighbouring molecular units: distance between centroids of 3.5140 (15) and 3.6041 (15) Å. These interactions (green dashed lines in Figure 2) promote the formation of a two-dimensional supramolecular layer in the ab plane.

For coordination polymers having the title compound as a bridging ligand, see: Jones et al. (2010); Koo et al. (2003). For oligomeric coordination compounds having the title compound as bridging ligand, see: Maekawa et al. (2004); Schmittel et al. (2005); Schmittel et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For related work from our research group showing the motivation to use aromatic ligands for the design of photoluminescent materials, see: Girginova et al. (2007); Lima et al. (2006, 2009); Shi et al. (2008). For absolute strucure, see: Flack (1983).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 80% probability level and hydrogen atoms as small spheres with arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the (a) [100] and (b) [010] directions of the unit cell. Strong π-π interactions are represented as dashed green lines.
1,4-Bis(2,2':6',2''-terpyridin-4'-yl)benzene top
Crystal data top
C36H24N6F(000) = 1128
Mr = 540.61Dx = 1.391 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 7316 reflections
a = 9.8493 (2) Åθ = 2.6–30.5°
b = 10.0626 (2) ŵ = 0.09 mm1
c = 26.0488 (4) ÅT = 100 K
V = 2581.69 (8) Å3Needle, yellow
Z = 40.30 × 0.14 × 0.10 mm
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
3543 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scansθmax = 29.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.975, Tmax = 0.992k = 1213
39767 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.5147P]
where P = (Fo2 + 2Fc2)/3
3543 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C36H24N6V = 2581.69 (8) Å3
Mr = 540.61Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.8493 (2) ŵ = 0.09 mm1
b = 10.0626 (2) ÅT = 100 K
c = 26.0488 (4) Å0.30 × 0.14 × 0.10 mm
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
3543 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2856 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.992Rint = 0.051
39767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3543 reflectionsΔρmin = 0.24 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0080 (2)0.1240 (2)1.05763 (10)0.0216 (5)
N20.1785 (2)0.1486 (2)0.99796 (8)0.0138 (4)
N30.4382 (2)0.3393 (2)0.93357 (9)0.0161 (5)
N40.3246 (2)0.8440 (2)0.79223 (8)0.0161 (4)
N50.58036 (19)0.6498 (2)0.72756 (8)0.0139 (4)
N60.7630 (2)0.3705 (2)0.67575 (9)0.0185 (5)
C10.0869 (3)0.1423 (3)1.09389 (12)0.0254 (6)
H10.09940.22981.10680.030*
C20.1674 (3)0.0429 (3)1.11374 (11)0.0247 (7)
H20.23180.06121.14000.030*
C30.1519 (3)0.0839 (3)1.09445 (11)0.0249 (6)
H30.20740.15451.10650.030*
C40.0542 (3)0.1068 (3)1.05716 (11)0.0196 (6)
H40.04050.19361.04370.024*
C50.0235 (3)0.0007 (3)1.03974 (11)0.0135 (6)
C60.1305 (2)0.0238 (3)1.00011 (10)0.0139 (5)
C70.1762 (2)0.0775 (3)0.96819 (9)0.0130 (5)
H70.13990.16470.97110.016*
C80.2768 (2)0.0490 (2)0.93152 (10)0.0124 (5)
C90.3273 (2)0.0802 (3)0.92965 (10)0.0130 (5)
H90.39510.10330.90530.016*
C100.2773 (2)0.1756 (2)0.96387 (9)0.0120 (5)
C110.3327 (2)0.3128 (3)0.96507 (10)0.0131 (5)
C120.2785 (2)0.4083 (3)0.99789 (11)0.0171 (5)
H120.20520.38651.02000.020*
C130.3326 (3)0.5349 (3)0.99789 (11)0.0194 (6)
H130.29580.60191.01950.023*
C140.4407 (3)0.5626 (3)0.96601 (10)0.0173 (5)
H140.48020.64870.96530.021*
C150.4901 (3)0.4621 (3)0.93501 (10)0.0174 (5)
H150.56540.48130.91350.021*
C160.3286 (2)0.1535 (2)0.89638 (10)0.0114 (5)
C170.2428 (2)0.2517 (2)0.87710 (10)0.0136 (5)
H170.14970.25210.88660.016*
C180.2921 (2)0.3487 (2)0.84423 (9)0.0131 (5)
H180.23220.41490.83140.016*
C190.4290 (2)0.3503 (2)0.82959 (10)0.0129 (5)
C200.5147 (2)0.2510 (2)0.84861 (9)0.0134 (5)
H200.60760.24980.83890.016*
C210.4653 (2)0.1544 (2)0.88147 (10)0.0138 (5)
H210.52490.08780.89410.017*
C220.2717 (3)0.9666 (3)0.78992 (11)0.0190 (5)
H220.19740.98660.81190.023*
C230.3183 (3)1.0664 (3)0.75761 (10)0.0182 (5)
H230.27771.15200.75760.022*
C240.4259 (2)1.0367 (3)0.72547 (11)0.0177 (5)
H240.46131.10240.70290.021*
C250.4817 (2)0.9096 (3)0.72653 (10)0.0167 (5)
H250.55460.88670.70430.020*
C260.4289 (2)0.8168 (3)0.76062 (9)0.0140 (5)
C270.4838 (2)0.6781 (3)0.76221 (10)0.0128 (5)
C280.4334 (2)0.5846 (3)0.79641 (10)0.0135 (5)
H280.36710.60930.82110.016*
C290.4810 (2)0.4537 (3)0.79421 (9)0.0126 (5)
C300.5797 (2)0.4234 (2)0.75747 (9)0.0130 (5)
H300.61460.33580.75460.016*
C310.6260 (2)0.5240 (3)0.72519 (10)0.0128 (5)
C320.7287 (3)0.4973 (2)0.68450 (11)0.0124 (6)
C330.7851 (3)0.6012 (3)0.65635 (11)0.0227 (6)
H330.75990.69050.66340.027*
C340.8783 (3)0.5732 (3)0.61796 (11)0.0245 (6)
H340.91480.64240.59730.029*
C350.9166 (3)0.4438 (3)0.61035 (11)0.0197 (6)
H350.98340.42180.58540.024*
C360.8562 (3)0.3464 (3)0.63969 (10)0.0203 (6)
H360.88240.25680.63390.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (10)0.0193 (12)0.0237 (12)0.0009 (9)0.0076 (10)0.0004 (10)
N20.0137 (9)0.0148 (11)0.0130 (10)0.0008 (8)0.0002 (8)0.0022 (9)
N30.0167 (9)0.0138 (11)0.0178 (11)0.0005 (8)0.0022 (9)0.0002 (9)
N40.0184 (10)0.0131 (11)0.0166 (11)0.0005 (8)0.0013 (9)0.0006 (9)
N50.0130 (9)0.0134 (10)0.0154 (10)0.0005 (8)0.0012 (8)0.0027 (9)
N60.0184 (10)0.0171 (12)0.0200 (11)0.0015 (9)0.0027 (9)0.0011 (9)
C10.0237 (13)0.0263 (16)0.0263 (15)0.0038 (12)0.0087 (12)0.0051 (12)
C20.0182 (12)0.0396 (19)0.0164 (13)0.0049 (13)0.0051 (11)0.0043 (14)
C30.0190 (13)0.0325 (17)0.0230 (14)0.0020 (11)0.0061 (11)0.0105 (13)
C40.0188 (11)0.0185 (13)0.0216 (13)0.0015 (11)0.0017 (11)0.0036 (11)
C50.0121 (12)0.0165 (16)0.0118 (14)0.0021 (9)0.0024 (11)0.0021 (9)
C60.0112 (10)0.0178 (12)0.0127 (12)0.0022 (10)0.0005 (10)0.0008 (11)
C70.0131 (10)0.0124 (12)0.0136 (11)0.0006 (9)0.0011 (9)0.0000 (10)
C80.0121 (11)0.0131 (14)0.0121 (12)0.0015 (10)0.0013 (9)0.0021 (10)
C90.0122 (10)0.0125 (12)0.0143 (12)0.0010 (9)0.0002 (9)0.0013 (10)
C100.0128 (10)0.0125 (12)0.0107 (11)0.0009 (9)0.0001 (9)0.0010 (9)
C110.0112 (10)0.0134 (12)0.0148 (11)0.0020 (9)0.0014 (9)0.0027 (10)
C120.0151 (11)0.0176 (14)0.0185 (12)0.0008 (10)0.0025 (10)0.0029 (12)
C130.0228 (13)0.0142 (13)0.0211 (14)0.0033 (12)0.0005 (11)0.0049 (12)
C140.0197 (12)0.0117 (13)0.0206 (13)0.0021 (10)0.0032 (10)0.0002 (11)
C150.0177 (11)0.0174 (14)0.0172 (13)0.0014 (11)0.0013 (10)0.0011 (12)
C160.0126 (10)0.0097 (12)0.0120 (11)0.0008 (9)0.0009 (9)0.0005 (9)
C170.0109 (10)0.0152 (12)0.0147 (11)0.0007 (9)0.0005 (9)0.0007 (10)
C180.0137 (10)0.0116 (12)0.0140 (12)0.0017 (9)0.0015 (9)0.0021 (10)
C190.0153 (11)0.0128 (12)0.0105 (11)0.0019 (9)0.0013 (9)0.0002 (10)
C200.0113 (10)0.0135 (12)0.0153 (11)0.0004 (9)0.0032 (9)0.0008 (9)
C210.0141 (10)0.0117 (12)0.0156 (12)0.0008 (9)0.0002 (10)0.0016 (10)
C220.0183 (12)0.0172 (13)0.0213 (14)0.0023 (11)0.0014 (11)0.0030 (12)
C230.0207 (12)0.0121 (13)0.0217 (14)0.0006 (10)0.0018 (11)0.0002 (11)
C240.0199 (12)0.0156 (13)0.0175 (13)0.0006 (11)0.0015 (11)0.0034 (12)
C250.0179 (12)0.0132 (13)0.0189 (13)0.0010 (10)0.0020 (10)0.0025 (11)
C260.0139 (10)0.0140 (12)0.0140 (12)0.0011 (9)0.0019 (9)0.0007 (10)
C270.0112 (10)0.0130 (12)0.0140 (11)0.0015 (9)0.0012 (9)0.0015 (10)
C280.0121 (10)0.0152 (13)0.0132 (12)0.0012 (9)0.0007 (9)0.0026 (10)
C290.0127 (11)0.0131 (13)0.0122 (12)0.0004 (10)0.0013 (9)0.0022 (10)
C300.0140 (11)0.0107 (12)0.0143 (12)0.0004 (9)0.0002 (10)0.0006 (10)
C310.0105 (10)0.0164 (12)0.0117 (12)0.0006 (10)0.0019 (10)0.0003 (11)
C320.0108 (11)0.0164 (16)0.0101 (14)0.0022 (9)0.0015 (11)0.0014 (9)
C330.0267 (13)0.0159 (14)0.0254 (15)0.0009 (11)0.0075 (12)0.0010 (11)
C340.0254 (13)0.0274 (16)0.0206 (14)0.0090 (12)0.0057 (11)0.0070 (12)
C350.0160 (11)0.0290 (16)0.0139 (12)0.0010 (11)0.0012 (10)0.0029 (12)
C360.0181 (12)0.0209 (14)0.0218 (14)0.0027 (11)0.0023 (11)0.0020 (11)
Geometric parameters (Å, º) top
N1—C11.341 (4)C15—H150.9500
N1—C51.347 (3)C16—C171.393 (3)
N2—C61.342 (3)C16—C211.402 (3)
N2—C101.345 (3)C17—C181.386 (3)
N3—C151.337 (3)C17—H170.9500
N3—C111.351 (3)C18—C191.402 (3)
N4—C221.341 (3)C18—H180.9500
N4—C261.344 (3)C19—C201.399 (3)
N5—C271.342 (3)C19—C291.482 (3)
N5—C311.344 (3)C20—C211.383 (3)
N6—C361.335 (3)C20—H200.9500
N6—C321.340 (3)C21—H210.9500
C1—C21.377 (4)C22—C231.388 (4)
C1—H10.9500C22—H220.9500
C2—C31.380 (5)C23—C241.383 (4)
C2—H20.9500C23—H230.9500
C3—C41.387 (4)C24—C251.393 (4)
C3—H30.9500C24—H240.9500
C4—C51.389 (4)C25—C261.390 (4)
C4—H40.9500C25—H250.9500
C5—C61.493 (4)C26—C271.497 (3)
C6—C71.391 (4)C27—C281.388 (3)
C7—C81.406 (3)C28—C291.399 (4)
C7—H70.9500C28—H280.9500
C8—C91.392 (3)C29—C301.397 (3)
C8—C161.485 (3)C30—C311.393 (4)
C9—C101.400 (3)C30—H300.9500
C9—H90.9500C31—C321.490 (4)
C10—C111.484 (3)C32—C331.393 (4)
C11—C121.392 (4)C33—C341.386 (4)
C12—C131.381 (4)C33—H330.9500
C12—H120.9500C34—C351.370 (4)
C13—C141.379 (4)C34—H340.9500
C13—H130.9500C35—C361.378 (4)
C14—C151.383 (4)C35—H350.9500
C14—H140.9500C36—H360.9500
C1—N1—C5116.7 (2)C17—C18—C19120.9 (2)
C6—N2—C10118.1 (2)C17—C18—H18119.6
C15—N3—C11117.4 (2)C19—C18—H18119.6
C22—N4—C26117.2 (2)C20—C19—C18118.4 (2)
C27—N5—C31117.9 (2)C20—C19—C29120.9 (2)
C36—N6—C32117.8 (2)C18—C19—C29120.7 (2)
N1—C1—C2124.5 (3)C21—C20—C19120.6 (2)
N1—C1—H1117.8C21—C20—H20119.7
C2—C1—H1117.8C19—C20—H20119.7
C1—C2—C3118.1 (3)C20—C21—C16120.9 (2)
C1—C2—H2120.9C20—C21—H21119.5
C3—C2—H2120.9C16—C21—H21119.5
C2—C3—C4119.0 (3)N4—C22—C23124.3 (2)
C2—C3—H3120.5N4—C22—H22117.8
C4—C3—H3120.5C23—C22—H22117.8
C3—C4—C5118.9 (3)C24—C23—C22117.7 (3)
C3—C4—H4120.5C24—C23—H23121.1
C5—C4—H4120.5C22—C23—H23121.1
N1—C5—C4122.7 (2)C23—C24—C25119.2 (3)
N1—C5—C6117.6 (2)C23—C24—H24120.4
C4—C5—C6119.6 (2)C25—C24—H24120.4
N2—C6—C7123.1 (2)C26—C25—C24118.8 (2)
N2—C6—C5115.0 (2)C26—C25—H25120.6
C7—C6—C5121.8 (2)C24—C25—H25120.6
C6—C7—C8119.0 (2)N4—C26—C25122.7 (2)
C6—C7—H7120.5N4—C26—C27116.7 (2)
C8—C7—H7120.5C25—C26—C27120.6 (2)
C9—C8—C7117.8 (2)N5—C27—C28122.8 (2)
C9—C8—C16121.1 (2)N5—C27—C26115.8 (2)
C7—C8—C16121.1 (2)C28—C27—C26121.4 (2)
C8—C9—C10119.5 (2)C27—C28—C29119.5 (2)
C8—C9—H9120.2C27—C28—H28120.3
C10—C9—H9120.2C29—C28—H28120.3
N2—C10—C9122.4 (2)C30—C29—C28117.8 (2)
N2—C10—C11116.1 (2)C30—C29—C19120.9 (2)
C9—C10—C11121.5 (2)C28—C29—C19121.3 (2)
N3—C11—C12122.1 (2)C31—C30—C29118.9 (2)
N3—C11—C10117.0 (2)C31—C30—H30120.6
C12—C11—C10120.9 (2)C29—C30—H30120.6
C13—C12—C11119.3 (2)N5—C31—C30123.2 (2)
C13—C12—H12120.4N5—C31—C32115.4 (2)
C11—C12—H12120.4C30—C31—C32121.4 (2)
C14—C13—C12119.0 (3)N6—C32—C33121.6 (2)
C14—C13—H13120.5N6—C32—C31117.7 (2)
C12—C13—H13120.5C33—C32—C31120.7 (2)
C13—C14—C15118.4 (2)C34—C33—C32119.5 (3)
C13—C14—H14120.8C34—C33—H33120.3
C15—C14—H14120.8C32—C33—H33120.3
N3—C15—C14123.9 (2)C35—C34—C33118.6 (3)
N3—C15—H15118.1C35—C34—H34120.7
C14—C15—H15118.1C33—C34—H34120.7
C17—C16—C21118.6 (2)C34—C35—C36118.5 (2)
C17—C16—C8121.1 (2)C34—C35—H35120.8
C21—C16—C8120.4 (2)C36—C35—H35120.8
C18—C17—C16120.6 (2)N6—C36—C35123.9 (3)
C18—C17—H17119.7N6—C36—H36118.0
C16—C17—H17119.7C35—C36—H36118.0
C5—N1—C1—C20.4 (4)C18—C19—C20—C210.6 (4)
N1—C1—C2—C31.4 (5)C29—C19—C20—C21179.7 (2)
C1—C2—C3—C41.7 (4)C19—C20—C21—C160.1 (4)
C2—C3—C4—C51.1 (4)C17—C16—C21—C200.4 (4)
C1—N1—C5—C40.3 (4)C8—C16—C21—C20179.8 (2)
C1—N1—C5—C6178.8 (3)C26—N4—C22—C230.6 (4)
C3—C4—C5—N10.1 (4)N4—C22—C23—C240.4 (4)
C3—C4—C5—C6179.2 (2)C22—C23—C24—C250.5 (4)
C10—N2—C6—C71.3 (4)C23—C24—C25—C261.1 (4)
C10—N2—C6—C5178.6 (2)C22—N4—C26—C250.1 (4)
N1—C5—C6—N2155.2 (2)C22—N4—C26—C27177.9 (2)
C4—C5—C6—N223.9 (4)C24—C25—C26—N40.9 (4)
N1—C5—C6—C724.6 (4)C24—C25—C26—C27178.6 (2)
C4—C5—C6—C7156.3 (3)C31—N5—C27—C282.3 (3)
N2—C6—C7—C80.4 (4)C31—N5—C27—C26175.5 (2)
C5—C6—C7—C8179.7 (2)N4—C26—C27—N5174.9 (2)
C6—C7—C8—C90.9 (3)C25—C26—C27—N53.0 (3)
C6—C7—C8—C16179.7 (2)N4—C26—C27—C282.9 (3)
C7—C8—C9—C100.2 (3)C25—C26—C27—C28179.2 (2)
C16—C8—C9—C10179.1 (2)N5—C27—C28—C292.0 (4)
C6—N2—C10—C92.5 (4)C26—C27—C28—C29175.6 (2)
C6—N2—C10—C11176.5 (2)C27—C28—C29—C300.7 (4)
C8—C9—C10—N22.0 (4)C27—C28—C29—C19179.3 (2)
C8—C9—C10—C11177.0 (2)C20—C19—C29—C3035.9 (4)
C15—N3—C11—C120.2 (4)C18—C19—C29—C30143.2 (2)
C15—N3—C11—C10178.9 (2)C20—C19—C29—C28144.0 (2)
N2—C10—C11—N3175.6 (2)C18—C19—C29—C2836.9 (4)
C9—C10—C11—N33.4 (3)C28—C29—C30—C310.2 (3)
N2—C10—C11—C123.5 (3)C19—C29—C30—C31179.7 (2)
C9—C10—C11—C12177.5 (2)C27—N5—C31—C301.3 (4)
N3—C11—C12—C131.0 (4)C27—N5—C31—C32177.4 (2)
C10—C11—C12—C13179.9 (2)C29—C30—C31—N50.0 (4)
C11—C12—C13—C141.2 (4)C29—C30—C31—C32178.6 (2)
C12—C13—C14—C150.4 (4)C36—N6—C32—C331.5 (4)
C11—N3—C15—C141.1 (4)C36—N6—C32—C31179.3 (2)
C13—C14—C15—N30.9 (4)N5—C31—C32—N6170.8 (2)
C9—C8—C16—C17144.8 (2)C30—C31—C32—N68.0 (4)
C7—C8—C16—C1735.9 (3)N5—C31—C32—C338.5 (4)
C9—C8—C16—C2134.6 (4)C30—C31—C32—C33172.8 (3)
C7—C8—C16—C21144.7 (2)N6—C32—C33—C340.6 (4)
C21—C16—C17—C180.5 (3)C31—C32—C33—C34178.6 (3)
C8—C16—C17—C18179.9 (2)C32—C33—C34—C352.8 (4)
C16—C17—C18—C190.0 (4)C33—C34—C35—C362.9 (4)
C17—C18—C19—C200.5 (4)C32—N6—C36—C351.4 (4)
C17—C18—C19—C29179.7 (2)C34—C35—C36—N60.8 (4)

Experimental details

Crystal data
Chemical formulaC36H24N6
Mr540.61
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)9.8493 (2), 10.0626 (2), 26.0488 (4)
V3)2581.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.14 × 0.10
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
39767, 3543, 2856
Rint0.051
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.03
No. of reflections3543
No. of parameters379
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support through the R&D project PTDC/QUI-QUI/098098/2008 (FCOMP-01-0124-FEDER-010785), for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer. PPL also wishes to acknowledge CNPq and CAPES (Brazil) for funding.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirginova, P. I., Paz, F. A. A., Soares-Santos, P. C. R., Ferreira, R. A. S., Carlos, L. D., Amaral, V. S., Klinowski, J., Nogueira, H. I. S. & Trindade, T. (2007). Eur. J. Inorg. Chem. pp. 4238–4246.  CSD CrossRef Google Scholar
First citationJones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationLima, P. P., Ferreira, R. A. S., Freire, R. O., Paz, F. A. A., Fu, L. S., Alves, S., Carlos, L. D. & Malta, O. L. (2006). ChemPhysChem, 7, 735–746.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLima, P. P., Paz, F. A. A., Ferreira, R. A. S., Bermudez, V. D. & Carlos, L. D. (2009). Chem. Mater. 21, 5099–5111.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaekawa, M., Minematsu, T., Konada, H., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2004). Inorg. Chim. Acta, 357, 3456–3472.  Web of Science CrossRef CAS Google Scholar
First citationSchmittel, M., Kalsani, V., Kishore, R. S. K., Cölfen, H. & Bats, J. W. (2005). J. Am. Chem. Soc. 127, 11544–11545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmittel, M., Kalsani, V., Mal, P. & Bats, J. W. (2006). Inorg. Chem. 45, 6370–6377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F. N., Cunha-Silva, L., Ferreira, R. A. S., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds