metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2,2′-{[4-(carb­­oxy­meth­­oxy)phen­yl]aza­nedi­yl}di­acetato)­bis­­[(1,10-phenanthroline)copper(II)]

aCollege of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China, bDepartment of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China, and cFuqing Entry–exit Inspection and Quarantine Bureau, Fuqing, Fujian 350300, People's Republic of China
*Correspondence e-mail: zy13054518939@yahoo.com.cn

(Received 19 November 2010; accepted 21 November 2010; online 27 November 2010)

The crystal structure of the binuclear title compound, [Cu2(C12H11NO7)2(C12H8N2)2], consists of a complex mol­ecule, which lies about a crystallographic inversion centre with one half-mol­ecule in the asymmetric unit. The CuII cation is bonded to three N atoms and three O atoms, in a Jahn–Teller-distorted octa­hedral geometry. The basal plane is defined by the two N atoms from the 1,10-phenathroline and two deprotonated O atoms of the polycarboxyl­ate ligand. The axial positions are occupied by the azane N atom and a bridging carboxyl­ate O atom from the second polycarboxyl­ate ligand. The complex mol­ecules are linked through O—H⋯O hydrogen bonds into extended chains running parallel to [010].

Related literature

For general background to the applications of polycarboxyl­ate ligands, see: Ghermani et al. (1994[Ghermani, N.-E., Lecomte, C., Rapin, C., Steinmetz, P., Steinmetz, J. & Malaman, B. (1994). Acta Cryst. B50, 157-160.]); Ruiz-Perez et al. (2000[Ruiz-Perez, C., Sanchiz, J., Molina, M. H., Lloret, F. & Julve, M. (2000). Inorg. Chem. 39, 1363-1370.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]); Kido et al. (2003[Kido, T., Ikuta, Y., Sunatsuki, Y., Ogawa, Y. & Matsumoto, N. (2003). Inorg. Chem. 42, 398-408.]). For the features of flexible multidentate aromatic polycarboxyl­ate ligands, see: Wang et al. (2009[Wang, Y. Q., Zhang, J. Y., Jia, O. X., Gao, E. Q. & Liu, C. M. (2009). Inorg. Chem. 48, 789-791.]); Pan et al. (2008[Pan, Z. R., Zheng, H. G., Wang, T. W., Song, Y., Li, Y. Z., Guo, Z. J. & Batten, S. R. (2008). Inorg. Chem. 47, 9528-9536.]); Dong et al. (2006[Dong, Y. B., Xu, H. X., Ma, J. P. & Huang, R. O. (2006). Inorg. Chem. 45, 3325-3343.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H11NO7)2(C12H8N2)2]

  • Mr = 1049.92

  • Monoclinic, P 21 /c

  • a = 8.7410 (17) Å

  • b = 10.886 (2) Å

  • c = 22.239 (4) Å

  • β = 90.85 (3)°

  • V = 2115.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.85, Tmax = 1.00

  • 14139 measured reflections

  • 3604 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.103

  • S = 1.25

  • 3604 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O7 1.987 (3)
Cu1—O5 1.997 (3)
Cu1—N2 2.003 (3)
Cu1—N3 2.049 (3)
Cu1—O7i 2.293 (3)
Cu1—N1 2.460 (3)
O7—Cu1—O5 92.08 (11)
O7—Cu1—N2 171.29 (12)
O5—Cu1—N2 93.61 (12)
O7—Cu1—N3 91.96 (12)
O5—Cu1—N3 170.40 (12)
N2—Cu1—N3 81.44 (13)
O7—Cu1—O7i 77.11 (11)
O5—Cu1—O7i 93.01 (10)
N2—Cu1—O7i 109.13 (11)
N3—Cu1—O7i 96.38 (11)
O7—Cu1—N1 74.69 (11)
O5—Cu1—N1 76.84 (11)
N2—Cu1—N1 100.21 (12)
N3—Cu1—N1 95.87 (12)
O7i—Cu1—N1 149.54 (10)
Symmetry code: (i) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4ii 0.82 1.82 2.622 (4) 164
Symmetry code: (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carboxylate-metal coordination compounds have received considerable attention due to their potential applications in catalysis and pharmaceutical chemistry (Ghermani et al., 1994; Ruiz-Perez et al., 2000), molecular recognition and magnetic materials (Ye et al., 2005); Kido, et al., 2003). In recent years, several studies have focused on flexible multidentate aromatic polycarboxylate ligands, because of their remarkable features. These ligands contain carboxylate groups, which can provide a variety of coordination modes (Wang et al., 2009). They also offer the opportunity to form hydrogen bonds leading to supramolecular structures (Pan et al., 2008). Furthermore, such ligands can be used to construct unprecedented topological frameworks (Dong et al., 2006). Here, we present the structure of the title compound (I), a copper complex with 2,2'-(4-(carboxymethoxy)phenylazanediyl)diacetate, a flexible multidentate aromatic polycarboxylate ligand.

As shown in Fig. 1, the binuclear complex contains two CuII cations with very distorted octahedral geometries. The basal plane of each coordination site is defined by the N2 and N3 atoms from the 1,10-phenathroline ligand and the deprotanated O5 and O7 atoms from a polycarboxylate ligand. The axial positions are occupied by the azane N1 atom and a bridging O7A atom from the second polycarboxylate ligand. The angle O7A—Cu1—N1 and the axial bond lengths are respectively 149.54 (10)°; Cu1—O7A, 2.293 (3)Å; Cu1—N1, 2.460 (3)Å which demonstrate a very distorted octahedral coordination geometry due to the Jahn-Teller effect. The packing is stabilized through intermolecular hydrogen-bonding between the uncoordinated carboxyl O—H group and a neighboring carbonyl oxygen atom. This results in a 1-dimensional hydrogen-bonded chain parallel to the [010] direction (Fig. 2 and Table 1).

Related literature top

For general background to the applications of polycarboxylate ligands, see: Ghermani et al. (1994); Ruiz-Perez et al. (2000); Ye et al. (2005); Kido et al. (2003). For the features of flexible multidentate aromatic polycarboxylate ligands, see: Wang et al. (2009); Pan et al. (2008); Dong et al. (2006).

Experimental top

The polycarboxylate ligand (0.082 g, 0.3 mmol), Cu(CH3COO)2.2H2O (0.044 g, 0.2 mmol) and 1,10-phenathroline (0.055 g, 0.3 mmol) were dissolved in a mixed solvent of ethanol and water (8 ml, 5:3 v/v) and stirred for 4 h at room temperature. The mixture was filtered and allowed to evaporate in air at room temperature. Block-like blue crystals separated from the filtrate after 8 days.

Refinement top

The H2 atom bound to O2 was placed in an idealized position in the riding-model approximation with O—H = 0.82 Å, All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

Carboxylate-metal coordination compounds have received considerable attention due to their potential applications in catalysis and pharmaceutical chemistry (Ghermani et al., 1994; Ruiz-Perez et al., 2000), molecular recognition and magnetic materials (Ye et al., 2005); Kido, et al., 2003). In recent years, several studies have focused on flexible multidentate aromatic polycarboxylate ligands, because of their remarkable features. These ligands contain carboxylate groups, which can provide a variety of coordination modes (Wang et al., 2009). They also offer the opportunity to form hydrogen bonds leading to supramolecular structures (Pan et al., 2008). Furthermore, such ligands can be used to construct unprecedented topological frameworks (Dong et al., 2006). Here, we present the structure of the title compound (I), a copper complex with 2,2'-(4-(carboxymethoxy)phenylazanediyl)diacetate, a flexible multidentate aromatic polycarboxylate ligand.

As shown in Fig. 1, the binuclear complex contains two CuII cations with very distorted octahedral geometries. The basal plane of each coordination site is defined by the N2 and N3 atoms from the 1,10-phenathroline ligand and the deprotanated O5 and O7 atoms from a polycarboxylate ligand. The axial positions are occupied by the azane N1 atom and a bridging O7A atom from the second polycarboxylate ligand. The angle O7A—Cu1—N1 and the axial bond lengths are respectively 149.54 (10)°; Cu1—O7A, 2.293 (3)Å; Cu1—N1, 2.460 (3)Å which demonstrate a very distorted octahedral coordination geometry due to the Jahn-Teller effect. The packing is stabilized through intermolecular hydrogen-bonding between the uncoordinated carboxyl O—H group and a neighboring carbonyl oxygen atom. This results in a 1-dimensional hydrogen-bonded chain parallel to the [010] direction (Fig. 2 and Table 1).

For general background to the applications of polycarboxylate ligands, see: Ghermani et al. (1994); Ruiz-Perez et al. (2000); Ye et al. (2005); Kido et al. (2003). For the features of flexible multidentate aromatic polycarboxylate ligands, see: Wang et al. (2009); Pan et al. (2008); Dong et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002; data reduction: CrystalClear (Rigaku, 2002; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability displacement ellipsoids. The weak axial Cu—N bonds are shown as dashed lines. H atoms have been omitted for clarity. [Atoms labelled with the suffix A are related to other atoms by the symmetry code: [-x,-y,-z]
[Figure 2] Fig. 2. A view of the hydrogen-bonded 1-dimensional chains running parallel to [010]. The hydrogen bonds are shown as dashed lines.
Bis(µ-2,2'-{[4-(carboxymethoxy)phenyl]azanediyl}diacetato)bis[(1,10- phenanthroline)copper(II)] top
Crystal data top
[Cu2(C12H11NO7)2(C12H8N2)2]F(000) = 1076
Mr = 1049.92Dx = 1.648 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.7410 (17) Åθ = 12–18°
b = 10.886 (2) ŵ = 1.09 mm1
c = 22.239 (4) ÅT = 293 K
β = 90.85 (3)°Block, blue
V = 2115.8 (7) Å30.26 × 0.18 × 0.12 mm
Z = 2
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3604 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 24.7°, θmin = 3.1°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
h = 1010
Tmin = 0.85, Tmax = 1.00k = 1212
14139 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0128P)2 + 3.5126P]
where P = (Fo2 + 2Fc2)/3
3604 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C12H11NO7)2(C12H8N2)2]V = 2115.8 (7) Å3
Mr = 1049.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7410 (17) ŵ = 1.09 mm1
b = 10.886 (2) ÅT = 293 K
c = 22.239 (4) Å0.26 × 0.18 × 0.12 mm
β = 90.85 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3604 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
3408 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 1.00Rint = 0.052
14139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.25Δρmax = 0.27 e Å3
3604 reflectionsΔρmin = 0.35 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05701 (5)0.10839 (4)0.04897 (2)0.03031 (15)
O50.0341 (3)0.0219 (2)0.11910 (12)0.0356 (7)
O70.1363 (3)0.0478 (2)0.01526 (12)0.0326 (6)
N10.2819 (4)0.0561 (3)0.11173 (14)0.0304 (7)
N20.0092 (4)0.2758 (3)0.08106 (15)0.0319 (8)
N30.1739 (4)0.2109 (3)0.01248 (15)0.0330 (8)
O60.3412 (3)0.1600 (3)0.00516 (14)0.0459 (8)
O20.1572 (4)0.7030 (3)0.24279 (14)0.0528 (9)
H20.11760.75030.21840.063*
O30.4623 (4)0.4841 (3)0.23479 (15)0.0550 (9)
O10.3190 (4)0.6653 (3)0.16736 (15)0.0605 (9)
O40.0057 (3)0.1359 (3)0.18195 (14)0.0500 (8)
C10.2762 (5)0.6474 (4)0.2177 (2)0.0434 (11)
C20.3508 (6)0.5602 (4)0.2620 (2)0.0546 (13)
H2A0.39910.60730.29410.066*
H2B0.27280.50890.27980.066*
C30.4095 (5)0.3800 (4)0.2047 (2)0.0401 (10)
C40.2869 (5)0.3104 (4)0.2226 (2)0.0482 (12)
H40.23040.33470.25570.058*
C50.2476 (5)0.2047 (4)0.19176 (19)0.0432 (11)
H50.16380.15930.20430.052*
C60.3299 (4)0.1642 (4)0.14239 (17)0.0291 (9)
C70.4531 (4)0.2351 (4)0.12463 (18)0.0335 (9)
H70.51000.21100.09170.040*
C80.4928 (5)0.3423 (4)0.15567 (19)0.0377 (10)
H80.57590.38880.14320.045*
C90.2205 (4)0.0419 (4)0.14958 (18)0.0349 (10)
H9A0.25700.02900.19050.042*
H9B0.26180.11970.13600.042*
C100.0478 (5)0.0518 (4)0.15017 (18)0.0342 (10)
C110.3746 (4)0.0071 (4)0.06312 (18)0.0325 (9)
H11A0.45920.03980.08010.039*
H11B0.41680.07450.04020.039*
C120.2791 (5)0.0758 (4)0.02112 (18)0.0327 (9)
C130.2498 (4)0.1765 (4)0.06094 (19)0.0378 (10)
H130.23830.09630.07460.045*
C140.3463 (5)0.2557 (4)0.0924 (2)0.0452 (11)
H140.39740.22850.12620.054*
C150.3644 (5)0.3735 (4)0.0725 (2)0.0466 (12)
H150.43200.42590.09180.056*
C160.2812 (5)0.4161 (4)0.02308 (19)0.0381 (10)
C170.1868 (4)0.3301 (4)0.00554 (18)0.0317 (9)
C180.0961 (4)0.3654 (4)0.05541 (18)0.0336 (10)
C190.0966 (5)0.4885 (4)0.0753 (2)0.0378 (10)
C200.1934 (5)0.5738 (4)0.0444 (2)0.0487 (12)
H200.19510.65540.05680.058*
C210.2807 (5)0.5397 (4)0.0012 (2)0.0465 (12)
H210.34300.59780.01930.056*
C220.0007 (5)0.5157 (4)0.1236 (2)0.0452 (11)
H220.00440.59550.13830.054*
C230.0846 (5)0.4261 (4)0.1489 (2)0.0475 (12)
H230.14710.44450.18120.057*
C240.0788 (5)0.3064 (4)0.12670 (19)0.0407 (10)
H240.13860.24620.14450.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0304 (3)0.0260 (3)0.0346 (3)0.0016 (2)0.0050 (2)0.0013 (2)
O50.0316 (15)0.0351 (16)0.0403 (17)0.0001 (13)0.0064 (13)0.0070 (13)
O70.0301 (16)0.0294 (15)0.0383 (16)0.0020 (12)0.0024 (12)0.0052 (12)
N10.0304 (18)0.0289 (18)0.0320 (18)0.0030 (15)0.0074 (14)0.0003 (15)
N20.0305 (18)0.0294 (18)0.0358 (19)0.0004 (15)0.0009 (15)0.0044 (15)
N30.0286 (18)0.0318 (19)0.039 (2)0.0017 (15)0.0023 (15)0.0029 (15)
O60.0423 (18)0.0338 (17)0.062 (2)0.0010 (14)0.0179 (15)0.0130 (15)
O20.064 (2)0.053 (2)0.0415 (19)0.0204 (17)0.0086 (16)0.0072 (16)
O30.048 (2)0.0419 (18)0.075 (2)0.0052 (16)0.0136 (17)0.0256 (17)
O10.072 (2)0.060 (2)0.050 (2)0.0073 (19)0.0139 (18)0.0041 (18)
O40.0411 (18)0.0484 (19)0.061 (2)0.0050 (15)0.0101 (15)0.0244 (16)
C10.053 (3)0.033 (2)0.044 (3)0.003 (2)0.002 (2)0.007 (2)
C20.064 (3)0.044 (3)0.056 (3)0.013 (2)0.016 (3)0.018 (2)
C30.038 (2)0.034 (2)0.048 (3)0.002 (2)0.011 (2)0.008 (2)
C40.037 (2)0.059 (3)0.049 (3)0.001 (2)0.004 (2)0.022 (2)
C50.034 (2)0.053 (3)0.044 (3)0.013 (2)0.0040 (19)0.011 (2)
C60.024 (2)0.031 (2)0.032 (2)0.0003 (17)0.0007 (16)0.0014 (18)
C70.032 (2)0.032 (2)0.037 (2)0.0009 (18)0.0025 (18)0.0010 (18)
C80.039 (2)0.029 (2)0.045 (3)0.0052 (19)0.003 (2)0.004 (2)
C90.033 (2)0.037 (2)0.035 (2)0.0031 (18)0.0012 (18)0.0068 (19)
C100.035 (2)0.035 (2)0.033 (2)0.005 (2)0.0054 (18)0.0002 (19)
C110.025 (2)0.031 (2)0.042 (2)0.0012 (17)0.0034 (17)0.0002 (18)
C120.033 (2)0.025 (2)0.040 (2)0.0044 (18)0.0132 (18)0.0025 (18)
C130.033 (2)0.039 (2)0.042 (2)0.0031 (19)0.0045 (19)0.004 (2)
C140.041 (3)0.050 (3)0.045 (3)0.003 (2)0.008 (2)0.011 (2)
C150.033 (2)0.050 (3)0.056 (3)0.006 (2)0.005 (2)0.016 (2)
C160.035 (2)0.032 (2)0.047 (3)0.0062 (19)0.009 (2)0.014 (2)
C170.027 (2)0.030 (2)0.038 (2)0.0023 (17)0.0051 (17)0.0051 (19)
C180.031 (2)0.032 (2)0.037 (2)0.0028 (18)0.0089 (18)0.0046 (18)
C190.036 (2)0.031 (2)0.046 (3)0.0014 (19)0.0115 (19)0.001 (2)
C200.057 (3)0.030 (2)0.059 (3)0.010 (2)0.017 (3)0.002 (2)
C210.044 (3)0.038 (3)0.058 (3)0.013 (2)0.006 (2)0.009 (2)
C220.045 (3)0.035 (3)0.056 (3)0.002 (2)0.011 (2)0.009 (2)
C230.050 (3)0.049 (3)0.044 (3)0.010 (2)0.002 (2)0.009 (2)
C240.038 (2)0.042 (3)0.042 (3)0.002 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—O71.987 (3)C5—H50.9300
Cu1—O51.997 (3)C6—C71.387 (5)
Cu1—N22.003 (3)C7—C81.397 (6)
Cu1—N32.049 (3)C7—H70.9300
Cu1—O7i2.293 (3)C8—H80.9300
Cu1—N12.460 (3)C9—C101.514 (5)
O5—C101.272 (5)C9—H9A0.9700
O7—C121.290 (5)C9—H9B0.9700
O7—Cu1i2.293 (3)C11—C121.536 (5)
N1—C61.420 (5)C11—H11A0.9700
N1—C111.462 (5)C11—H11B0.9700
N1—C91.465 (5)C13—C141.401 (6)
N2—C241.325 (5)C13—H130.9300
N2—C181.366 (5)C14—C151.364 (6)
N3—C131.327 (5)C14—H140.9300
N3—C171.363 (5)C15—C161.406 (6)
O6—C121.219 (4)C15—H150.9300
O2—C11.333 (5)C16—C171.406 (5)
O2—H20.8200C16—C211.431 (6)
O3—C31.392 (5)C17—C181.426 (5)
O3—C21.422 (5)C18—C191.411 (6)
O1—C11.201 (5)C19—C221.405 (6)
O4—C101.252 (5)C19—C201.437 (6)
C1—C21.510 (6)C20—C211.331 (6)
C2—H2A0.9700C20—H200.9300
C2—H2B0.9700C21—H210.9300
C3—C41.376 (6)C22—C231.354 (6)
C3—C81.382 (6)C22—H220.9300
C4—C51.381 (6)C23—C241.395 (6)
C4—H40.9300C23—H230.9300
C5—C61.393 (5)C24—H240.9300
O7—Cu1—O592.08 (11)C3—C8—C7120.5 (4)
O7—Cu1—N2171.29 (12)C3—C8—H8119.8
O5—Cu1—N293.61 (12)C7—C8—H8119.8
O7—Cu1—N391.96 (12)N1—C9—C10115.5 (3)
O5—Cu1—N3170.40 (12)N1—C9—H9A108.4
N2—Cu1—N381.44 (13)C10—C9—H9A108.4
O7—Cu1—O7i77.11 (11)N1—C9—H9B108.4
O5—Cu1—O7i93.01 (10)C10—C9—H9B108.4
N2—Cu1—O7i109.13 (11)H9A—C9—H9B107.5
N3—Cu1—O7i96.38 (11)O4—C10—O5123.8 (4)
O7—Cu1—N174.69 (11)O4—C10—C9116.0 (4)
O5—Cu1—N176.84 (11)O5—C10—C9120.2 (3)
N2—Cu1—N1100.21 (12)N1—C11—C12111.2 (3)
N3—Cu1—N195.87 (12)N1—C11—H11A109.4
O7i—Cu1—N1149.54 (10)C12—C11—H11A109.4
C10—O5—Cu1119.6 (2)N1—C11—H11B109.4
C12—O7—Cu1120.4 (2)C12—C11—H11B109.4
C12—O7—Cu1i134.3 (2)H11A—C11—H11B108.0
Cu1—O7—Cu1i102.89 (11)O6—C12—O7124.5 (4)
C6—N1—C11119.6 (3)O6—C12—C11119.4 (4)
C6—N1—C9115.8 (3)O7—C12—C11116.1 (3)
C11—N1—C9111.7 (3)N3—C13—C14122.9 (4)
C6—N1—Cu1108.0 (2)N3—C13—H13118.5
C11—N1—Cu196.4 (2)C14—C13—H13118.5
C9—N1—Cu1101.4 (2)C15—C14—C13119.0 (4)
C24—N2—C18118.2 (4)C15—C14—H14120.5
C24—N2—Cu1128.9 (3)C13—C14—H14120.5
C18—N2—Cu1112.4 (3)C14—C15—C16120.3 (4)
C13—N3—C17117.8 (3)C14—C15—H15119.9
C13—N3—Cu1130.4 (3)C16—C15—H15119.9
C17—N3—Cu1111.3 (3)C17—C16—C15116.6 (4)
C1—O2—H2109.5C17—C16—C21117.8 (4)
C3—O3—C2117.1 (4)C15—C16—C21125.5 (4)
O1—C1—O2124.9 (4)N3—C17—C16123.2 (4)
O1—C1—C2125.0 (4)N3—C17—C18116.1 (3)
O2—C1—C2110.1 (4)C16—C17—C18120.7 (4)
O3—C2—C1112.3 (4)N2—C18—C19123.1 (4)
O3—C2—H2A109.1N2—C18—C17116.9 (4)
C1—C2—H2A109.1C19—C18—C17120.0 (4)
O3—C2—H2B109.1C22—C19—C18116.2 (4)
C1—C2—H2B109.1C22—C19—C20126.3 (4)
H2A—C2—H2B107.9C18—C19—C20117.6 (4)
C4—C3—C8119.2 (4)C21—C20—C19122.1 (4)
C4—C3—O3124.2 (4)C21—C20—H20118.9
C8—C3—O3116.5 (4)C19—C20—H20118.9
C3—C4—C5120.2 (4)C20—C21—C16121.7 (4)
C3—C4—H4119.9C20—C21—H21119.1
C5—C4—H4119.9C16—C21—H21119.1
C4—C5—C6121.9 (4)C23—C22—C19120.3 (4)
C4—C5—H5119.1C23—C22—H22119.8
C6—C5—H5119.1C19—C22—H22119.8
C7—C6—C5117.4 (4)C22—C23—C24120.1 (4)
C7—C6—N1123.3 (3)C22—C23—H23119.9
C5—C6—N1119.2 (3)C24—C23—H23119.9
C6—C7—C8120.8 (4)N2—C24—C23122.1 (4)
C6—C7—H7119.6N2—C24—H24119.0
C8—C7—H7119.6C23—C24—H24119.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.821.822.622 (4)164
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H11NO7)2(C12H8N2)2]
Mr1049.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7410 (17), 10.886 (2), 22.239 (4)
β (°) 90.85 (3)
V3)2115.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerRigaku Mercury CCD area-detector
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 1998)
Tmin, Tmax0.85, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
14139, 3604, 3408
Rint0.052
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.103, 1.25
No. of reflections3604
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: CrystalClear (Rigaku, 2002), CrystalClear (Rigaku, 2002, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O71.987 (3)Cu1—N32.049 (3)
Cu1—O51.997 (3)Cu1—O7i2.293 (3)
Cu1—N22.003 (3)Cu1—N12.460 (3)
O7—Cu1—O592.08 (11)N2—Cu1—O7i109.13 (11)
O7—Cu1—N2171.29 (12)N3—Cu1—O7i96.38 (11)
O5—Cu1—N293.61 (12)O7—Cu1—N174.69 (11)
O7—Cu1—N391.96 (12)O5—Cu1—N176.84 (11)
O5—Cu1—N3170.40 (12)N2—Cu1—N1100.21 (12)
N2—Cu1—N381.44 (13)N3—Cu1—N195.87 (12)
O7—Cu1—O7i77.11 (11)O7i—Cu1—N1149.54 (10)
O5—Cu1—O7i93.01 (10)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.821.822.622 (4)163.9
Symmetry code: (ii) x, y+1, z.
 

References

First citationDong, Y. B., Xu, H. X., Ma, J. P. & Huang, R. O. (2006). Inorg. Chem. 45, 3325–3343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhermani, N.-E., Lecomte, C., Rapin, C., Steinmetz, P., Steinmetz, J. & Malaman, B. (1994). Acta Cryst. B50, 157–160.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKido, T., Ikuta, Y., Sunatsuki, Y., Ogawa, Y. & Matsumoto, N. (2003). Inorg. Chem. 42, 398–408.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, Z. R., Zheng, H. G., Wang, T. W., Song, Y., Li, Y. Z., Guo, Z. J. & Batten, S. R. (2008). Inorg. Chem. 47, 9528–9536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuiz-Perez, C., Sanchiz, J., Molina, M. H., Lloret, F. & Julve, M. (2000). Inorg. Chem. 39, 1363–1370.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. Q., Zhang, J. Y., Jia, O. X., Gao, E. Q. & Liu, C. M. (2009). Inorg. Chem. 48, 789–791.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds