organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpiperidinium phenyl­acetate hemihydrate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 16 November 2010; accepted 17 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, C6H13N2O+·C8H7O2·0.5H2O, comprises two isonipecotamide cations, two phenyl­acetate anions and a water mol­ecule of solvation. The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide `ends' of each cation involved in lateral heteromolecular hydrogen-bonded cyclic N—H⋯O associations [graph set R22(11)] which incorporate a single carboxyl O-atom acceptor. These cyclic motifs enclose larger R55(21) cyclic systems, forming sheet substructures which lie parallel to (101) and are linked across b by the single water mol­ecule via water O—H⋯Oc (c = carboxylate) associations, giving a duplex-sheet structure.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010[Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160-o3161.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o3162.],b[Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o609-o613.],c[Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, o614-o618.]). For graph-set analysis, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C8H7O2·0.5H2O

  • Mr = 273.33

  • Monoclinic, P 21 /c

  • a = 12.3107 (9) Å

  • b = 25.214 (2) Å

  • c = 9.5402 (10) Å

  • β = 90.469 (9)°

  • V = 2961.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.50 × 0.22 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.959, Tmax = 0.979

  • 21326 measured reflections

  • 5802 independent reflections

  • 4258 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.05

  • 5802 reflections

  • 392 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H11C⋯O13Bi 0.941 (18) 1.826 (18) 2.7638 (17) 174.8 (17)
N1C—H12C⋯O13Aii 0.93 (2) 1.85 (2) 2.7322 (18) 157.9 (18)
N1D—H11D⋯O12A 0.924 (17) 1.876 (17) 2.7871 (17) 168.4 (16)
N1D—H12D⋯O12B 0.96 (2) 1.82 (2) 2.7095 (18) 153.0 (17)
N41C—H41C⋯O12Aiii 0.86 (2) 2.03 (2) 2.8789 (19) 166.3 (16)
N41C—H42C⋯O41Diii 0.938 (18) 1.918 (18) 2.8480 (18) 170.8 (14)
N41D—H41D⋯O13Bi 0.87 (2) 2.08 (2) 2.9177 (19) 160.6 (16)
N41D—H42D⋯O41C 0.913 (19) 1.917 (19) 2.8294 (18) 176.4 (18)
O1W—H11W⋯O13A 0.85 (2) 1.95 (2) 2.7881 (19) 171 (2)
O1W—H12W⋯O12Biv 0.84 (3) 1.99 (3) 2.8335 (19) 179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z-1; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has proved to be a particularly useful synthon for the construction of hydrogen-bonded crystalline salts with a range of aromatic carboxylic acids, enabling their structure determination (Smith & Wermuth, 2010a, 2010b, 2010c; Smith et al., 2010). The title compound from the 1:1 stoichiometric reaction of phenylacetic acid with INIPA, the hemihydrate C6H13N2O+ C8H7O2-. 0.5H2O, (I) was obtained and the structure is reported on herein.

In (I) the asymmetric unit contains two phenylacetate anions (A and B), two INIPA cations (C and D) and a water molecule of solvation (O1W) (Fig. 1). The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide 'ends' of each cation involved in lateral heteromolecular cyclic hydrogen-bonded associations [graph set R22(11) (Etter et al., 1990)] (Table 1) which incorporate a single carboxyl O-atom acceptor (Fig. 2). The rings involve (a): cation C pyrimidinium and cation D amide N—H donors and cation C amide and anion B carboxyl O-atom acceptors and (b): cation D pyrimidinium and cation C amide N—H donors and cation D amide and anion A carboxyl O-atom acceptors. These ring motifs enclose larger cyclic systems [graph set R55(21)] forming sheet substructures which lie parallel to (101) and are linked across b by the single water molecule via water OH···Ocarboxyl associations to give the two-dimensional duplex-sheet structure (Fig. 3).

In the two independent phenylacetate anions, the conformation of the acetate side chains are significantly different [comparative torsion angles (maximum) for C2/C6–C1–C11–C12, 95.07 (17)° (A) and 124.84 (17)° (B); C1–C11–C12–O12/O13, 90.43 (16)° (A) and 127.76 (16)° (B)].

Related literature top

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a,b,c). For graph-set analysis, see Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 mins, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and phenylacetic acid in 50 ml of 50% methanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless plates of (I) from which a specimen was cleaved for the X-ray diffraction analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located in difference Fourier maps and were freely refined. Other H-atoms were included in calculated positions using a riding-model approximation [C–H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C)].

Structure description top

The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has proved to be a particularly useful synthon for the construction of hydrogen-bonded crystalline salts with a range of aromatic carboxylic acids, enabling their structure determination (Smith & Wermuth, 2010a, 2010b, 2010c; Smith et al., 2010). The title compound from the 1:1 stoichiometric reaction of phenylacetic acid with INIPA, the hemihydrate C6H13N2O+ C8H7O2-. 0.5H2O, (I) was obtained and the structure is reported on herein.

In (I) the asymmetric unit contains two phenylacetate anions (A and B), two INIPA cations (C and D) and a water molecule of solvation (O1W) (Fig. 1). The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide 'ends' of each cation involved in lateral heteromolecular cyclic hydrogen-bonded associations [graph set R22(11) (Etter et al., 1990)] (Table 1) which incorporate a single carboxyl O-atom acceptor (Fig. 2). The rings involve (a): cation C pyrimidinium and cation D amide N—H donors and cation C amide and anion B carboxyl O-atom acceptors and (b): cation D pyrimidinium and cation C amide N—H donors and cation D amide and anion A carboxyl O-atom acceptors. These ring motifs enclose larger cyclic systems [graph set R55(21)] forming sheet substructures which lie parallel to (101) and are linked across b by the single water molecule via water OH···Ocarboxyl associations to give the two-dimensional duplex-sheet structure (Fig. 3).

In the two independent phenylacetate anions, the conformation of the acetate side chains are significantly different [comparative torsion angles (maximum) for C2/C6–C1–C11–C12, 95.07 (17)° (A) and 124.84 (17)° (B); C1–C11–C12–O12/O13, 90.43 (16)° (A) and 127.76 (16)° (B)].

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a,b,c). For graph-set analysis, see Etter et al. (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the two INIPA cations (C, D) the two phenylacetate anions (A, B) and the water molecule of solvation (O1W) in the asymmetric unit of compound (I). Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded sheet substructure of compound (I) showing the R22(11) and larger R55(21) ring motifs [Non-associative H atoms have been omitted for clarity; hydrogen bonds are shown as dashed lines; for symmetry codes, see Table 1].
[Figure 3] Fig. 3. A view along the a-axis of the unit cell of compound (I), showing the water-linked duplex-sheet structure.
4-Carbamoylpiperidinium phenylacetate hemihydrate top
Crystal data top
C6H13N2O+·C8H7O2·0.5H2OF(000) = 1176
Mr = 273.33Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5553 reflections
a = 12.3107 (9) Åθ = 3.2–28.9°
b = 25.214 (2) ŵ = 0.09 mm1
c = 9.5402 (10) ÅT = 200 K
β = 90.469 (9)°Prism, colourless
V = 2961.2 (4) Å30.50 × 0.22 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
5802 independent reflections
Radiation source: Enhance (Mo) X-ray source4258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.066 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 3130
Tmin = 0.959, Tmax = 0.979l = 1111
21326 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
5802 reflections(Δ/σ)max = 0.002
392 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H13N2O+·C8H7O2·0.5H2OV = 2961.2 (4) Å3
Mr = 273.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.3107 (9) ŵ = 0.09 mm1
b = 25.214 (2) ÅT = 200 K
c = 9.5402 (10) Å0.50 × 0.22 × 0.20 mm
β = 90.469 (9)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
5802 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4258 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.041
21326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
5802 reflectionsΔρmin = 0.20 e Å3
392 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41C0.64163 (9)0.15818 (5)0.16896 (11)0.0435 (4)
N1C1.02344 (12)0.17322 (6)0.12820 (14)0.0270 (4)
N41C0.61664 (12)0.16239 (6)0.06342 (14)0.0281 (4)
C2C0.96731 (14)0.22255 (7)0.08191 (18)0.0350 (6)
C3C0.84553 (13)0.21748 (7)0.10209 (18)0.0328 (5)
C4C0.80024 (12)0.16875 (6)0.02592 (15)0.0263 (5)
C5C0.86040 (13)0.11923 (6)0.07541 (17)0.0296 (5)
C6C0.98170 (13)0.12504 (7)0.05565 (17)0.0350 (6)
C41C0.67876 (13)0.16266 (6)0.04932 (15)0.0263 (5)
O41D0.71839 (9)0.15906 (5)0.66969 (11)0.0340 (4)
N1D0.33442 (11)0.16040 (5)0.62431 (14)0.0239 (4)
N41D0.74212 (12)0.15583 (6)0.43668 (14)0.0275 (4)
C2D0.38272 (13)0.11238 (6)0.55692 (16)0.0268 (5)
C3D0.50450 (12)0.11097 (6)0.57817 (16)0.0257 (5)
C4D0.55825 (12)0.16182 (6)0.52381 (15)0.0229 (5)
C5D0.50677 (12)0.21026 (6)0.59475 (16)0.0265 (5)
C6D0.38455 (13)0.21083 (6)0.57385 (17)0.0281 (5)
C41D0.68013 (13)0.15910 (6)0.54975 (15)0.0225 (5)
O12A0.38376 (9)0.15741 (4)0.90984 (10)0.0303 (3)
O13A0.21718 (9)0.17101 (4)0.99066 (10)0.0269 (3)
C1A0.34155 (14)0.08390 (6)1.17288 (14)0.0267 (5)
C2A0.42802 (16)0.04963 (7)1.14988 (17)0.0409 (6)
C3A0.41423 (19)0.00506 (8)1.1602 (2)0.0515 (8)
C4A0.31547 (19)0.02627 (7)1.19230 (18)0.0477 (7)
C5A0.22827 (17)0.00717 (7)1.21644 (18)0.0421 (6)
C6A0.24171 (14)0.06180 (7)1.20799 (16)0.0330 (6)
C11A0.35341 (13)0.14331 (6)1.15417 (15)0.0262 (5)
C12A0.31531 (12)0.15890 (6)1.00715 (15)0.0212 (5)
O12B0.14841 (9)0.16112 (4)0.47053 (11)0.0337 (4)
O13B0.02269 (9)0.15006 (5)0.40455 (11)0.0344 (4)
C1B0.10892 (13)0.06973 (7)0.65695 (16)0.0291 (5)
C2B0.12468 (16)0.02946 (7)0.55923 (18)0.0422 (7)
C3B0.19546 (18)0.01206 (7)0.5849 (2)0.0488 (7)
C4B0.25265 (17)0.01453 (7)0.70955 (19)0.0432 (7)
C5B0.23861 (15)0.02523 (7)0.80669 (17)0.0387 (6)
C6B0.16796 (14)0.06710 (7)0.78084 (16)0.0329 (6)
C11B0.03138 (15)0.11508 (8)0.62690 (17)0.0408 (6)
C12B0.05390 (13)0.14407 (6)0.48988 (15)0.0247 (5)
O1W0.16998 (12)0.24940 (7)0.79325 (14)0.0469 (5)
H4C0.812600.173100.074800.0320*
H11C1.0116 (15)0.1664 (6)0.2238 (19)0.038 (5)*
H12C1.0962 (19)0.1748 (7)0.104 (2)0.051 (6)*
H21C0.982500.229100.016200.0420*
H22C0.994500.252400.135700.0420*
H31C0.809800.249100.066600.0390*
H32C0.830100.214700.201400.0390*
H41C0.5472 (17)0.1585 (6)0.0576 (18)0.035 (5)*
H42C0.6465 (16)0.1648 (6)0.1533 (19)0.040 (5)*
H51C0.845300.113200.173700.0360*
H52C0.834500.088700.022900.0360*
H61C1.018300.093900.092700.0420*
H62C0.997400.127400.043600.0420*
H4D0.545100.164300.422600.0270*
H11D0.3410 (14)0.1582 (6)0.7207 (18)0.031 (5)*
H12D0.2590 (17)0.1610 (7)0.5982 (19)0.043 (5)*
H21D0.366100.112700.457400.0320*
H22D0.350800.080700.597000.0320*
H31D0.534200.080600.529200.0310*
H32D0.520900.106900.677200.0310*
H41D0.8121 (17)0.1539 (7)0.4489 (18)0.036 (5)*
H42D0.7104 (16)0.1581 (7)0.350 (2)0.046 (6)*
H51D0.523500.209600.694300.0320*
H52D0.537500.242400.555800.0320*
H61D0.353800.240500.624600.0340*
H62D0.367800.215600.475100.0340*
H2A0.495800.063401.127400.0490*
H3A0.473100.027401.145100.0620*
H4A0.306800.062801.197900.0570*
H5A0.160700.007001.238300.0510*
H6A0.183100.084001.226100.0400*
H11A0.428800.153501.167400.0320*
H12A0.310300.161701.223600.0320*
H2B0.086700.030500.474600.0510*
H3B0.204500.038400.517800.0590*
H4B0.299900.042500.727700.0520*
H5B0.277100.024000.891000.0460*
H6B0.160200.093700.847600.0400*
H11B0.035700.140300.703500.0490*
H12B0.042200.101300.623800.0490*
H11W0.1841 (19)0.2232 (9)0.846 (2)0.065 (7)*
H12W0.163 (2)0.2760 (11)0.846 (3)0.086 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O41C0.0191 (6)0.0934 (10)0.0181 (6)0.0034 (6)0.0012 (5)0.0025 (6)
N1C0.0149 (7)0.0434 (9)0.0226 (7)0.0017 (6)0.0017 (6)0.0040 (6)
N41C0.0144 (7)0.0510 (9)0.0189 (7)0.0010 (7)0.0001 (6)0.0011 (6)
C2C0.0265 (10)0.0390 (10)0.0395 (10)0.0072 (8)0.0041 (8)0.0141 (8)
C3C0.0237 (9)0.0306 (9)0.0442 (10)0.0037 (7)0.0016 (8)0.0081 (8)
C4C0.0160 (8)0.0466 (10)0.0163 (7)0.0002 (7)0.0002 (6)0.0043 (7)
C5C0.0229 (9)0.0359 (10)0.0301 (8)0.0013 (7)0.0014 (7)0.0096 (7)
C6C0.0215 (9)0.0496 (11)0.0338 (9)0.0079 (8)0.0002 (7)0.0102 (8)
C41C0.0188 (8)0.0401 (10)0.0200 (8)0.0012 (7)0.0001 (6)0.0004 (7)
O41D0.0217 (6)0.0623 (8)0.0181 (5)0.0019 (6)0.0009 (5)0.0038 (5)
N1D0.0143 (7)0.0379 (8)0.0195 (7)0.0006 (6)0.0009 (5)0.0042 (6)
N41D0.0155 (7)0.0484 (9)0.0185 (7)0.0002 (7)0.0013 (6)0.0012 (6)
C2D0.0230 (9)0.0317 (9)0.0258 (8)0.0058 (7)0.0010 (7)0.0035 (7)
C3D0.0203 (9)0.0261 (8)0.0307 (8)0.0001 (7)0.0021 (7)0.0016 (7)
C4D0.0172 (8)0.0339 (9)0.0175 (7)0.0010 (7)0.0013 (6)0.0038 (6)
C5D0.0221 (9)0.0248 (8)0.0326 (8)0.0023 (7)0.0001 (7)0.0062 (7)
C6D0.0220 (9)0.0297 (9)0.0327 (8)0.0031 (7)0.0004 (7)0.0077 (7)
C41D0.0221 (8)0.0268 (8)0.0187 (8)0.0020 (7)0.0018 (6)0.0028 (6)
O12A0.0181 (6)0.0532 (7)0.0197 (5)0.0004 (5)0.0027 (5)0.0023 (5)
O13A0.0175 (6)0.0357 (6)0.0274 (6)0.0027 (5)0.0030 (5)0.0035 (5)
C1A0.0293 (9)0.0371 (9)0.0138 (7)0.0067 (8)0.0014 (6)0.0020 (7)
C2A0.0361 (11)0.0503 (12)0.0363 (10)0.0116 (9)0.0064 (8)0.0089 (9)
C3A0.0600 (15)0.0461 (12)0.0486 (12)0.0266 (11)0.0090 (10)0.0079 (9)
C4A0.0755 (16)0.0314 (11)0.0361 (10)0.0096 (10)0.0034 (10)0.0064 (8)
C5A0.0494 (12)0.0411 (11)0.0358 (10)0.0062 (10)0.0026 (9)0.0088 (8)
C6A0.0324 (10)0.0367 (10)0.0298 (9)0.0061 (8)0.0001 (7)0.0036 (7)
C11A0.0236 (9)0.0359 (9)0.0192 (8)0.0002 (7)0.0005 (6)0.0017 (7)
C12A0.0193 (8)0.0223 (8)0.0220 (8)0.0036 (6)0.0007 (6)0.0012 (6)
O12B0.0200 (6)0.0432 (7)0.0377 (6)0.0031 (5)0.0059 (5)0.0081 (5)
O13B0.0167 (6)0.0597 (8)0.0268 (6)0.0025 (5)0.0036 (5)0.0070 (5)
C1B0.0238 (9)0.0388 (10)0.0248 (8)0.0061 (7)0.0030 (7)0.0071 (7)
C2B0.0518 (13)0.0444 (12)0.0303 (9)0.0107 (10)0.0115 (9)0.0002 (8)
C3B0.0715 (15)0.0283 (10)0.0465 (11)0.0041 (10)0.0065 (11)0.0039 (9)
C4B0.0502 (13)0.0329 (10)0.0466 (11)0.0020 (9)0.0024 (9)0.0140 (9)
C5B0.0357 (11)0.0533 (12)0.0270 (9)0.0009 (9)0.0037 (8)0.0107 (8)
C6B0.0304 (10)0.0465 (11)0.0219 (8)0.0027 (8)0.0025 (7)0.0002 (7)
C11B0.0275 (10)0.0645 (13)0.0306 (9)0.0098 (9)0.0064 (8)0.0111 (9)
C12B0.0168 (8)0.0322 (9)0.0251 (8)0.0042 (7)0.0004 (7)0.0016 (7)
O1W0.0625 (10)0.0482 (9)0.0300 (7)0.0147 (8)0.0042 (7)0.0048 (7)
Geometric parameters (Å, º) top
O41C—C41C1.2382 (18)C5D—C6D1.516 (2)
O41D—C41D1.2338 (18)C2D—H21D0.9700
O12A—C12A1.2594 (18)C2D—H22D0.9700
O13A—C12A1.2547 (18)C3D—H31D0.9700
O12B—C12B1.2554 (19)C3D—H32D0.9700
O13B—C12B1.2498 (19)C4D—H4D0.9800
O1W—H11W0.85 (2)C5D—H52D0.9700
O1W—H12W0.84 (3)C5D—H51D0.9700
N1C—C6C1.488 (2)C6D—H61D0.9700
N1C—C2C1.488 (2)C6D—H62D0.9700
N41C—C41C1.315 (2)C1A—C6A1.393 (2)
N1C—H12C0.93 (2)C1A—C2A1.390 (3)
N1C—H11C0.941 (18)C1A—C11A1.516 (2)
N41C—H41C0.86 (2)C2A—C3A1.393 (3)
N41C—H42C0.938 (18)C3A—C4A1.365 (3)
N1D—C2D1.496 (2)C4A—C5A1.386 (3)
N1D—C6D1.495 (2)C5A—C6A1.390 (3)
N41D—C41D1.329 (2)C11A—C12A1.527 (2)
N1D—H12D0.96 (2)C2A—H2A0.9300
N1D—H11D0.924 (17)C3A—H3A0.9300
N41D—H42D0.913 (19)C4A—H4A0.9300
N41D—H41D0.87 (2)C5A—H5A0.9300
C2C—C3C1.519 (2)C6A—H6A0.9300
C3C—C4C1.530 (2)C11A—H11A0.9700
C4C—C5C1.525 (2)C11A—H12A0.9700
C4C—C41C1.522 (2)C1B—C11B1.515 (3)
C5C—C6C1.514 (2)C1B—C6B1.384 (2)
C2C—H21C0.9700C1B—C2B1.393 (2)
C2C—H22C0.9700C2B—C3B1.383 (3)
C3C—H31C0.9700C3B—C4B1.378 (3)
C3C—H32C0.9700C4B—C5B1.377 (2)
C4C—H4C0.9800C5B—C6B1.389 (3)
C5C—H52C0.9700C11B—C12B1.525 (2)
C5C—H51C0.9700C2B—H2B0.9300
C6C—H62C0.9700C3B—H3B0.9300
C6C—H61C0.9700C4B—H4B0.9300
C2D—C3D1.512 (2)C5B—H5B0.9300
C3D—C4D1.535 (2)C6B—H6B0.9300
C4D—C5D1.536 (2)C11B—H12B0.9700
C4D—C41D1.520 (2)C11B—H11B0.9700
O1W···O13A2.7881 (19)C12B···H2B2.9000
O1W···C2Ci3.272 (2)C12B···H22Ci3.0500
O1W···O12Bii2.8335 (19)C12B···H11Cvi2.648 (18)
O1W···N1Ci3.081 (2)C41C···H42D2.894 (19)
O12A···N1D2.7871 (17)C41C···H52Div2.9600
O12A···N41Ciii2.8789 (19)C41D···H31Cii2.8200
O12B···N1D2.7095 (18)C41D···H42Ciii2.870 (18)
O12B···O1Wiv2.8335 (19)H2A···H11A2.4500
O12B···C6D3.309 (2)H2B···C5Avii3.0900
O12B···C2D3.236 (2)H2B···C2Bxii3.0200
O13A···C6B3.349 (2)H2B···C12B2.9000
O13A···C6Cv3.188 (2)H4A···O41Dviii2.7500
O13A···O1W2.7881 (19)H4C···O41Dvii2.7100
O13A···N1Cv2.7322 (18)H4C···H62C2.5700
O13B···N41Dvi2.9177 (19)H4C···H42C2.1800
O13B···N1Cvi2.7638 (17)H4C···H21C2.5800
O13B···C6Cvi3.389 (2)H4D···H42D2.1600
O41C···N41D2.8294 (18)H4D···O41C2.7100
O41D···N41Ciii2.8480 (18)H4D···H62D2.5900
O1W···H61D2.8000H4D···H21D2.5800
O1W···H12Aiv2.9100H6A···H12A2.5100
O1W···H12Ci2.777 (19)H6A···H61Cv2.4000
O1W···H22Ci2.6200H6B···H11B2.3600
O12A···H41Ciii2.03 (2)H6B···O13A2.4800
O12A···H11D1.876 (17)H6B···C12A2.9400
O12B···H12Wiv1.99 (3)H6B···C6Cv3.0800
O12B···H12D1.82 (2)H6B···H62Cv2.4200
O12B···H11Cvi2.886 (18)H11A···H2A2.4500
O13A···H11W1.95 (2)H11A···O41Ciii2.6200
O13A···H6B2.4800H11B···H62Cv2.4800
O13A···H12Cv1.85 (2)H11B···H6B2.3600
O13B···H41Dvi2.08 (2)H11C···O13Bix1.826 (18)
O13B···H11Cvi1.826 (18)H11C···O12Bix2.886 (18)
O13B···H51Cvi2.8800H11C···H32C2.5500
O41C···H32C2.7400H11C···H51C2.4900
O41C···H51C2.7500H11C···C12Bix2.648 (18)
O41C···H4D2.7100H11D···C12A2.754 (17)
O41C···H42D1.917 (19)H11D···O12A1.876 (17)
O41C···H11Avii2.6200H11W···C12A2.75 (2)
O41D···H51D2.7300H11W···O13A1.95 (2)
O41D···H4Aviii2.7500H12A···H6A2.5100
O41D···H42Ciii1.918 (18)H12A···O1Wii2.9100
O41D···H31Cii2.7600H12C···C12Axi2.89 (2)
O41D···H4Ciii2.7100H12C···O1Wx2.777 (19)
O41D···H32D2.7700H12C···O13Axi1.85 (2)
N1C···O13Bix2.7638 (17)H12D···C12B2.75 (2)
N1C···O1Wx3.081 (2)H12D···O12B1.82 (2)
N1C···O13Axi2.7322 (18)H12D···C1B3.007 (19)
N1D···O12A2.7871 (17)H12D···C11B3.05 (2)
N1D···O12B2.7095 (18)H12W···C12Bii2.79 (3)
N41C···O12Avii2.8789 (19)H12W···O12Bii1.99 (3)
N41C···O41Dvii2.8480 (18)H21C···H4C2.5800
N41D···O41C2.8294 (18)H21C···H62C2.5800
N41D···O13Bix2.9177 (19)H21D···C6Avii3.1000
N41C···H52Div2.8300H21D···C1Avii2.8200
N41C···H51Dvii2.8300H21D···C11Avii3.0000
N41D···H32C2.9100H21D···H4D2.5800
N41D···H31Cii2.8200H22C···C12Bx3.0500
C2B···C5Avii3.564 (3)H22C···O1Wx2.6200
C2B···C2Bxii3.585 (3)H22D···C4B2.9000
C2C···O1Wx3.272 (2)H22D···C5B2.8100
C2D···C6B3.599 (2)H22D···C6B2.8900
C2D···O12B3.236 (2)H22D···C3B3.0200
C3B···C5Avii3.575 (3)H22D···C1B3.0500
C5A···C2Biii3.564 (3)H22D···C2B3.0900
C5A···C3Biii3.575 (3)H31C···C41Div2.8200
C6B···O13A3.349 (2)H31C···O41Div2.7600
C6B···C2D3.599 (2)H31C···N41Div2.8200
C6C···O13Axi3.188 (2)H32C···O41C2.7400
C6C···O13Bix3.389 (2)H32C···N41D2.9100
C6D···C12Aiv3.451 (2)H32C···H11C2.5500
C6D···O12B3.309 (2)H32C···H42D2.5000
C12A···C6Dii3.451 (2)H32C···H51C2.5800
C1A···H21Diii2.8200H32D···H51D2.5900
C1B···H22D3.0500H32D···O41D2.7700
C1B···H12D3.007 (19)H41C···C12Avii2.93 (2)
C2B···H22D3.0900H41C···O12Avii2.03 (2)
C2B···H2Bxii3.0200H41D···O13Bix2.08 (2)
C3B···H22D3.0200H41D···C12Bix3.01 (2)
C4B···H22D2.9000H42C···O41Dvii1.918 (18)
C4B···H51Cxiii2.9800H42C···H51Dvii2.3800
C5A···H2Biii3.0900H42C···C41Dvii2.870 (18)
C5B···H22D2.8100H42C···H4C2.1800
C6A···H21Diii3.1000H42D···H4D2.1600
C6A···H61Cv3.0600H42D···C41C2.894 (19)
C6B···H22D2.8900H42D···O41C1.917 (19)
C6B···H62Cv3.1000H42D···H32C2.5000
C6C···H6Bxi3.0800H51C···H32C2.5800
C11A···H61Dii2.9400H51C···O13Bix2.8800
C11A···H21Diii3.0000H51C···C4Bxiii2.9800
C11B···H12D3.05 (2)H51C···O41C2.7500
C12A···H12Cv2.89 (2)H51C···H11C2.4900
C12A···H11W2.75 (2)H51D···O41D2.7300
C12A···H11D2.754 (17)H51D···N41Ciii2.8300
C12A···H41Ciii2.93 (2)H51D···H32D2.5900
C12A···H61Dii2.8100H51D···H42Ciii2.3800
C12A···H6B2.9400H52D···C41Cii2.9600
C12B···H41Dvi3.01 (2)H52D···N41Cii2.8300
C12B···H12D2.75 (2)H61C···C6Axi3.0600
C12B···H12Wiv2.79 (3)H61C···H6Axi2.4000
H11W—O1W—H12W107 (2)H31D—C3D—H32D108.00
C2C—N1C—C6C112.75 (13)C4D—C3D—H31D109.00
C2C—N1C—H12C109.7 (11)C3D—C4D—H4D109.00
C6C—N1C—H11C104.3 (10)C41D—C4D—H4D109.00
H11C—N1C—H12C114.0 (17)C5D—C4D—H4D109.00
C2C—N1C—H11C111.4 (10)C4D—C5D—H51D109.00
C6C—N1C—H12C104.5 (11)C6D—C5D—H51D109.00
H41C—N41C—H42C117.5 (16)C6D—C5D—H52D109.00
C41C—N41C—H42C121.2 (12)H51D—C5D—H52D108.00
C41C—N41C—H41C121.2 (11)C4D—C5D—H52D109.00
C2D—N1D—C6D112.54 (12)N1D—C6D—H62D109.00
C2D—N1D—H11D110.3 (10)C5D—C6D—H61D109.00
C6D—N1D—H11D109.8 (10)N1D—C6D—H61D109.00
C6D—N1D—H12D107.7 (11)H61D—C6D—H62D108.00
H11D—N1D—H12D109.6 (15)C5D—C6D—H62D109.00
C2D—N1D—H12D106.8 (11)C2A—C1A—C6A117.89 (15)
C41D—N41D—H42D119.1 (13)C6A—C1A—C11A120.65 (15)
H41D—N41D—H42D122.7 (17)C2A—C1A—C11A121.41 (15)
C41D—N41D—H41D118.0 (11)C1A—C2A—C3A120.69 (18)
N1C—C2C—C3C110.40 (14)C2A—C3A—C4A120.9 (2)
C2C—C3C—C4C111.32 (14)C3A—C4A—C5A119.43 (17)
C3C—C4C—C41C111.47 (12)C4A—C5A—C6A120.04 (18)
C3C—C4C—C5C109.65 (12)C1A—C6A—C5A121.08 (16)
C5C—C4C—C41C110.33 (12)C1A—C11A—C12A109.48 (12)
C4C—C5C—C6C111.06 (13)O12A—C12A—C11A117.85 (13)
N1C—C6C—C5C111.00 (13)O13A—C12A—C11A117.78 (13)
O41C—C41C—C4C121.01 (13)O12A—C12A—O13A124.35 (13)
O41C—C41C—N41C122.48 (15)C1A—C2A—H2A120.00
N41C—C41C—C4C116.51 (13)C3A—C2A—H2A120.00
N1C—C2C—H21C110.00C2A—C3A—H3A120.00
N1C—C2C—H22C110.00C4A—C3A—H3A120.00
C3C—C2C—H22C110.00C5A—C4A—H4A120.00
H21C—C2C—H22C108.00C3A—C4A—H4A120.00
C3C—C2C—H21C110.00C4A—C5A—H5A120.00
C2C—C3C—H31C109.00C6A—C5A—H5A120.00
C2C—C3C—H32C109.00C5A—C6A—H6A120.00
C4C—C3C—H32C109.00C1A—C6A—H6A119.00
C4C—C3C—H31C109.00C1A—C11A—H11A110.00
H31C—C3C—H32C108.00C12A—C11A—H11A110.00
C41C—C4C—H4C108.00C12A—C11A—H12A110.00
C5C—C4C—H4C108.00H11A—C11A—H12A108.00
C3C—C4C—H4C108.00C1A—C11A—H12A110.00
C6C—C5C—H51C109.00C2B—C1B—C6B117.49 (16)
C4C—C5C—H51C109.00C2B—C1B—C11B120.95 (15)
H51C—C5C—H52C108.00C6B—C1B—C11B121.55 (15)
C6C—C5C—H52C109.00C1B—C2B—C3B121.63 (16)
C4C—C5C—H52C109.00C2B—C3B—C4B120.25 (17)
N1C—C6C—H61C109.00C3B—C4B—C5B118.79 (17)
C5C—C6C—H62C109.00C4B—C5B—C6B121.05 (16)
N1C—C6C—H62C109.00C1B—C6B—C5B120.79 (15)
C5C—C6C—H61C109.00C1B—C11B—C12B113.90 (14)
H61C—C6C—H62C108.00O12B—C12B—C11B117.73 (14)
N1D—C2D—C3D111.01 (12)O13B—C12B—C11B118.34 (14)
C2D—C3D—C4D111.40 (12)O12B—C12B—O13B123.92 (14)
C5D—C4D—C41D111.99 (12)C3B—C2B—H2B119.00
C3D—C4D—C5D109.56 (12)C1B—C2B—H2B119.00
C3D—C4D—C41D109.57 (12)C4B—C3B—H3B120.00
C4D—C5D—C6D111.24 (12)C2B—C3B—H3B120.00
N1D—C6D—C5D111.19 (12)C3B—C4B—H4B121.00
N41D—C41D—C4D116.31 (13)C5B—C4B—H4B121.00
O41D—C41D—N41D122.36 (15)C4B—C5B—H5B119.00
O41D—C41D—C4D121.32 (13)C6B—C5B—H5B120.00
N1D—C2D—H22D109.00C5B—C6B—H6B120.00
C3D—C2D—H21D109.00C1B—C6B—H6B120.00
C3D—C2D—H22D109.00C1B—C11B—H11B109.00
H21D—C2D—H22D108.00C1B—C11B—H12B109.00
N1D—C2D—H21D109.00C12B—C11B—H12B109.00
C2D—C3D—H31D109.00H11B—C11B—H12B108.00
C2D—C3D—H32D109.00C12B—C11B—H11B109.00
C4D—C3D—H32D109.00
C6C—N1C—C2C—C3C56.10 (17)C6A—C1A—C2A—C3A0.8 (2)
C2C—N1C—C6C—C5C56.36 (17)C11A—C1A—C2A—C3A176.53 (15)
C6D—N1D—C2D—C3D55.70 (16)C2A—C1A—C6A—C5A1.5 (2)
C2D—N1D—C6D—C5D55.55 (17)C11A—C1A—C6A—C5A175.77 (14)
N1C—C2C—C3C—C4C55.83 (18)C2A—C1A—C11A—C12A95.07 (17)
C2C—C3C—C4C—C41C178.39 (13)C6A—C1A—C11A—C12A82.13 (16)
C2C—C3C—C4C—C5C55.91 (17)C1A—C2A—C3A—C4A0.4 (3)
C3C—C4C—C41C—O41C58.46 (19)C2A—C3A—C4A—C5A0.7 (3)
C3C—C4C—C41C—N41C121.61 (15)C3A—C4A—C5A—C6A0.0 (3)
C5C—C4C—C41C—O41C63.62 (19)C4A—C5A—C6A—C1A1.2 (2)
C5C—C4C—C41C—N41C116.31 (15)C1A—C11A—C12A—O12A87.75 (17)
C3C—C4C—C5C—C6C55.69 (17)C1A—C11A—C12A—O13A90.43 (16)
C41C—C4C—C5C—C6C178.84 (12)C6B—C1B—C2B—C3B0.8 (3)
C4C—C5C—C6C—N1C55.90 (17)C11B—C1B—C2B—C3B179.74 (17)
N1D—C2D—C3D—C4D55.88 (16)C2B—C1B—C6B—C5B1.1 (3)
C2D—C3D—C4D—C5D55.72 (16)C11B—C1B—C6B—C5B179.96 (17)
C2D—C3D—C4D—C41D178.95 (12)C2B—C1B—C11B—C12B54.1 (2)
C3D—C4D—C5D—C6D55.38 (16)C6B—C1B—C11B—C12B124.84 (17)
C41D—C4D—C5D—C6D177.17 (12)C1B—C2B—C3B—C4B0.1 (3)
C3D—C4D—C41D—O41D66.13 (18)C2B—C3B—C4B—C5B0.6 (3)
C3D—C4D—C41D—N41D112.70 (15)C3B—C4B—C5B—C6B0.3 (3)
C5D—C4D—C41D—O41D55.66 (19)C4B—C5B—C6B—C1B0.6 (3)
C5D—C4D—C41D—N41D125.52 (15)C1B—C11B—C12B—O12B53.1 (2)
C4D—C5D—C6D—N1D55.47 (16)C1B—C11B—C12B—O13B127.76 (16)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z1/2; (v) x1, y, z+1; (vi) x1, y, z; (vii) x, y, z1; (viii) x+1, y, z+2; (ix) x+1, y, z; (x) x+1, y+1/2, z1/2; (xi) x+1, y, z1; (xii) x, y, z+1; (xiii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O13Bix0.941 (18)1.826 (18)2.7638 (17)174.8 (17)
N1C—H12C···O13Axi0.93 (2)1.85 (2)2.7322 (18)157.9 (18)
N1D—H11D···O12A0.924 (17)1.876 (17)2.7871 (17)168.4 (16)
N1D—H12D···O12B0.96 (2)1.82 (2)2.7095 (18)153.0 (17)
N41C—H41C···O12Avii0.86 (2)2.03 (2)2.8789 (19)166.3 (16)
N41C—H42C···O41Dvii0.938 (18)1.918 (18)2.8480 (18)170.8 (14)
N41D—H41D···O13Bix0.87 (2)2.08 (2)2.9177 (19)160.6 (16)
N41D—H42D···O41C0.913 (19)1.917 (19)2.8294 (18)176.4 (18)
O1W—H11W···O13A0.85 (2)1.95 (2)2.7881 (19)171 (2)
O1W—H12W···O12Bii0.84 (3)1.99 (3)2.8335 (19)179 (3)
C6B—H6B···O13A0.932.483.349 (2)156
Symmetry codes: (ii) x, y+1/2, z+1/2; (vii) x, y, z1; (ix) x+1, y, z; (xi) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC6H13N2O+·C8H7O2·0.5H2O
Mr273.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.3107 (9), 25.214 (2), 9.5402 (10)
β (°) 90.469 (9)
V3)2961.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.22 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
21326, 5802, 4258
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.05
No. of reflections5802
No. of parameters392
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O13Bi0.941 (18)1.826 (18)2.7638 (17)174.8 (17)
N1C—H12C···O13Aii0.93 (2)1.85 (2)2.7322 (18)157.9 (18)
N1D—H11D···O12A0.924 (17)1.876 (17)2.7871 (17)168.4 (16)
N1D—H12D···O12B0.96 (2)1.82 (2)2.7095 (18)153.0 (17)
N41C—H41C···O12Aiii0.86 (2)2.03 (2)2.8789 (19)166.3 (16)
N41C—H42C···O41Diii0.938 (18)1.918 (18)2.8480 (18)170.8 (14)
N41D—H41D···O13Bi0.87 (2)2.08 (2)2.9177 (19)160.6 (16)
N41D—H42D···O41C0.913 (19)1.917 (19)2.8294 (18)176.4 (18)
O1W—H11W···O13A0.85 (2)1.95 (2)2.7881 (19)171 (2)
O1W—H12W···O12Biv0.84 (3)1.99 (3)2.8335 (19)179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o3162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o609–o613.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, o614–o618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds