organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(4-Meth­­oxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, 45320 Pakistan, bDepartment of Forensic Medicine & Toxicology, National University of Sciences & Technology, Islamabad, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: profazmi@hotmail.com

(Received 28 October 2010; accepted 8 November 2010; online 13 November 2010)

The title mol­ecule, C18H18N2O2, is V-shaped with the pyrazoline moiety being inclined to the adjacent phenyl ring by an angle of 6.49 (9)°, while the 4-meth­oxy-substituted ring is inclined to the pyrazoline ring by 82.99 (9)°. In the crystal, adjacent mol­ecules are linked by C—H⋯O inter­actions, forming chains propagating in [100]. There are also C—H⋯π inter­actions involving adjacent mol­ecules and those related by an inversion center.

Related literature

For the biological and pharmacological activity of 2-pyrazoline derivatives, see: Hatheway et al. (1978[Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563-567.]); Lombardino & Ottemes (1981[Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830-834.]); Parmar et al. (1974[Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci. 63, 1152-1255.]); Rathish et al. (2009[Rathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Subbaramaiah et al. (2002[Subbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649-18659.]). For the synthesis and crystal structure of alk­oxy group-bearing 2-pyrazoline derivatives, see: Abbas et al. (2010[Abbas, A., Hussain, S., Hafeez, N., Lo, K. M. & Hasan, A. (2010). Acta Cryst. E66, o2505.]); Bai et al. (2009[Bai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873.]); Lu et al. (2008[Lu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, o1827.]); Fahrni et al. (2003[Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Jian et al. (2008[Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta A, 69, 647-653.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O2

  • Mr = 294.34

  • Triclinic, [P \overline 1]

  • a = 6.2762 (9) Å

  • b = 7.2081 (9) Å

  • c = 18.570 (2) Å

  • α = 85.939 (9)°

  • β = 85.384 (9)°

  • γ = 64.709 (8)°

  • V = 756.51 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.983

  • 7199 measured reflections

  • 3448 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.08

  • 3448 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N1,N2,C8–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.47 3.331 (2) 154
C1—H1CCg1ii 0.96 2.96 3.755 (2) 141
C12—H12⋯Cg1iii 0.93 2.96 3.7783 (18) 148
C18—H18ACg3iv 0.96 2.63 3.544 (2) 159
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) x, y+1, z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazoline systems are well known nitrogen-containing heterocyclic compounds which possess a wide range of biological and pharmacological activities such as antitumor (Hatheway et al., 1978), immunosuppressive (Lombardino et al.,1981), psychoanaleptic (Parmar et al., 1974), anti-inflammation (Rathish et al., 2009), and anticancer (Subbaramaiah et al., 2002). In continuation of previous structural studies of alkoxy group bearing pyrazoline derivatives (Abbas et al., 2010), the title compound was synthesized and its crystal structure is reported on herein.

The molecular structure of the title compound is shown in Fig. 1. All the bond lengths and bond angles are similar to those observed in similar structures (Fahrni et al., 2003; Bai et al., 2009; Lu et al., 2008). In the pyrazolinyl ring, the C8—N2 and C10=N1 bond lengths, 1.483 (2) and 1.2860 (18) Å, respectively, are comparable with those in similar structures [C—N 1.482 (2)–1.515 (9) A°, C=N 1.291 (2)–1.300 (10) A°]. The N1—N2 bond length of 1.3867 (16) Å is slightly longer than that found in a similar structure [N–N 1.373 (2)–1.380 (8) A°] (Jian et al., 2008). The plane containing the pyrazoline moiety is inclined to the adjacent phenyl ring (C16-C21) by 6.49 (9)\%, while the 4-methoxy substituted phenyl ring (C2-C7) is inclined to the pyrazoline moiety by 82.99 (9) °.

In the crystal adjacent molecules are linked by a C-H···O interaction forming chains propagating in [100]. There are also C-H···π interactions involving adjacent molecules and those related by an inversion center; see Table 1 for details.

Related literature top

For biological and pharmacological activity of 2-pyrazoline derivatives, see: Hatheway et al. (1978); Lombardino et al. (1981); Parmar et al. (1974); Rathish et al. (2009); Subbaramaiah et al. (2002). For the synthesis and crystal structure of alkoxy group-bearing 2-pyrazoline derivatives, see: Abbas et al. (2010); Bai et al. (2009); Lu et al. (2008); Fahrni et al. (2003); Jian et al. (2008).

Experimental top

To a mixture of (E)-3-(4-(methoxy)phenyl)-1-phenylprop-2-en-1-one (2.94 g, 10 mmol) and hydrazine hydrate (1.0 g, 20 mmol) in acetic acid (25 ml), were added two drops of concentrated hydrochloric acid. The mixture was refluxed for 5 h. The precipitated solids were filtered, dried and recrystallized from ethanol. The crystals, suitable for X-ray diffraction analysis, were obtained from a mixture of ethyl acetate and dichloromethane (v:v / 1:1) by slow evaporation.

Refinement top

The H-atoms were placed at calculated positions and were treated as riding: C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), methylene, methyl and methine H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and 1.2 for all other H-atoms.

Structure description top

Pyrazoline systems are well known nitrogen-containing heterocyclic compounds which possess a wide range of biological and pharmacological activities such as antitumor (Hatheway et al., 1978), immunosuppressive (Lombardino et al.,1981), psychoanaleptic (Parmar et al., 1974), anti-inflammation (Rathish et al., 2009), and anticancer (Subbaramaiah et al., 2002). In continuation of previous structural studies of alkoxy group bearing pyrazoline derivatives (Abbas et al., 2010), the title compound was synthesized and its crystal structure is reported on herein.

The molecular structure of the title compound is shown in Fig. 1. All the bond lengths and bond angles are similar to those observed in similar structures (Fahrni et al., 2003; Bai et al., 2009; Lu et al., 2008). In the pyrazolinyl ring, the C8—N2 and C10=N1 bond lengths, 1.483 (2) and 1.2860 (18) Å, respectively, are comparable with those in similar structures [C—N 1.482 (2)–1.515 (9) A°, C=N 1.291 (2)–1.300 (10) A°]. The N1—N2 bond length of 1.3867 (16) Å is slightly longer than that found in a similar structure [N–N 1.373 (2)–1.380 (8) A°] (Jian et al., 2008). The plane containing the pyrazoline moiety is inclined to the adjacent phenyl ring (C16-C21) by 6.49 (9)\%, while the 4-methoxy substituted phenyl ring (C2-C7) is inclined to the pyrazoline moiety by 82.99 (9) °.

In the crystal adjacent molecules are linked by a C-H···O interaction forming chains propagating in [100]. There are also C-H···π interactions involving adjacent molecules and those related by an inversion center; see Table 1 for details.

For biological and pharmacological activity of 2-pyrazoline derivatives, see: Hatheway et al. (1978); Lombardino et al. (1981); Parmar et al. (1974); Rathish et al. (2009); Subbaramaiah et al. (2002). For the synthesis and crystal structure of alkoxy group-bearing 2-pyrazoline derivatives, see: Abbas et al. (2010); Bai et al. (2009); Lu et al. (2008); Fahrni et al. (2003); Jian et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-[5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone top
Crystal data top
C18H18N2O2Z = 2
Mr = 294.34F(000) = 312
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2762 (9) ÅCell parameters from 2249 reflections
b = 7.2081 (9) Åθ = 3.1–26.2°
c = 18.570 (2) ŵ = 0.09 mm1
α = 85.939 (9)°T = 296 K
β = 85.384 (9)°Block, white
γ = 64.709 (8)°0.30 × 0.30 × 0.20 mm
V = 756.51 (17) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.975, Tmax = 0.983k = 99
7199 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.0545P]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H18N2O2γ = 64.709 (8)°
Mr = 294.34V = 756.51 (17) Å3
Triclinic, P1Z = 2
a = 6.2762 (9) ÅMo Kα radiation
b = 7.2081 (9) ŵ = 0.09 mm1
c = 18.570 (2) ÅT = 296 K
α = 85.939 (9)°0.30 × 0.30 × 0.20 mm
β = 85.384 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2584 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.026
7199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
3448 reflectionsΔρmin = 0.26 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4631 (3)0.2736 (2)0.45861 (9)0.0843 (5)
C30.4986 (3)0.0139 (3)0.37307 (9)0.0537 (4)
H30.66180.07010.37510.064*
C40.3831 (3)0.1595 (3)0.32925 (9)0.0500 (4)
H40.47090.21800.30180.060*
O20.1965 (2)0.2057 (2)0.21830 (7)0.0643 (4)
C160.4222 (3)0.6534 (2)0.08234 (9)0.0494 (4)
H160.37030.58000.05460.059*
N20.0349 (2)0.3699 (2)0.20010 (7)0.0452 (3)
N10.1673 (2)0.44578 (18)0.15426 (7)0.0401 (3)
C10.7049 (4)0.3530 (3)0.47300 (13)0.0760 (6)
H1A0.79960.39940.42910.114*
H1B0.74240.46610.50770.114*
H1C0.73660.24750.49200.114*
C20.3689 (3)0.1025 (3)0.41372 (9)0.0564 (4)
C50.1405 (3)0.2471 (2)0.32553 (8)0.0456 (4)
C80.0129 (3)0.4317 (2)0.27581 (8)0.0472 (4)
H80.15430.49880.29200.057*
C90.1164 (3)0.5910 (3)0.26675 (9)0.0511 (4)
H9A0.00540.72880.27380.061*
H9B0.23810.56150.30050.061*
C100.2176 (2)0.5667 (2)0.19012 (8)0.0388 (3)
C110.3582 (3)0.6705 (2)0.15576 (8)0.0399 (3)
C150.5613 (3)0.7436 (3)0.05020 (10)0.0601 (5)
H150.60470.72970.00110.072*
C140.6364 (3)0.8549 (3)0.09092 (11)0.0597 (5)
H140.73310.91380.06940.072*
C130.5693 (3)0.8791 (3)0.16288 (10)0.0558 (4)
H130.61780.95660.18990.067*
C120.4290 (3)0.7881 (2)0.19563 (9)0.0481 (4)
H120.38230.80590.24440.058*
C170.0737 (3)0.2610 (2)0.17608 (9)0.0460 (4)
C180.0336 (3)0.2129 (3)0.09780 (10)0.0546 (4)
H18A0.11180.09280.09060.082*
H18B0.02510.32690.06970.082*
H18C0.16170.18820.08280.082*
C60.0143 (3)0.1551 (3)0.36706 (9)0.0538 (4)
H60.14920.21160.36570.065*
C70.1271 (3)0.0172 (3)0.40986 (10)0.0599 (5)
H70.03960.07740.43660.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0905 (11)0.0808 (10)0.0967 (11)0.0527 (9)0.0259 (9)0.0337 (8)
C30.0521 (9)0.0614 (10)0.0550 (10)0.0316 (8)0.0020 (7)0.0057 (8)
C40.0551 (9)0.0630 (10)0.0458 (8)0.0396 (8)0.0082 (7)0.0047 (7)
O20.0651 (8)0.0827 (9)0.0682 (8)0.0548 (7)0.0016 (6)0.0011 (7)
C160.0627 (10)0.0455 (8)0.0521 (9)0.0349 (8)0.0060 (7)0.0092 (7)
N20.0524 (8)0.0529 (7)0.0433 (7)0.0356 (6)0.0019 (6)0.0019 (6)
N10.0424 (6)0.0418 (6)0.0435 (7)0.0257 (5)0.0004 (5)0.0006 (5)
C10.0838 (15)0.0640 (12)0.0780 (14)0.0283 (11)0.0145 (11)0.0035 (10)
C20.0732 (12)0.0592 (10)0.0508 (9)0.0416 (9)0.0063 (8)0.0018 (8)
C50.0541 (9)0.0554 (9)0.0390 (7)0.0353 (8)0.0072 (6)0.0070 (6)
C80.0514 (9)0.0537 (9)0.0443 (8)0.0307 (7)0.0068 (7)0.0067 (7)
C90.0660 (10)0.0497 (9)0.0473 (9)0.0343 (8)0.0059 (7)0.0084 (7)
C100.0407 (7)0.0358 (7)0.0438 (8)0.0201 (6)0.0016 (6)0.0021 (6)
C110.0418 (7)0.0324 (7)0.0492 (8)0.0194 (6)0.0034 (6)0.0003 (6)
C150.0774 (12)0.0567 (10)0.0590 (10)0.0433 (9)0.0167 (9)0.0087 (8)
C140.0634 (11)0.0516 (10)0.0783 (13)0.0400 (9)0.0057 (9)0.0007 (9)
C130.0650 (11)0.0491 (9)0.0698 (11)0.0387 (8)0.0122 (9)0.0011 (8)
C120.0571 (9)0.0458 (8)0.0504 (9)0.0297 (7)0.0062 (7)0.0014 (7)
C170.0424 (8)0.0482 (8)0.0566 (9)0.0282 (7)0.0051 (7)0.0034 (7)
C180.0631 (10)0.0573 (10)0.0587 (10)0.0387 (9)0.0103 (8)0.0033 (8)
C60.0554 (10)0.0712 (11)0.0497 (9)0.0426 (9)0.0052 (7)0.0016 (8)
C70.0717 (12)0.0772 (12)0.0520 (9)0.0541 (10)0.0013 (8)0.0071 (8)
Geometric parameters (Å, º) top
O1—C21.370 (2)C8—C91.537 (2)
O1—C11.415 (2)C8—H80.9800
C3—C21.384 (2)C9—C101.501 (2)
C3—C41.388 (2)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.382 (2)C10—C111.467 (2)
C4—H40.9300C11—C121.389 (2)
O2—C171.2202 (19)C15—C141.380 (3)
C16—C151.374 (2)C15—H150.9300
C16—C111.389 (2)C14—C131.369 (3)
C16—H160.9300C14—H140.9300
N2—C171.3544 (19)C13—C121.388 (2)
N2—N11.3867 (16)C13—H130.9300
N2—C81.483 (2)C12—H120.9300
N1—C101.2860 (18)C17—C181.495 (2)
C1—H1A0.9600C18—H18A0.9600
C1—H1B0.9600C18—H18B0.9600
C1—H1C0.9600C18—H18C0.9600
C2—C71.379 (3)C6—C71.370 (3)
C5—C61.393 (2)C6—H60.9300
C5—C81.516 (2)C7—H70.9300
C2—O1—C1118.98 (16)C8—C9—H9B111.2
C2—C3—C4119.52 (16)H9A—C9—H9B109.1
C2—C3—H3120.2N1—C10—C11120.66 (14)
C4—C3—H3120.2N1—C10—C9113.99 (13)
C5—C4—C3121.48 (15)C11—C10—C9125.34 (13)
C5—C4—H4119.3C16—C11—C12118.70 (14)
C3—C4—H4119.3C16—C11—C10120.40 (13)
C15—C16—C11120.83 (15)C12—C11—C10120.90 (14)
C15—C16—H16119.6C16—C15—C14119.84 (17)
C11—C16—H16119.6C16—C15—H15120.1
C17—N2—N1122.42 (13)C14—C15—H15120.1
C17—N2—C8124.22 (13)C13—C14—C15120.30 (15)
N1—N2—C8113.24 (11)C13—C14—H14119.8
C10—N1—N2108.02 (12)C15—C14—H14119.8
O1—C1—H1A109.5C14—C13—C12120.07 (15)
O1—C1—H1B109.5C14—C13—H13120.0
H1A—C1—H1B109.5C12—C13—H13120.0
O1—C1—H1C109.5C13—C12—C11120.19 (16)
H1A—C1—H1C109.5C13—C12—H12119.9
H1B—C1—H1C109.5C11—C12—H12119.9
O1—C2—C7115.83 (16)O2—C17—N2119.62 (16)
O1—C2—C3124.75 (17)O2—C17—C18123.10 (14)
C7—C2—C3119.42 (16)N2—C17—C18117.28 (13)
C4—C5—C6117.83 (15)C17—C18—H18A109.5
C4—C5—C8122.07 (14)C17—C18—H18B109.5
C6—C5—C8120.04 (15)H18A—C18—H18B109.5
N2—C8—C5110.93 (13)C17—C18—H18C109.5
N2—C8—C9100.75 (12)H18A—C18—H18C109.5
C5—C8—C9115.68 (13)H18B—C18—H18C109.5
N2—C8—H8109.7C7—C6—C5121.05 (16)
C5—C8—H8109.7C7—C6—H6119.5
C9—C8—H8109.7C5—C6—H6119.5
C10—C9—C8102.96 (12)C6—C7—C2120.69 (16)
C10—C9—H9A111.2C6—C7—H7119.7
C8—C9—H9A111.2C2—C7—H7119.7
C10—C9—H9B111.2
C2—C3—C4—C50.4 (3)C8—C9—C10—C11173.86 (14)
C17—N2—N1—C10170.50 (14)C15—C16—C11—C122.7 (2)
C8—N2—N1—C105.73 (17)C15—C16—C11—C10177.55 (15)
C1—O1—C2—C7171.49 (18)N1—C10—C11—C165.5 (2)
C1—O1—C2—C38.9 (3)C9—C10—C11—C16173.24 (14)
C4—C3—C2—O1179.81 (17)N1—C10—C11—C12174.79 (13)
C4—C3—C2—C70.2 (3)C9—C10—C11—C126.5 (2)
C3—C4—C5—C60.3 (2)C11—C16—C15—C140.8 (3)
C3—C4—C5—C8177.65 (15)C16—C15—C14—C131.2 (3)
C17—N2—C8—C570.55 (18)C15—C14—C13—C121.3 (3)
N1—N2—C8—C5113.30 (14)C14—C13—C12—C110.7 (3)
C17—N2—C8—C9166.43 (15)C16—C11—C12—C132.7 (2)
N1—N2—C8—C99.72 (16)C10—C11—C12—C13177.64 (14)
C4—C5—C8—N277.68 (18)N1—N2—C17—O2176.77 (14)
C6—C5—C8—N299.57 (17)C8—N2—C17—O21.0 (2)
C4—C5—C8—C936.3 (2)N1—N2—C17—C183.8 (2)
C6—C5—C8—C9146.50 (15)C8—N2—C17—C18179.57 (14)
N2—C8—C9—C109.34 (15)C4—C5—C6—C70.3 (3)
C5—C8—C9—C10110.31 (14)C8—C5—C6—C7177.01 (16)
N2—N1—C10—C11179.75 (12)C5—C6—C7—C21.0 (3)
N2—N1—C10—C91.36 (17)O1—C2—C7—C6179.48 (17)
C8—C9—C10—N17.31 (17)C3—C2—C7—C60.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N1,N2,C8–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.473.331 (2)154
C1—H1C···Cg1ii0.962.963.755 (2)141
C12—H12···Cg1iii0.932.963.7783 (18)148
C18—H18A···Cg3iv0.962.633.544 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O2
Mr294.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.2762 (9), 7.2081 (9), 18.570 (2)
α, β, γ (°)85.939 (9), 85.384 (9), 64.709 (8)
V3)756.51 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7199, 3448, 2584
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.08
No. of reflections3448
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N1,N2,C8–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.473.331 (2)154
C1—H1C···Cg1ii0.962.963.755 (2)141
C12—H12···Cg1iii0.932.963.7783 (18)148
C18—H18A···Cg3iv0.962.633.544 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

AA is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program under scholarship No. [IIC–0317109].

References

First citationAbbas, A., Hussain, S., Hafeez, N., Lo, K. M. & Hasan, A. (2010). Acta Cryst. E66, o2505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563–567.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta A, 69, 647–653.  CrossRef Google Scholar
First citationLombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830–834.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, o1827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci. 63, 1152–1255.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649–18659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds