metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-dihy­dr­oxy­benzoato-κ2O1,O1′)(nitrato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)europium(III)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 11 November 2010; accepted 14 November 2010; online 20 November 2010)

The title mononuclear complex, [Eu(C7H5O3)2(NO3)(C12H8N2)2], is isostructural with those of other lanthanides. The Eu atom is in a pseudo-bicapped square-anti­prismatic geometry, formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and by six O atoms, four from two 2,6-dihy­droxy­benzoate (DHB) ligands and the other two from a nitrate anion. ππ stacking inter­actions between phen and DHB ligands [centroid–centroid distances = 3.5312 (19) and 3.8347 (16) Å], and between phen and phen ligands [face-to-face separation = 3.433 (4) Å] of adjacent complexes stabilize the crystal structure. Intra­molecular O—H⋯O hydrogen bonds are observed in the DHB ligands.

Related literature

For background and details of a related structure, see: Zheng et al. (2010[Zheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469-m1470.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C7H5O3)2(NO3)(C12H8N2)2]

  • Mr = 880.60

  • Monoclinic, P 21 /c

  • a = 11.1855 (2) Å

  • b = 26.7682 (5) Å

  • c = 14.3286 (4) Å

  • β = 127.557 (2)°

  • V = 3401.05 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 298 K

  • 0.40 × 0.36 × 0.35 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.])] Tmin = 0.514, Tmax = 0.553

  • 22346 measured reflections

  • 6936 independent reflections

  • 5281 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.043

  • S = 1.05

  • 6936 reflections

  • 496 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H34⋯O6 0.82 1.86 2.585 (3) 148
O4—H27⋯O2 0.82 1.83 2.561 (2) 148
O7—H38⋯O5 0.82 1.85 2.579 (3) 147
O3—H31⋯O1 0.82 1.87 2.594 (2) 147

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The description of the structure of the title compound is part of a series of papers on mononuclear complexes of the type [Ln(C12H8N2)2(C7H8O3)2 (NO3)], with Ln = Ce, Pr, Sm, Eu (this publication), and Dy. All five compounds are isostructural to the previously reported Nd complex (Zheng et al. 2010). The background to this study is given in the previous paper by Zheng et al. (2010).

Related literature top

For background and details of a related structure, see: Zheng et al. (2010).

Experimental top

Each reagent was commercially available and of analytical grade. Eu(NO3)3.6H2O (0.224 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5 mmol), 1, 10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in water-ethanol solution (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 3 d.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with Uiso (H) = 1.2Ueq (C) and Uiso(H) = 1.5Ueq (O). The anisotropic displacement of the O10, N5, Eu1 and O9 atoms were restrained to be equal.

Structure description top

The description of the structure of the title compound is part of a series of papers on mononuclear complexes of the type [Ln(C12H8N2)2(C7H8O3)2 (NO3)], with Ln = Ce, Pr, Sm, Eu (this publication), and Dy. All five compounds are isostructural to the previously reported Nd complex (Zheng et al. 2010). The background to this study is given in the previous paper by Zheng et al. (2010).

For background and details of a related structure, see: Zheng et al. (2010).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 15% probablility level and H atoms are shown as small spheres of arbitraty radii. Some H atoms are omitted for clarity. Light orange lines show the intramolecular hydrogen bonds (see Table 1 for details).
Bis(2,6-dihydroxybenzoato-κ2O1,O1')(nitrato- κ2O,O')bis(1,10-phenanthroline- κ2N,N')europium(III) top
Crystal data top
[Eu(C7H5O3)2(NO3)(C12H8N2)2]F(000) = 1760
Mr = 880.60Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11999 reflections
a = 11.1855 (2) Åθ = 2.9–29.1°
b = 26.7682 (5) ŵ = 1.92 mm1
c = 14.3286 (4) ÅT = 298 K
β = 127.557 (2)°Block, orange
V = 3401.05 (16) Å30.40 × 0.36 × 0.35 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6936 independent reflections
Radiation source: Enhance (Mo) X-ray Source5281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1310
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006)]
k = 3332
Tmin = 0.514, Tmax = 0.553l = 1117
22346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0144P)2]
where P = (Fo2 + 2Fc2)/3
6936 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.36 e Å3
8 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Eu(C7H5O3)2(NO3)(C12H8N2)2]V = 3401.05 (16) Å3
Mr = 880.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1855 (2) ŵ = 1.92 mm1
b = 26.7682 (5) ÅT = 298 K
c = 14.3286 (4) Å0.40 × 0.36 × 0.35 mm
β = 127.557 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6936 independent reflections
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006)]
5281 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.553Rint = 0.027
22346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0248 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
6936 reflectionsΔρmin = 0.49 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.430778 (13)0.861975 (4)0.720853 (12)0.03240 (4)
O10.19590 (17)0.81211 (6)0.63374 (15)0.0437 (5)
O20.16583 (18)0.89279 (7)0.59806 (16)0.0492 (5)
O30.01921 (19)0.75869 (7)0.60271 (16)0.0535 (5)
H310.06240.76410.61660.080*
O40.0800 (2)0.93598 (7)0.5290 (2)0.0750 (7)
H270.00620.93330.54990.113*
O50.34598 (18)0.83820 (7)0.52114 (15)0.0447 (5)
O60.38918 (18)0.91856 (6)0.55787 (15)0.0448 (5)
O70.2549 (2)0.80247 (7)0.32044 (17)0.0606 (5)
H380.27890.80210.38710.091*
O80.3356 (3)0.97889 (7)0.39552 (19)0.0816 (7)
H340.35660.97050.45900.122*
O90.45362 (19)0.80112 (6)0.87237 (16)0.0469 (4)
O100.34644 (19)0.87175 (7)0.84764 (17)0.0503 (5)
O110.3634 (2)0.81721 (9)0.96677 (19)0.0823 (7)
N10.5570 (2)0.77913 (7)0.73843 (17)0.0347 (5)
N20.6809 (2)0.86747 (7)0.74804 (18)0.0370 (5)
N30.4755 (2)0.95459 (7)0.79134 (19)0.0370 (5)
N40.6651 (2)0.88072 (7)0.93947 (18)0.0355 (5)
N50.3879 (2)0.82911 (9)0.8983 (2)0.0463 (5)
C10.4920 (3)0.73535 (10)0.7235 (2)0.0427 (7)
H10.39460.73520.70130.051*
C20.5611 (3)0.68954 (10)0.7391 (2)0.0478 (7)
H20.50950.65980.72460.057*
C30.7046 (3)0.68922 (10)0.7756 (2)0.0480 (7)
H30.75320.65900.78770.058*
C40.7801 (3)0.73409 (10)0.7951 (2)0.0417 (7)
C50.7001 (3)0.77846 (9)0.7716 (2)0.0347 (6)
C60.9345 (3)0.73719 (12)0.8396 (2)0.0526 (8)
H60.99040.70800.86050.063*
C71.0004 (3)0.78094 (12)0.8518 (2)0.0538 (8)
H71.10090.78160.88120.065*
C80.9179 (3)0.82669 (11)0.8201 (2)0.0437 (7)
C90.7677 (3)0.82588 (10)0.7813 (2)0.0360 (6)
C100.7415 (3)0.91061 (10)0.7505 (2)0.0470 (7)
H100.68290.93930.72660.056*
C110.8890 (3)0.91501 (12)0.7871 (3)0.0552 (8)
H110.92700.94590.78710.066*
C120.9755 (3)0.87350 (12)0.8224 (3)0.0549 (8)
H121.07440.87610.84860.066*
C130.3819 (3)0.99087 (10)0.7204 (3)0.0465 (7)
H130.30590.98330.64180.056*
C140.3929 (3)1.03979 (10)0.7587 (3)0.0532 (8)
H140.32541.06400.70620.064*
C150.5022 (3)1.05169 (10)0.8724 (3)0.0520 (8)
H150.50991.08420.89850.062*
C160.6039 (3)1.01513 (9)0.9512 (3)0.0406 (7)
C170.5851 (3)0.96642 (9)0.9062 (2)0.0341 (6)
C180.6860 (3)0.92762 (9)0.9847 (2)0.0337 (6)
C190.8009 (3)0.93855 (10)1.1035 (2)0.0393 (6)
C200.8156 (3)0.98871 (11)1.1446 (3)0.0507 (8)
H200.89230.99621.22310.061*
C210.7213 (3)1.02491 (11)1.0723 (3)0.0509 (8)
H210.73261.05701.10170.061*
C220.8964 (3)0.89993 (11)1.1759 (3)0.0501 (8)
H220.97330.90601.25520.060*
C230.8775 (3)0.85332 (11)1.1308 (2)0.0477 (7)
H230.94150.82731.17800.057*
C240.7604 (3)0.84565 (10)1.0125 (2)0.0418 (7)
H240.74790.81370.98250.050*
C250.1141 (3)0.85088 (10)0.5999 (2)0.0405 (7)
C260.0402 (3)0.84766 (10)0.5660 (2)0.0388 (7)
C270.1308 (3)0.89040 (12)0.5326 (3)0.0521 (8)
C280.2734 (3)0.88738 (13)0.5031 (3)0.0586 (8)
H280.33310.91580.48060.070*
C290.3250 (3)0.84196 (14)0.5077 (3)0.0586 (9)
H290.42100.84000.48780.070*
C300.2418 (3)0.79931 (12)0.5402 (2)0.0516 (8)
H300.28070.76900.54220.062*
C310.0983 (3)0.80167 (11)0.5701 (2)0.0414 (7)
C320.3466 (3)0.88224 (11)0.4875 (2)0.0368 (6)
C330.2975 (2)0.89004 (10)0.3666 (2)0.0361 (6)
C340.2936 (3)0.93810 (11)0.3255 (3)0.0499 (7)
C350.2441 (3)0.94544 (12)0.2110 (3)0.0641 (9)
H350.23950.97750.18400.077*
C360.2023 (3)0.90549 (13)0.1386 (3)0.0609 (8)
H360.17030.91070.06230.073*
C370.2059 (3)0.85796 (12)0.1748 (2)0.0520 (7)
H370.17670.83130.12350.062*
C380.2537 (3)0.84956 (10)0.2888 (2)0.0409 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.03389 (7)0.02771 (7)0.03845 (8)0.00054 (6)0.02352 (6)0.00013 (7)
O10.0357 (9)0.0386 (11)0.0556 (12)0.0033 (8)0.0273 (10)0.0001 (9)
O20.0405 (10)0.0420 (12)0.0621 (13)0.0030 (9)0.0297 (10)0.0085 (10)
O30.0439 (11)0.0508 (13)0.0675 (14)0.0003 (9)0.0348 (11)0.0069 (11)
O40.0591 (13)0.0547 (14)0.1005 (19)0.0183 (11)0.0431 (13)0.0140 (13)
O50.0501 (11)0.0397 (11)0.0416 (12)0.0016 (9)0.0265 (10)0.0019 (10)
O60.0564 (11)0.0396 (11)0.0391 (11)0.0023 (9)0.0296 (10)0.0027 (9)
O70.0716 (13)0.0416 (12)0.0486 (13)0.0009 (10)0.0262 (11)0.0062 (10)
O80.140 (2)0.0422 (13)0.0585 (15)0.0165 (13)0.0586 (16)0.0025 (12)
O90.0533 (11)0.0388 (10)0.0519 (12)0.0002 (8)0.0337 (10)0.0046 (8)
O100.0594 (11)0.0476 (10)0.0605 (13)0.0028 (8)0.0451 (11)0.0043 (9)
O110.0823 (15)0.128 (2)0.0583 (14)0.0063 (14)0.0539 (14)0.0139 (15)
N10.0360 (12)0.0318 (12)0.0384 (13)0.0002 (9)0.0237 (11)0.0006 (10)
N20.0396 (11)0.0371 (13)0.0393 (13)0.0055 (10)0.0266 (11)0.0033 (11)
N30.0479 (13)0.0266 (12)0.0450 (14)0.0023 (10)0.0327 (13)0.0031 (10)
N40.0355 (11)0.0332 (12)0.0380 (13)0.0019 (9)0.0226 (11)0.0005 (10)
N50.0444 (13)0.0586 (13)0.0406 (14)0.0066 (10)0.0283 (12)0.0014 (10)
C10.0478 (15)0.0354 (17)0.0466 (18)0.0015 (13)0.0296 (15)0.0042 (13)
C20.0647 (19)0.0301 (16)0.0493 (18)0.0017 (13)0.0350 (17)0.0018 (13)
C30.0651 (19)0.0364 (17)0.0438 (18)0.0136 (14)0.0340 (17)0.0025 (14)
C40.0456 (16)0.0502 (18)0.0327 (16)0.0122 (13)0.0256 (15)0.0043 (13)
C50.0372 (14)0.0394 (16)0.0321 (15)0.0023 (11)0.0235 (13)0.0010 (12)
C60.0502 (18)0.063 (2)0.0441 (19)0.0221 (15)0.0284 (16)0.0057 (16)
C70.0343 (15)0.085 (2)0.0408 (18)0.0103 (16)0.0225 (15)0.0000 (17)
C80.0352 (15)0.064 (2)0.0330 (16)0.0059 (14)0.0212 (14)0.0075 (15)
C90.0338 (14)0.0464 (17)0.0315 (15)0.0006 (12)0.0217 (13)0.0023 (13)
C100.0507 (17)0.0450 (17)0.0501 (18)0.0075 (13)0.0331 (15)0.0038 (15)
C110.0535 (18)0.057 (2)0.063 (2)0.0255 (15)0.0395 (18)0.0108 (17)
C120.0379 (16)0.083 (3)0.0469 (18)0.0156 (16)0.0276 (15)0.0108 (17)
C130.0572 (17)0.0358 (17)0.0544 (19)0.0067 (13)0.0381 (16)0.0061 (14)
C140.072 (2)0.0307 (17)0.077 (2)0.0110 (14)0.055 (2)0.0121 (16)
C150.078 (2)0.0277 (16)0.083 (2)0.0057 (15)0.065 (2)0.0058 (16)
C160.0485 (16)0.0307 (15)0.063 (2)0.0079 (12)0.0446 (17)0.0059 (14)
C170.0390 (14)0.0311 (15)0.0476 (18)0.0050 (11)0.0343 (15)0.0015 (13)
C180.0353 (14)0.0344 (15)0.0443 (17)0.0052 (11)0.0309 (14)0.0043 (13)
C190.0358 (14)0.0451 (17)0.0438 (17)0.0078 (12)0.0278 (15)0.0076 (14)
C200.0481 (17)0.058 (2)0.0510 (19)0.0212 (15)0.0329 (16)0.0210 (17)
C210.0608 (19)0.0393 (18)0.073 (2)0.0197 (15)0.051 (2)0.0208 (17)
C220.0344 (15)0.067 (2)0.0441 (18)0.0054 (14)0.0215 (15)0.0055 (16)
C230.0399 (15)0.055 (2)0.0453 (18)0.0058 (13)0.0246 (15)0.0067 (15)
C240.0468 (16)0.0373 (16)0.0457 (18)0.0033 (12)0.0305 (16)0.0011 (13)
C250.0392 (15)0.0458 (19)0.0357 (16)0.0008 (12)0.0225 (14)0.0008 (13)
C260.0311 (14)0.0479 (18)0.0332 (15)0.0050 (11)0.0173 (13)0.0018 (12)
C270.0479 (17)0.056 (2)0.0490 (19)0.0092 (15)0.0276 (16)0.0075 (16)
C280.0417 (17)0.079 (2)0.052 (2)0.0234 (16)0.0270 (16)0.0071 (18)
C290.0315 (15)0.100 (3)0.0434 (19)0.0068 (17)0.0222 (15)0.0006 (18)
C300.0381 (16)0.077 (2)0.0431 (18)0.0037 (15)0.0263 (15)0.0016 (16)
C310.0345 (14)0.0577 (19)0.0290 (15)0.0024 (13)0.0178 (13)0.0011 (14)
C320.0294 (13)0.0420 (16)0.0394 (17)0.0022 (12)0.0212 (13)0.0022 (14)
C330.0283 (13)0.0411 (16)0.0367 (16)0.0014 (11)0.0188 (13)0.0018 (13)
C340.0619 (18)0.0447 (19)0.0458 (19)0.0078 (14)0.0342 (17)0.0021 (15)
C350.087 (2)0.058 (2)0.051 (2)0.0151 (18)0.044 (2)0.0030 (18)
C360.066 (2)0.076 (2)0.0427 (19)0.0080 (17)0.0346 (17)0.0005 (18)
C370.0486 (16)0.063 (2)0.0440 (18)0.0028 (15)0.0280 (15)0.0130 (17)
C380.0293 (13)0.0459 (19)0.0410 (17)0.0016 (11)0.0182 (14)0.0014 (13)
Geometric parameters (Å, º) top
Eu1—O52.4869 (17)C8—C121.400 (4)
Eu1—O22.4904 (16)C8—C91.413 (3)
Eu1—O12.4989 (16)C10—C111.399 (3)
Eu1—O102.5196 (17)C10—H100.9300
Eu1—N12.5574 (19)C11—C121.352 (4)
Eu1—O62.5767 (17)C11—H110.9300
Eu1—N22.5830 (18)C12—H120.9300
Eu1—O92.5991 (17)C13—C141.396 (3)
Eu1—N32.608 (2)C13—H130.9300
Eu1—N42.632 (2)C14—C151.350 (4)
Eu1—C252.856 (3)C14—H140.9300
Eu1—C322.919 (3)C15—C161.400 (4)
O1—C251.269 (3)C15—H150.9300
O2—C251.270 (3)C16—C171.412 (3)
O3—C311.349 (3)C16—C211.424 (4)
O3—H310.8199C17—C181.439 (3)
O4—C271.361 (3)C18—C191.403 (3)
O4—H270.8200C19—C221.391 (3)
O5—C321.275 (3)C19—C201.435 (4)
O6—C321.266 (3)C20—C211.339 (4)
O7—C381.337 (3)C20—H200.9300
O7—H380.8200C21—H210.9300
O8—C341.358 (3)C22—C231.361 (4)
O8—H340.8200C22—H220.9300
O9—N51.254 (3)C23—C241.387 (4)
O10—N51.278 (3)C23—H230.9300
O11—N51.211 (3)C24—H240.9300
N1—C11.326 (3)C25—C261.482 (3)
N1—C51.365 (3)C26—C271.405 (3)
N2—C101.329 (3)C26—C311.411 (3)
N2—C91.358 (3)C27—C281.381 (3)
N3—C131.332 (3)C28—C291.365 (4)
N3—C171.361 (3)C28—H280.9300
N4—C241.324 (3)C29—C301.363 (4)
N4—C181.366 (3)C29—H290.9300
C1—C21.393 (3)C30—C311.387 (3)
C1—H10.9300C30—H300.9300
C2—C31.352 (3)C32—C331.479 (3)
C2—H20.9300C33—C341.405 (3)
C3—C41.395 (4)C33—C381.411 (3)
C3—H30.9300C34—C351.390 (4)
C4—C51.399 (3)C35—C361.359 (4)
C4—C61.433 (3)C35—H350.9300
C5—C91.440 (3)C36—C371.365 (4)
C6—C71.337 (4)C36—H360.9300
C6—H60.9300C37—C381.394 (4)
C7—C81.430 (4)C37—H370.9300
C7—H70.9300
O5—Eu1—O279.45 (6)N1—C5—C9117.2 (2)
O5—Eu1—O174.99 (6)C4—C5—C9120.3 (2)
O2—Eu1—O152.27 (6)C7—C6—C4121.8 (3)
O5—Eu1—O10143.94 (6)C7—C6—H6119.1
O2—Eu1—O1070.59 (6)C4—C6—H6119.1
O1—Eu1—O1070.97 (6)C6—C7—C8120.7 (2)
O5—Eu1—N172.05 (6)C6—C7—H7119.6
O2—Eu1—N1134.78 (6)C8—C7—H7119.6
O1—Eu1—N186.28 (6)C12—C8—C9116.3 (3)
O10—Eu1—N1116.47 (6)C12—C8—C7124.1 (2)
O5—Eu1—O651.40 (6)C9—C8—C7119.6 (2)
O2—Eu1—O671.65 (5)N2—C9—C8123.3 (2)
O1—Eu1—O6107.90 (6)N2—C9—C5117.9 (2)
O10—Eu1—O6130.72 (6)C8—C9—C5118.7 (2)
N1—Eu1—O6112.52 (6)N2—C10—C11123.3 (3)
O5—Eu1—N278.84 (6)N2—C10—H10118.3
O2—Eu1—N2143.20 (6)C11—C10—H10118.3
O1—Eu1—N2144.89 (6)C12—C11—C10118.8 (3)
O10—Eu1—N2137.10 (6)C12—C11—H11120.6
N1—Eu1—N263.42 (6)C10—C11—H11120.6
O6—Eu1—N271.57 (6)C11—C12—C8120.9 (2)
O5—Eu1—O9125.11 (6)C11—C12—H12119.6
O2—Eu1—O9105.46 (6)C8—C12—H12119.6
O1—Eu1—O967.70 (6)N3—C13—C14122.9 (3)
O10—Eu1—O949.62 (6)N3—C13—H13118.5
N1—Eu1—O966.85 (6)C14—C13—H13118.5
O6—Eu1—O9175.49 (5)C15—C14—C13119.6 (3)
N2—Eu1—O9111.33 (6)C15—C14—H14120.2
O5—Eu1—N3122.52 (6)C13—C14—H14120.2
O2—Eu1—N379.83 (6)C14—C15—C16120.1 (3)
O1—Eu1—N3126.60 (6)C14—C15—H15120.0
O10—Eu1—N371.92 (6)C16—C15—H15120.0
N1—Eu1—N3145.31 (6)C15—C16—C17117.1 (3)
O6—Eu1—N371.23 (6)C15—C16—C21123.1 (3)
N2—Eu1—N387.31 (6)C17—C16—C21119.8 (3)
O9—Eu1—N3111.98 (6)N3—C17—C16122.7 (2)
O5—Eu1—N4145.39 (6)N3—C17—C18118.5 (2)
O2—Eu1—N4132.12 (6)C16—C17—C18118.8 (2)
O1—Eu1—N4132.65 (6)N4—C18—C19122.2 (2)
O10—Eu1—N470.18 (6)N4—C18—C17117.8 (2)
N1—Eu1—N487.63 (6)C19—C18—C17120.0 (2)
O6—Eu1—N4117.73 (6)C22—C19—C18118.0 (2)
N2—Eu1—N466.94 (6)C22—C19—C20123.1 (3)
O9—Eu1—N466.78 (6)C18—C19—C20119.0 (3)
N3—Eu1—N462.68 (6)C21—C20—C19121.4 (3)
O5—Eu1—C2579.24 (6)C21—C20—H20119.3
O2—Eu1—C2526.36 (6)C19—C20—H20119.3
O1—Eu1—C2526.34 (6)C20—C21—C16121.1 (3)
O10—Eu1—C2564.98 (7)C20—C21—H21119.4
N1—Eu1—C25112.06 (7)C16—C21—H21119.4
O6—Eu1—C2592.25 (6)C23—C22—C19120.1 (3)
N2—Eu1—C25157.87 (7)C23—C22—H22120.0
O9—Eu1—C2584.01 (7)C19—C22—H22120.0
N3—Eu1—C25102.00 (7)C22—C23—C24118.2 (3)
N4—Eu1—C25135.16 (7)C22—C23—H23120.9
O5—Eu1—C3225.73 (6)C24—C23—H23120.9
O2—Eu1—C3273.44 (6)N4—C24—C23124.5 (2)
O1—Eu1—C3291.15 (6)N4—C24—H24117.7
O10—Eu1—C32143.64 (6)C23—C24—H24117.7
N1—Eu1—C3292.71 (7)O1—C25—O2119.9 (2)
O6—Eu1—C3225.68 (6)O1—C25—C26120.1 (2)
N2—Eu1—C3274.09 (6)O2—C25—C26119.9 (2)
O9—Eu1—C32150.69 (7)O1—C25—Eu160.92 (12)
N3—Eu1—C3296.82 (7)O2—C25—Eu160.54 (12)
N4—Eu1—C32136.05 (6)C26—C25—Eu1165.99 (18)
C25—Eu1—C3284.81 (7)C27—C26—C31118.0 (2)
C25—O1—Eu192.74 (14)C27—C26—C25121.2 (2)
C25—O2—Eu193.09 (15)C31—C26—C25120.8 (2)
C31—O3—H31109.5O4—C27—C28118.2 (3)
C27—O4—H27109.4O4—C27—C26120.7 (2)
C32—O5—Eu196.44 (16)C28—C27—C26121.1 (3)
C32—O6—Eu192.45 (15)C29—C28—C27118.7 (3)
C38—O7—H38109.5C29—C28—H28120.6
C34—O8—H34109.5C27—C28—H28120.6
N5—O9—Eu195.51 (15)C30—C29—C28122.8 (3)
N5—O10—Eu198.68 (14)C30—C29—H29118.6
C1—N1—C5117.1 (2)C28—C29—H29118.6
C1—N1—Eu1122.35 (16)C29—C30—C31119.2 (3)
C5—N1—Eu1120.37 (15)C29—C30—H30120.4
C10—N2—C9117.3 (2)C31—C30—H30120.4
C10—N2—Eu1122.81 (17)O3—C31—C30117.3 (2)
C9—N2—Eu1118.85 (15)O3—C31—C26122.5 (2)
C13—N3—C17117.6 (2)C30—C31—C26120.2 (3)
C13—N3—Eu1121.43 (17)O6—C32—O5119.7 (2)
C17—N3—Eu1120.54 (15)O6—C32—C33121.0 (2)
C24—N4—C18117.0 (2)O5—C32—C33119.3 (2)
C24—N4—Eu1122.93 (16)O6—C32—Eu161.87 (13)
C18—N4—Eu1119.89 (16)O5—C32—Eu157.83 (13)
O11—N5—O9123.1 (3)C33—C32—Eu1176.62 (19)
O11—N5—O10120.8 (2)C34—C33—C38117.7 (2)
O9—N5—O10116.2 (2)C34—C33—C32121.0 (2)
O11—N5—Eu1176.5 (2)C38—C33—C32121.3 (2)
O9—N5—Eu159.84 (12)O8—C34—C35117.9 (3)
O10—N5—Eu156.35 (12)O8—C34—C33121.2 (3)
N1—C1—C2123.8 (2)C35—C34—C33120.9 (3)
N1—C1—H1118.1C36—C35—C34119.6 (3)
C2—C1—H1118.1C36—C35—H35120.2
C3—C2—C1118.7 (3)C34—C35—H35120.2
C3—C2—H2120.7C35—C36—C37121.8 (3)
C1—C2—H2120.7C35—C36—H36119.1
C2—C3—C4120.2 (2)C37—C36—H36119.1
C2—C3—H3119.9C36—C37—C38119.8 (3)
C4—C3—H3119.9C36—C37—H37120.1
C3—C4—C5117.6 (2)C38—C37—H37120.1
C3—C4—C6123.9 (2)O7—C38—C37117.9 (3)
C5—C4—C6118.6 (3)O7—C38—C33122.0 (2)
N1—C5—C4122.5 (2)C37—C38—C33120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H34···O60.821.862.585 (3)148
O4—H27···O20.821.832.561 (2)148
O7—H38···O50.821.852.579 (3)147
O3—H31···O10.821.872.594 (2)147

Experimental details

Crystal data
Chemical formula[Eu(C7H5O3)2(NO3)(C12H8N2)2]
Mr880.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1855 (2), 26.7682 (5), 14.3286 (4)
β (°) 127.557 (2)
V3)3401.05 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.40 × 0.36 × 0.35
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
[ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006)]
Tmin, Tmax0.514, 0.553
No. of measured, independent and
observed [I > 2σ(I)] reflections
22346, 6936, 5281
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.043, 1.05
No. of reflections6936
No. of parameters496
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.49

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H34···O60.821.862.585 (3)148
O4—H27···O20.821.832.561 (2)148
O7—H38···O50.821.852.579 (3)147
O3—H31···O10.821.872.594 (2)147
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469–m1470.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds