organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,3-Dihy­dr­oxy­benzyl­­idene)isonicotinohydrazide

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: elifteceromu@gmail.com

(Received 2 November 2010; accepted 22 November 2010; online 30 November 2010)

The title compound, C13H11N3O3, crystallized with two independent mol­ecules in the asymmetric unit. One of the mol­ecules is twisted while the other is almost planar, with dihedral angles of 28.02 (6) and 2.42 (9)°, respectively, between the benzene and pyridine rings. Intra­molecular O—H⋯O and O—H⋯N hydrogen bonds are present in both mol­ecules. The two independent mol­ecules are linked by pairs of O—H⋯O hydrogen bonds. The crystal structure is further stabilized by inter­molecular N—H⋯N hydrogen bonds and C—H⋯N and C—H⋯O inter­actions.

Related literature

For the proven therapeutic importance of isonicotinic acid hydrazide, see: Agarwal et al. (2005[Agarwal, R. K., Singh, L., Sharma, D. K. & Singh, R. (2005). Turk. J. Chem. 29, 309-316.], 2006[Agarwal, R. K., Sharma, D., Singh, L. & Agarwal, H. (2006). Bioinorg. Chem. Appl. Article ID 29234, 9 pp.]); Savanini et al. (2002[Savanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]). For Schiff base complexes as models for biologically important species, see: Chohan & Sheazi (1999[Chohan, Z. H. & Sheazi, S. K. A. (1999). Synth. React. Inorg. Met. Org. Chem. 29, 105-118.]); Abou-Melha (2008[Abou-Melha, K, S. (2008). Spectrochim. Acta A, 70, 162-170.]). For the anti­tubercular activity of hydrazones, see: Durgaprasad & Patel (1973[Durgaprasad, G. & Patel, C. C. (1973). Indian J. Chem. Sect. A, 11, 1300-1305.]); Kriza et al. (2010[Kriza, A., Ababei, L. V., Cioatera, N., Rau, I. & Stanica, N. (2010). J. Serb. Chem. 75, 229-242]). For hydrogen bonding leading to the dimerization of mol­ecules, see: Avasthi et al. (2002[Avasthi, K., Rawat, D. S., Chandra, T., Sharon, A. & Maulik, P. R. (2002). Acta Cryst. C58, o311-o313.]). For delocalized double bonds, see: Zülfikaroğlu et al. (2009[Zülfikaroğlu, A., Yüksektepe, Ç., Bati, H., Çalışkan, N. & Büyükgüngör, O. (2009). J. Struct. Chem. 50, 1166-1170]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O3

  • Mr = 257.25

  • Monoclinic, P 21 /c

  • a = 7.7781 (2) Å

  • b = 30.0719 (8) Å

  • c = 10.5116 (3) Å

  • β = 101.551 (2)°

  • V = 2408.89 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.53 × 0.31 × 0.19 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.961, Tmax = 0.984

  • 34859 measured reflections

  • 5118 independent reflections

  • 3512 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.02

  • 5118 reflections

  • 432 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.96 (2) 1.65 (2) 2.5281 (15) 149.7 (18)
N2—H2N⋯N6i 0.913 (18) 2.051 (17) 2.9407 (17) 164.7 (15)
O2—H2O⋯O1 0.96 (2) 2.20 (2) 2.7022 (14) 111.3 (15)
O2—H2O⋯O4 0.96 (2) 1.97 (2) 2.8605 (15) 153.3 (18)
O4—H4O⋯N4 0.97 (2) 1.65 (2) 2.5441 (15) 151.2 (19)
N5—H5N⋯N3ii 0.900 (18) 2.129 (17) 2.9914 (18) 160.2 (14)
O5—H5O⋯O1 0.91 (2) 1.96 (2) 2.8138 (16) 154 (2)
O5—H5O⋯O4 0.91 (2) 2.25 (2) 2.7171 (16) 111.6 (18)
C10—H10⋯N6i 0.964 (17) 2.429 (17) 3.369 (2) 164.8 (15)
C11—H11⋯O6iii 0.953 (18) 2.317 (18) 3.2485 (18) 165.4 (13)
C20—H20⋯O2iv 0.967 (18) 2.533 (17) 3.4652 (18) 162.0 (13)
C24—H24⋯O3v 0.949 (18) 2.395 (18) 3.3373 (18) 172.1 (14)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are typically formed by the condensation of a primary amine and an aldehyde. Also, Schiff bases are a functional group that contains a carbon-nitrogen (C=N) double bond (an imine group). These bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions. The development of the field of bioinorganic chemistry has increased the interest in Schiff base complexes, since it has been recognized that many of these complexes may serve as models for biologically important species (Abou-Melha 2008; Chohan et al., 1999). The remarkable biological activity of acid hydrazides R—CO—NH—NH2, a class of Schiff base, their corresponding aroylhydrazones, R—CO—NH—N=CH—R' and the dependence of their mode of chelation with transition metal ions present in the living system have been of significant interest in the past. Isonicotinic acid hydrazide (INH) is a drug of proven therapeutic importance and is used against a wide spectrum of bacterial ailments, e.g., tuberculosis (Agarwal et al., 2005, Savanini et al., 2002). Hydrazones derived from the condensation of isonicotinic acid hydrazide with pyridine aldehydes have been found to show better antitubercular activity than INH (Kriza et al., 2010, Agarwal et al.,2006, Durgaprasad et al.,1973).

The molecular structure of the two independent molecules (a and b) of the title compound are shown in Fig. 1. The title molecule comprises three functional groups: pyridine, phenyl and hydrazone. Both molecules, a and b, have the E configuration at the central C=N bond (Fig. 1). One of the molecules (b) is twisted while the other (a) is planar, with the dihedral angles between the phenyl and pyridine rings being 28.02 (6)° and 2.42 (9)° in molecules (b) and (a), respectively. Because of this different conformation molecules (a) and (b) have different hydrogen bonding patterns. Molecule (a) is influenced by the O—H···N, O—H···O intramolecular hydrogen bonds and C—H···O intramolecular interactions, and the intermolecular N—H···N, O—H···O, C—H···O and C—H···N hydrogen bonds (Table 1). Molecule (b) is influenced by O—H···N and O—H···O intramolecular hydrogen bonds and N—H···N, O—H···O and two C—H···O intermolecular hydrogen bonds (Table 1).

The N1—N2 (molecule a) and N4—N5 (molecule b) bond distances of 1.3726 (15) Å and 1.3679 (16) Å, respectively, are appreciably shorter than a typical N—N single bond, such as that found in free 2,4-dinitrophenylhydrazone, i.e. 1.405 (6) Å; this suggests the existence of a delocalized double bond system (Zülfikaroğlu et al., 2009). The N1C7 (molecule a) and N4 C20 (molecule b) bond distances of 1.2782 (18) Å and 1.276 (2) Å, respectively, are typical for a double bond. For both molecules, the central torsion angles are C7—N1—N2—C8 at 177.63 (14)° (molecule a) and C21—N5—N4—C20 at 174.77 (14)° (molecule b). Also, the torsion angles N4—C20—C14—C15 and C23—C22—C21—N5 in the molecule (b) are 2.16 (22)° and 22.12 (20)°, respectively.

Interestingly, in the crystal the hydrogen bonding (O2—H2O···O4 and O5—H5O···O1) leads to the dimerization of the molecules (Avasthi et al., 2002) (Table 1), as shown in Fig. 2, and finally to the formation of a layer-like structure (Fig. 3).

Related literature top

For the proven therapeutic importance of isonicotinic acid hydrazide, see: Agarwal et al. (2005, 2006); Savanini et al. (2002). For Schiff base complexes as models for biologically important species, see: Chohan & Sheazi (1999); Abou-Melha (2008). For the antitubercular activity of hydrazones, see: Durgaprasad & Patel (1973); Kriza et al. (2010). For hydrogen bonding leading to the dimerization of molecules, see: Avasthi et al. (2002). For delocalized double bonds, see: Zülfikaroğlu et al. (2009).

Experimental top

Isonicotinic acid hydrazide (1.4 g, 10 mmol) was dissolved in 15 ml of absolute ethanol. To this solution 2,3-dihydroxy benzaldehyde (1.38 g, dissolved in 10 ml absolute ethanol) was added. The reaction mixture was refluxed for 5 h and then cooled to room temperature, giving a clear yellow solution. After keeping the solution in air for 10 days, yellow crystals of the title compound, suitable for X-ray diffraction analysis, were obtained. The crystals were isolated washed with cold absolute ethanol and dried in air. Yield 79%. Anal. Calcd. for C13H11N3O3: C 60.70, H 4.31, N 16.33%. Found: C 60.64, H 4.39, N 16.39%. Spectroscopic and other synthetic details are given in the archived CIF.

Refinement top

All the H-atoms were located in difference Fourier maps and were freely refined.

Structure description top

Schiff bases are typically formed by the condensation of a primary amine and an aldehyde. Also, Schiff bases are a functional group that contains a carbon-nitrogen (C=N) double bond (an imine group). These bases play an important role in inorganic chemistry as they easily form stable complexes with most transition metal ions. The development of the field of bioinorganic chemistry has increased the interest in Schiff base complexes, since it has been recognized that many of these complexes may serve as models for biologically important species (Abou-Melha 2008; Chohan et al., 1999). The remarkable biological activity of acid hydrazides R—CO—NH—NH2, a class of Schiff base, their corresponding aroylhydrazones, R—CO—NH—N=CH—R' and the dependence of their mode of chelation with transition metal ions present in the living system have been of significant interest in the past. Isonicotinic acid hydrazide (INH) is a drug of proven therapeutic importance and is used against a wide spectrum of bacterial ailments, e.g., tuberculosis (Agarwal et al., 2005, Savanini et al., 2002). Hydrazones derived from the condensation of isonicotinic acid hydrazide with pyridine aldehydes have been found to show better antitubercular activity than INH (Kriza et al., 2010, Agarwal et al.,2006, Durgaprasad et al.,1973).

The molecular structure of the two independent molecules (a and b) of the title compound are shown in Fig. 1. The title molecule comprises three functional groups: pyridine, phenyl and hydrazone. Both molecules, a and b, have the E configuration at the central C=N bond (Fig. 1). One of the molecules (b) is twisted while the other (a) is planar, with the dihedral angles between the phenyl and pyridine rings being 28.02 (6)° and 2.42 (9)° in molecules (b) and (a), respectively. Because of this different conformation molecules (a) and (b) have different hydrogen bonding patterns. Molecule (a) is influenced by the O—H···N, O—H···O intramolecular hydrogen bonds and C—H···O intramolecular interactions, and the intermolecular N—H···N, O—H···O, C—H···O and C—H···N hydrogen bonds (Table 1). Molecule (b) is influenced by O—H···N and O—H···O intramolecular hydrogen bonds and N—H···N, O—H···O and two C—H···O intermolecular hydrogen bonds (Table 1).

The N1—N2 (molecule a) and N4—N5 (molecule b) bond distances of 1.3726 (15) Å and 1.3679 (16) Å, respectively, are appreciably shorter than a typical N—N single bond, such as that found in free 2,4-dinitrophenylhydrazone, i.e. 1.405 (6) Å; this suggests the existence of a delocalized double bond system (Zülfikaroğlu et al., 2009). The N1C7 (molecule a) and N4 C20 (molecule b) bond distances of 1.2782 (18) Å and 1.276 (2) Å, respectively, are typical for a double bond. For both molecules, the central torsion angles are C7—N1—N2—C8 at 177.63 (14)° (molecule a) and C21—N5—N4—C20 at 174.77 (14)° (molecule b). Also, the torsion angles N4—C20—C14—C15 and C23—C22—C21—N5 in the molecule (b) are 2.16 (22)° and 22.12 (20)°, respectively.

Interestingly, in the crystal the hydrogen bonding (O2—H2O···O4 and O5—H5O···O1) leads to the dimerization of the molecules (Avasthi et al., 2002) (Table 1), as shown in Fig. 2, and finally to the formation of a layer-like structure (Fig. 3).

For the proven therapeutic importance of isonicotinic acid hydrazide, see: Agarwal et al. (2005, 2006); Savanini et al. (2002). For Schiff base complexes as models for biologically important species, see: Chohan & Sheazi (1999); Abou-Melha (2008). For the antitubercular activity of hydrazones, see: Durgaprasad & Patel (1973); Kriza et al. (2010). For hydrogen bonding leading to the dimerization of molecules, see: Avasthi et al. (2002). For delocalized double bonds, see: Zülfikaroğlu et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the molecular structure and atom-numbering scheme of the two independent molecules (a and b). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines show possible hydrogen bonding (see Table 1 for details).
[Figure 2] Fig. 2. A diagram showing the dimerization of molecules of the title compound through O–H···O, N–H···N and C–H···N hydrogen bonding [Hydrogen bonds are shown as dashed lines - see Table 1 for details; Symmetry codes: (i) -x, 1/2+y, 1/2-z; (ii) x, y, -1+z].
[Figure 3] Fig. 3. Crystal-packing diagram for the title compound, showing the layered structure formed due to the strong intermolecular hydrogen bonds (dashed lines; see Table 1 for details).
N'-(2,3-Dihydroxybenzylidene)isonicotinohydrazide top
Crystal data top
C13H11N3O3F(000) = 1072
Mr = 257.25Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29970 reflections
a = 7.7781 (2) Åθ = 1.4–27.3°
b = 30.0719 (8) ŵ = 0.10 mm1
c = 10.5116 (3) ÅT = 296 K
β = 101.551 (2)°Prism, yellow
V = 2408.89 (11) Å30.53 × 0.31 × 0.19 mm
Z = 8
Data collection top
Stoe IPDS-II
diffractometer
5118 independent reflections
Radiation source: fine-focus sealed tube3512 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.049
w–scan rotationθmax = 26.8°, θmin = 1.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.961, Tmax = 0.984k = 3737
34859 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.005P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5118 reflectionsΔρmax = 0.14 e Å3
432 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (6)
Crystal data top
C13H11N3O3V = 2408.89 (11) Å3
Mr = 257.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7781 (2) ŵ = 0.10 mm1
b = 30.0719 (8) ÅT = 296 K
c = 10.5116 (3) Å0.53 × 0.31 × 0.19 mm
β = 101.551 (2)°
Data collection top
Stoe IPDS-II
diffractometer
5118 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3512 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.984Rint = 0.049
34859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.084All H-atom parameters refined
S = 1.02Δρmax = 0.14 e Å3
5118 reflectionsΔρmin = 0.10 e Å3
432 parameters
Special details top

Experimental. Elemental analyses were performed using standard methods at TUBİTAK (The Turkish Scientific Research Centre). The IR spectrum was recorded on a Vertex 80v sample Compartment RT-DLaTGS spectrophotometer operating within 4000–500 cm-1. 1H NMR spectra were obtained on BRUKER DPX-400, 400 MHz High Performance Digital FT-NMR spectrometer using deuterated as solvent.

Spectroscopic characterization of the title compound: The structure was verified by means of IR, 1H NMR (DMSO), UV-VIS spectral data and elemental analyses. In the 1H NMR spectra of I the azomethine proton appears as a singlet at 8.68 p.p.m.. A single resonance for the proton in –NHN= group is observed at 12.51 p.p.m.. Chemical shifts of the protons on the pyridine ring exhibit two sets of signals in 8.93–8.67 p.p.m. as a doublet and in 8.02–7.74 p.p.m. as doublet, too. The phenyl protons of 1 resonate at 7.07–6.70 p.p.m.. The protons of the phenolic OH are observed at 11.14 p.p.m. and 9.59 p.p.m. as singlets. The IR spectrum of the I shows a weak band at 3520 cm-1 assigned to ν OH of the phenolic group. The deformation vibration, δ of the phenolic OH groups appears at 1272 cm-1. The NH stretching absorption appears as strong band 3392 cm-1. Another important band occurs at 1680 cm-1 attributed to ν(C=0) (carbonyl) mode. Azomethine ν(C=N) absorption band appear at 1561 cm-1. The medium intensity band at 1061 cm-1 is ascribed to ν(N—N) vibration.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34616 (19)0.51866 (5)0.32097 (13)0.0431 (3)
C20.35373 (19)0.56269 (5)0.36519 (13)0.0419 (3)
C30.4074 (2)0.59653 (5)0.29149 (14)0.0462 (3)
C40.4506 (2)0.58674 (6)0.17444 (16)0.0581 (4)
C50.4439 (3)0.54342 (6)0.12981 (17)0.0640 (5)
C60.3938 (2)0.50971 (6)0.20279 (16)0.0568 (4)
C70.2901 (2)0.48325 (5)0.39706 (14)0.0453 (3)
C80.14430 (19)0.47313 (4)0.68980 (14)0.0444 (3)
C90.08913 (19)0.43654 (4)0.77030 (13)0.0420 (3)
C100.0715 (2)0.39237 (5)0.73485 (15)0.0534 (4)
C110.0135 (2)0.36246 (5)0.81626 (15)0.0540 (4)
C120.0071 (3)0.41568 (5)0.96253 (16)0.0599 (4)
C130.0503 (2)0.44791 (5)0.88844 (15)0.0547 (4)
C140.4163 (2)0.72836 (5)0.73128 (14)0.0449 (3)
C150.41093 (19)0.68485 (4)0.68380 (13)0.0422 (3)
C160.5024 (2)0.65111 (5)0.76002 (14)0.0480 (4)
C170.5992 (2)0.66094 (6)0.88134 (16)0.0566 (4)
C180.6080 (3)0.70385 (6)0.92819 (17)0.0643 (5)
C190.5175 (2)0.73716 (6)0.85442 (16)0.0585 (4)
C200.3177 (2)0.76380 (5)0.65502 (15)0.0484 (4)
C210.0455 (2)0.77429 (5)0.34901 (14)0.0464 (4)
C220.0175 (2)0.81153 (4)0.25675 (14)0.0435 (3)
C230.0552 (2)0.85359 (5)0.26961 (15)0.0464 (3)
C240.0049 (2)0.88488 (5)0.17529 (15)0.0525 (4)
C250.1971 (3)0.83591 (6)0.05928 (17)0.0614 (4)
C260.1452 (2)0.80275 (5)0.14845 (16)0.0558 (4)
N10.24130 (16)0.49326 (4)0.50259 (11)0.0446 (3)
N20.18813 (17)0.46034 (4)0.57653 (12)0.0458 (3)
N30.02774 (18)0.37320 (4)0.92838 (12)0.0526 (3)
N40.22153 (17)0.75411 (4)0.54531 (11)0.0472 (3)
N50.13318 (18)0.78684 (4)0.46848 (12)0.0494 (3)
N60.12988 (19)0.87675 (4)0.07101 (12)0.0563 (3)
O10.30926 (15)0.57472 (3)0.47939 (9)0.0522 (3)
O20.41509 (17)0.63953 (3)0.33438 (11)0.0598 (3)
O30.14895 (16)0.51167 (3)0.72583 (10)0.0587 (3)
O40.31740 (15)0.67309 (3)0.56449 (9)0.0512 (3)
O50.49762 (18)0.60853 (4)0.71623 (12)0.0666 (3)
O60.02582 (17)0.73564 (3)0.31578 (10)0.0636 (3)
H1O0.276 (3)0.5475 (7)0.5152 (19)0.090 (6)*
H2N0.180 (2)0.4320 (6)0.5448 (15)0.057 (5)*
H2O0.375 (3)0.6411 (7)0.415 (2)0.099 (7)*
H40.486 (2)0.6103 (6)0.1235 (15)0.061 (5)*
H4O0.260 (3)0.7006 (8)0.531 (2)0.095 (7)*
H50.472 (2)0.5371 (6)0.0478 (18)0.077 (5)*
H5N0.128 (2)0.8148 (6)0.4980 (16)0.059 (5)*
H5O0.427 (3)0.6065 (8)0.636 (2)0.106 (8)*
H60.390 (2)0.4797 (6)0.1748 (15)0.060 (5)*
H70.294 (2)0.4536 (5)0.3685 (14)0.051 (4)*
H100.096 (2)0.3824 (6)0.6532 (17)0.066 (5)*
H110.003 (2)0.3318 (6)0.7931 (15)0.061 (5)*
H120.034 (2)0.4237 (6)1.0435 (18)0.074 (5)*
H130.060 (2)0.4793 (6)0.9133 (16)0.068 (5)*
H170.661 (2)0.6365 (6)0.9290 (16)0.064 (5)*
H180.679 (2)0.7098 (6)1.0143 (18)0.073 (5)*
H190.522 (2)0.7674 (6)0.8835 (16)0.071 (5)*
H200.325 (2)0.7937 (6)0.6894 (15)0.060 (5)*
H230.151 (2)0.8611 (5)0.3421 (15)0.052 (4)*
H240.043 (2)0.9140 (6)0.1819 (16)0.064 (5)*
H250.286 (3)0.8311 (6)0.0207 (19)0.082 (6)*
H260.199 (2)0.7732 (6)0.1373 (16)0.064 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (8)0.0384 (7)0.0454 (7)0.0024 (6)0.0085 (6)0.0008 (6)
C20.0449 (8)0.0393 (7)0.0405 (7)0.0000 (6)0.0060 (6)0.0019 (6)
C30.0504 (9)0.0391 (8)0.0478 (8)0.0000 (6)0.0071 (7)0.0057 (6)
C40.0643 (11)0.0556 (10)0.0587 (10)0.0014 (8)0.0227 (8)0.0135 (8)
C50.0803 (13)0.0641 (11)0.0557 (9)0.0077 (9)0.0331 (9)0.0021 (8)
C60.0709 (11)0.0454 (9)0.0583 (9)0.0057 (8)0.0228 (8)0.0051 (7)
C70.0523 (9)0.0330 (8)0.0504 (8)0.0006 (6)0.0096 (7)0.0012 (6)
C80.0508 (9)0.0330 (7)0.0490 (8)0.0004 (6)0.0086 (7)0.0007 (6)
C90.0443 (8)0.0353 (7)0.0457 (7)0.0011 (6)0.0078 (6)0.0011 (6)
C100.0756 (11)0.0383 (8)0.0504 (9)0.0048 (8)0.0228 (8)0.0033 (7)
C110.0726 (11)0.0340 (8)0.0569 (9)0.0064 (7)0.0165 (8)0.0012 (7)
C120.0894 (13)0.0462 (9)0.0480 (9)0.0041 (9)0.0228 (9)0.0016 (7)
C130.0771 (12)0.0376 (8)0.0521 (9)0.0036 (8)0.0190 (8)0.0030 (7)
C140.0509 (9)0.0400 (8)0.0460 (8)0.0012 (7)0.0151 (7)0.0035 (6)
C150.0480 (8)0.0393 (8)0.0402 (7)0.0011 (6)0.0113 (6)0.0011 (6)
C160.0543 (9)0.0399 (8)0.0498 (8)0.0008 (7)0.0106 (7)0.0004 (6)
C170.0580 (11)0.0562 (10)0.0529 (9)0.0070 (8)0.0044 (8)0.0055 (8)
C180.0656 (11)0.0689 (12)0.0523 (10)0.0003 (9)0.0028 (9)0.0103 (9)
C190.0667 (11)0.0513 (10)0.0561 (9)0.0041 (8)0.0087 (8)0.0145 (8)
C200.0622 (10)0.0353 (8)0.0509 (9)0.0000 (7)0.0188 (8)0.0049 (7)
C210.0629 (10)0.0325 (7)0.0479 (8)0.0024 (7)0.0208 (7)0.0017 (6)
C220.0539 (9)0.0339 (7)0.0467 (8)0.0035 (6)0.0195 (7)0.0021 (6)
C230.0599 (10)0.0353 (8)0.0463 (8)0.0003 (7)0.0165 (8)0.0019 (6)
C240.0754 (11)0.0338 (8)0.0520 (9)0.0014 (8)0.0213 (8)0.0002 (7)
C250.0696 (12)0.0520 (10)0.0585 (10)0.0008 (8)0.0028 (9)0.0043 (8)
C260.0663 (11)0.0400 (9)0.0599 (10)0.0082 (8)0.0096 (8)0.0003 (7)
N10.0524 (7)0.0340 (6)0.0469 (7)0.0034 (5)0.0092 (6)0.0050 (5)
N20.0602 (8)0.0308 (6)0.0474 (7)0.0044 (6)0.0133 (6)0.0021 (5)
N30.0655 (9)0.0425 (7)0.0501 (7)0.0038 (6)0.0123 (6)0.0053 (6)
N40.0638 (8)0.0335 (6)0.0472 (7)0.0073 (6)0.0179 (6)0.0023 (5)
N50.0726 (9)0.0303 (6)0.0463 (7)0.0102 (6)0.0141 (6)0.0002 (5)
N60.0732 (9)0.0437 (7)0.0533 (8)0.0070 (7)0.0156 (7)0.0053 (6)
O10.0784 (8)0.0367 (6)0.0438 (5)0.0078 (5)0.0173 (5)0.0032 (4)
O20.0840 (8)0.0379 (6)0.0586 (7)0.0085 (5)0.0171 (6)0.0042 (5)
O30.0850 (8)0.0314 (5)0.0626 (6)0.0013 (5)0.0219 (6)0.0019 (5)
O40.0701 (7)0.0362 (5)0.0437 (5)0.0066 (5)0.0029 (5)0.0044 (4)
O50.0877 (9)0.0389 (6)0.0653 (8)0.0103 (6)0.0038 (7)0.0001 (5)
O60.0994 (9)0.0308 (6)0.0602 (7)0.0008 (6)0.0149 (6)0.0044 (5)
Geometric parameters (Å, º) top
C1—C61.392 (2)C15—C161.396 (2)
C1—C21.4005 (19)C16—O51.3589 (18)
C1—C71.450 (2)C16—C171.377 (2)
C2—O11.3630 (17)C17—C181.378 (2)
C2—C31.3925 (19)C17—H170.961 (18)
C3—O21.3669 (18)C18—C191.372 (3)
C3—C41.371 (2)C18—H180.979 (19)
C4—C51.382 (2)C19—H190.958 (19)
C4—H40.961 (17)C20—N41.276 (2)
C5—C61.374 (2)C20—H200.967 (17)
C5—H50.951 (19)C21—O61.2145 (17)
C6—H60.949 (17)C21—N51.3571 (19)
C7—N11.2782 (18)C21—C221.498 (2)
C7—H70.943 (16)C22—C261.378 (2)
C8—O31.2174 (16)C22—C231.381 (2)
C8—N21.3582 (18)C23—C241.379 (2)
C8—C91.5023 (19)C23—H230.979 (16)
C9—C131.379 (2)C24—N61.334 (2)
C9—C101.379 (2)C24—H240.950 (18)
C10—C111.378 (2)C25—N61.331 (2)
C10—H100.964 (17)C25—C261.373 (2)
C11—N31.322 (2)C25—H250.99 (2)
C11—H110.952 (17)C26—H260.977 (18)
C12—N31.328 (2)N1—N21.3726 (15)
C12—C131.373 (2)N2—H2N0.912 (17)
C12—H120.946 (18)N4—N51.3679 (16)
C13—H130.977 (18)N5—H5N0.901 (17)
C14—C151.3981 (19)O1—H1O0.96 (2)
C14—C191.399 (2)O2—H2O0.96 (2)
C14—C201.456 (2)O4—H4O0.97 (2)
C15—O41.3644 (17)O5—H5O0.91 (2)
C6—C1—C2118.56 (13)O5—C16—C15120.95 (13)
C6—C1—C7120.89 (14)C17—C16—C15119.80 (14)
C2—C1—C7120.56 (13)C16—C17—C18120.71 (16)
O1—C2—C3116.93 (12)C16—C17—H17116.3 (10)
O1—C2—C1122.82 (12)C18—C17—H17123.0 (10)
C3—C2—C1120.24 (13)C19—C18—C17119.92 (16)
O2—C3—C4119.77 (13)C19—C18—H18121.4 (11)
O2—C3—C2120.41 (13)C17—C18—H18118.7 (11)
C4—C3—C2119.81 (14)C18—C19—C14120.99 (16)
C3—C4—C5120.50 (15)C18—C19—H19122.2 (11)
C3—C4—H4119.4 (10)C14—C19—H19116.8 (11)
C5—C4—H4120.1 (10)N4—C20—C14118.63 (13)
C6—C5—C4120.10 (16)N4—C20—H20122.1 (10)
C6—C5—H5120.2 (11)C14—C20—H20119.3 (10)
C4—C5—H5119.7 (11)O6—C21—N5122.91 (14)
C5—C6—C1120.77 (16)O6—C21—C22121.54 (14)
C5—C6—H6121.7 (10)N5—C21—C22115.46 (12)
C1—C6—H6117.6 (10)C26—C22—C23118.00 (14)
N1—C7—C1118.68 (13)C26—C22—C21118.68 (13)
N1—C7—H7122.3 (9)C23—C22—C21123.15 (14)
C1—C7—H7119.0 (9)C24—C23—C22118.79 (15)
O3—C8—N2123.06 (13)C24—C23—H23119.8 (9)
O3—C8—C9121.07 (13)C22—C23—H23121.4 (9)
N2—C8—C9115.87 (12)N6—C24—C23123.50 (15)
C13—C9—C10117.05 (14)N6—C24—H24116.1 (10)
C13—C9—C8117.67 (13)C23—C24—H24120.4 (10)
C10—C9—C8125.28 (13)N6—C25—C26123.41 (17)
C11—C10—C9119.21 (14)N6—C25—H25114.1 (11)
C11—C10—H10119.9 (10)C26—C25—H25122.5 (11)
C9—C10—H10120.9 (10)C25—C26—C22119.33 (16)
N3—C11—C10124.20 (15)C25—C26—H26121.2 (10)
N3—C11—H11116.2 (10)C22—C26—H26119.4 (10)
C10—C11—H11119.6 (10)C7—N1—N2119.80 (12)
N3—C12—C13124.13 (15)C8—N2—N1116.67 (12)
N3—C12—H12116.8 (11)C8—N2—H2N125.0 (10)
C13—C12—H12119.1 (11)N1—N2—H2N118.2 (10)
C12—C13—C9119.38 (15)C11—N3—C12116.00 (13)
C12—C13—H13123.0 (10)C20—N4—N5120.22 (12)
C9—C13—H13117.5 (10)C21—N5—N4116.50 (12)
C15—C14—C19118.58 (14)C21—N5—H5N122.0 (11)
C15—C14—C20120.91 (13)N4—N5—H5N121.4 (11)
C19—C14—C20120.51 (14)C25—N6—C24116.96 (14)
O4—C15—C16117.12 (12)C2—O1—H1O104.8 (12)
O4—C15—C14122.88 (13)C3—O2—H2O109.8 (13)
C16—C15—C14119.99 (13)C15—O4—H4O103.7 (12)
O5—C16—C17119.26 (14)C16—O5—H5O110.2 (15)
C6—C1—C2—O1179.80 (14)O4—C15—C16—C17179.97 (14)
C7—C1—C2—O10.3 (2)C14—C15—C16—C170.7 (2)
C6—C1—C2—C30.2 (2)O5—C16—C17—C18179.45 (16)
C7—C1—C2—C3179.86 (13)C15—C16—C17—C180.5 (2)
O1—C2—C3—O20.5 (2)C16—C17—C18—C191.0 (3)
C1—C2—C3—O2179.93 (14)C17—C18—C19—C140.3 (3)
O1—C2—C3—C4178.75 (14)C15—C14—C19—C180.8 (2)
C1—C2—C3—C40.9 (2)C20—C14—C19—C18178.64 (16)
O2—C3—C4—C5179.84 (16)C15—C14—C20—N42.2 (2)
C2—C3—C4—C50.9 (3)C19—C14—C20—N4177.30 (15)
C3—C4—C5—C60.1 (3)O6—C21—C22—C2620.5 (2)
C4—C5—C6—C11.1 (3)N5—C21—C22—C26162.84 (14)
C2—C1—C6—C51.2 (2)O6—C21—C22—C23154.54 (15)
C7—C1—C6—C5178.86 (16)N5—C21—C22—C2322.1 (2)
C6—C1—C7—N1177.40 (15)C26—C22—C23—C241.0 (2)
C2—C1—C7—N12.7 (2)C21—C22—C23—C24176.10 (14)
O3—C8—C9—C132.3 (2)C22—C23—C24—N60.3 (2)
N2—C8—C9—C13177.47 (14)N6—C25—C26—C220.3 (3)
O3—C8—C9—C10176.64 (16)C23—C22—C26—C251.0 (2)
N2—C8—C9—C103.5 (2)C21—C22—C26—C25176.33 (15)
C13—C9—C10—C111.4 (2)C1—C7—N1—N2179.80 (13)
C8—C9—C10—C11177.64 (16)O3—C8—N2—N10.7 (2)
C9—C10—C11—N30.1 (3)C9—C8—N2—N1179.09 (12)
N3—C12—C13—C90.4 (3)C7—N1—N2—C8177.63 (14)
C10—C9—C13—C121.6 (2)C10—C11—N3—C121.3 (3)
C8—C9—C13—C12177.49 (16)C13—C12—N3—C111.0 (3)
C19—C14—C15—O4179.38 (14)C14—C20—N4—N5177.10 (13)
C20—C14—C15—O41.2 (2)O6—C21—N5—N49.1 (2)
C19—C14—C15—C161.3 (2)C22—C21—N5—N4167.49 (12)
C20—C14—C15—C16178.15 (14)C20—N4—N5—C21174.77 (14)
O4—C15—C16—O50.0 (2)C26—C25—N6—C240.5 (3)
C14—C15—C16—O5179.39 (14)C23—C24—N6—C250.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.96 (2)1.65 (2)2.5281 (15)149.7 (18)
N2—H2N···N6i0.913 (18)2.051 (17)2.9407 (17)164.7 (15)
O2—H2O···O10.96 (2)2.20 (2)2.7022 (14)111.3 (15)
O2—H2O···O40.96 (2)1.97 (2)2.8605 (15)153.3 (18)
O4—H4O···N40.97 (2)1.65 (2)2.5441 (15)151.2 (19)
N5—H5N···N3ii0.900 (18)2.129 (17)2.9914 (18)160.2 (14)
O5—H5O···O10.91 (2)1.96 (2)2.8138 (16)154 (2)
O5—H5O···O40.91 (2)2.25 (2)2.7171 (16)111.6 (18)
C10—H10···N6i0.964 (17)2.429 (17)3.369 (2)164.8 (15)
C11—H11···O6iii0.953 (18)2.317 (18)3.2485 (18)165.4 (13)
C20—H20···O2iv0.967 (18)2.533 (17)3.4652 (18)162.0 (13)
C24—H24···O3v0.949 (18)2.395 (18)3.3373 (18)172.1 (14)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O3
Mr257.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7781 (2), 30.0719 (8), 10.5116 (3)
β (°) 101.551 (2)
V3)2408.89 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.31 × 0.19
Data collection
DiffractometerStoe IPDS-II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.961, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
34859, 5118, 3512
Rint0.049
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.02
No. of reflections5118
No. of parameters432
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Burnett & Johnson, 1996), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.96 (2)1.65 (2)2.5281 (15)149.7 (18)
N2—H2N···N6i0.913 (18)2.051 (17)2.9407 (17)164.7 (15)
O2—H2O···O10.96 (2)2.20 (2)2.7022 (14)111.3 (15)
O2—H2O···O40.96 (2)1.97 (2)2.8605 (15)153.3 (18)
O4—H4O···N40.97 (2)1.65 (2)2.5441 (15)151.2 (19)
N5—H5N···N3ii0.900 (18)2.129 (17)2.9914 (18)160.2 (14)
O5—H5O···O10.91 (2)1.96 (2)2.8138 (16)154 (2)
O5—H5O···O40.91 (2)2.25 (2)2.7171 (16)111.6 (18)
C10—H10···N6i0.964 (17)2.429 (17)3.369 (2)164.8 (15)
C11—H11···O6iii0.953 (18)2.317 (18)3.2485 (18)165.4 (13)
C20—H20···O2iv0.967 (18)2.533 (17)3.4652 (18)162.0 (13)
C24—H24···O3v0.949 (18)2.395 (18)3.3373 (18)172.1 (14)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+3/2, z1/2.
 

Acknowledgements

The authors thanks the Ondokuz Mayıs University Research Fund for financial support of this project.

References

First citationAbou-Melha, K, S. (2008). Spectrochim. Acta A, 70, 162–170.  Google Scholar
First citationAgarwal, R. K., Sharma, D., Singh, L. & Agarwal, H. (2006). Bioinorg. Chem. Appl. Article ID 29234, 9 pp.  Google Scholar
First citationAgarwal, R. K., Singh, L., Sharma, D. K. & Singh, R. (2005). Turk. J. Chem. 29, 309–316.  CAS Google Scholar
First citationAvasthi, K., Rawat, D. S., Chandra, T., Sharon, A. & Maulik, P. R. (2002). Acta Cryst. C58, o311–o313.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChohan, Z. H. & Sheazi, S. K. A. (1999). Synth. React. Inorg. Met. Org. Chem. 29, 105–118.  CrossRef CAS Google Scholar
First citationDurgaprasad, G. & Patel, C. C. (1973). Indian J. Chem. Sect. A, 11, 1300–1305.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKriza, A., Ababei, L. V., Cioatera, N., Rau, I. & Stanica, N. (2010). J. Serb. Chem. 75, 229–242  Web of Science CSD CrossRef CAS Google Scholar
First citationSavanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZülfikaroğlu, A., Yüksektepe, Ç., Bati, H., Çalışkan, N. & Büyükgüngör, O. (2009). J. Struct. Chem. 50, 1166–1170  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds