organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Amino­phen­yl)(p-tol­yl)methanone

aSchool of Bio-chemistry and Environmental Engineering, Nanjing Xiaozhuang University, 3601 Hongjing Road, Jiangning District, Nanjing 211171, People's Republic of China, and bDepartment of Chemical Engineering, Nanjing College of Chemical Technology, No 625, Geguan Road, Luhe, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zdlocean@yahoo.com.cn

(Received 21 November 2010; accepted 24 November 2010; online 30 November 2010)

In the title compound, C14H13NO, the two six-membered rings make a dihedral angle of 52.8 (3)°. An intra­molecular N—H⋯O hydrogen bond involving an amine H atom and the adjacent carbonyl O atom occurs. In the crystal, N—H⋯O and C—H⋯N inter­molecular hydrogen bonds are observed, which may be effective in stabilizing the structure.

Related literature

For the uses of 5-nitro­thio­phene-2-carb­oxy­lic acid, see: Shetty et al. (1999[Shetty, A. S., Liu, E. B., Lachicotte, R. J. & Jenekhe, S. A. (1999). Chem. Mater. 11, 2292-2295.]). For the synthesis of the title compound, see: Zhu et al. (2005[Zhu, H.-J., Wang, D.-D., Song, G.-L., Wang, J.-T. & Wang, K.-L. (2005). Acta Cryst. E61, o2209-o2210.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Orthorhombic, P 21 21 21

  • a = 7.7720 (16) Å

  • b = 10.490 (2) Å

  • c = 14.114 (3) Å

  • V = 1150.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 2387 measured reflections

  • 1241 independent reflections

  • 984 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.01

  • 1241 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H0A⋯O1 0.87 (3) 2.08 (3) 2.723 (4) 131 (3)
N1—H0B⋯O1i 0.82 (3) 2.45 (3) 3.220 (4) 158 (3)
C11—H11A⋯O1i 0.93 2.53 3.319 (4) 143
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(2-Aminophenyl)(p-tolyl)methanone and its derivitives are important monomers, being utilized to synthesize oligomers containing a quinoline unit (Shetty et al., 1999). We report herein on the crystal structure of the title compound, (2-Aminophenyl)(p-tolyl)methanone.

In the title molecule (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. An amine H-atom and the adjacent carbonyl O-atom forms an intramolecular N-H···O hydrogen bond (Fig. 1, Table 1). The two aromatic rings are planar, with a dihedral angle of 52.8 (3)°.

In the crystal, N-H···O and C—H···N intermolecular hydrogen bonds are observed, which stabilize the crystal structure (Fig. 2, Table 1).

Related literature top

For the uses of 5-nitrothiophene-2-carboxylic acid, see: Shetty et al. (1999). For the synthesis of the title compound, see: Zhu et al. (2005). For standard bond-length data, see: Allen et al. (1987).

Experimental top

(2-Aminophenyl)(p-tolyl)methanone was prepared by the method reported in the literature (Zhu et al., 2005). Single crystals were obtained by dissolving (2-aminophenyl)(p-tolyl)methanone (0.5 g, 2.37 mmol) in ethyl acetate (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. After checking their presence in a difference map, the NH2 H-atoms were freely refined. The C-bound H-atoms were positioned geometrically [C—H = 0.93 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

(2-Aminophenyl)(p-tolyl)methanone and its derivitives are important monomers, being utilized to synthesize oligomers containing a quinoline unit (Shetty et al., 1999). We report herein on the crystal structure of the title compound, (2-Aminophenyl)(p-tolyl)methanone.

In the title molecule (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. An amine H-atom and the adjacent carbonyl O-atom forms an intramolecular N-H···O hydrogen bond (Fig. 1, Table 1). The two aromatic rings are planar, with a dihedral angle of 52.8 (3)°.

In the crystal, N-H···O and C—H···N intermolecular hydrogen bonds are observed, which stabilize the crystal structure (Fig. 2, Table 1).

For the uses of 5-nitrothiophene-2-carboxylic acid, see: Shetty et al. (1999). For the synthesis of the title compound, see: Zhu et al. (2005). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [The intermolecular N-H···O hydrogen bond is shown as a dashed line - Table 1].
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c-axis [The hydrogen bonds are shown as dashed lines; details are given in Table 1].
(2-Aminophenyl)(p-tolyl)methanone top
Crystal data top
C14H13NOF(000) = 448
Mr = 211.25Dx = 1.219 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.7720 (16) Åθ = 9–14°
b = 10.490 (2) ŵ = 0.08 mm1
c = 14.114 (3) ÅT = 298 K
V = 1150.7 (4) Å3Plate, brown
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.977, Tmax = 0.992l = 1717
2387 measured reflections3 standard reflections every 200 reflections
1241 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1241 reflectionsΔρmax = 0.15 e Å3
154 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (5)
Crystal data top
C14H13NOV = 1150.7 (4) Å3
Mr = 211.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7720 (16) ŵ = 0.08 mm1
b = 10.490 (2) ÅT = 298 K
c = 14.114 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
984 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.977, Tmax = 0.9923 standard reflections every 200 reflections
2387 measured reflections intensity decay: 1%
1241 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
1241 reflectionsΔρmin = 0.12 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0723 (5)0.48772 (18)0.66689 (13)0.1072 (11)
N10.0516 (5)0.2583 (3)0.72595 (18)0.0903 (13)
C10.0893 (6)0.8175 (3)0.2825 (2)0.0979 (14)
C20.0848 (4)0.7203 (2)0.36079 (19)0.0649 (10)
C30.1864 (4)0.7310 (2)0.4405 (2)0.0668 (10)
C40.1798 (4)0.6431 (2)0.51329 (19)0.0611 (8)
C50.0737 (3)0.5373 (2)0.50607 (16)0.0507 (8)
C60.0293 (3)0.5256 (2)0.42633 (17)0.0562 (8)
C70.0251 (4)0.6161 (2)0.35603 (17)0.0612 (9)
C80.0684 (4)0.4450 (2)0.58631 (17)0.0626 (9)
C90.0553 (3)0.3074 (2)0.56775 (17)0.0515 (8)
C100.0012 (4)0.2205 (3)0.63780 (18)0.0597 (9)
C110.0141 (4)0.0914 (3)0.6133 (2)0.0665 (10)
C120.0327 (4)0.0487 (2)0.5261 (2)0.0670 (10)
C130.0940 (4)0.1319 (2)0.45806 (19)0.0632 (9)
C140.1042 (3)0.2588 (3)0.47965 (16)0.0548 (8)
H0B0.065 (5)0.203 (3)0.766 (2)0.094 (12)*
H1A0.171400.882700.297800.1470*
H1B0.121900.776900.224300.1470*
H1C0.022600.855100.275500.1470*
H0A0.029 (5)0.336 (3)0.743 (2)0.082 (11)*
H3A0.261800.799500.445400.0800*
H4A0.246600.655000.567200.0730*
H6A0.102100.455700.420400.0670*
H7A0.097500.607300.304000.0730*
H11A0.055700.033600.657700.0800*
H12A0.023400.037600.512000.0800*
H13A0.127500.102300.398800.0760*
H14A0.145300.314900.433900.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.203 (3)0.0665 (13)0.0521 (10)0.0088 (18)0.0032 (16)0.0151 (10)
N10.135 (3)0.079 (2)0.0570 (15)0.006 (2)0.0174 (16)0.0122 (15)
C10.139 (3)0.0648 (19)0.090 (2)0.001 (2)0.013 (2)0.0186 (16)
C20.0806 (19)0.0466 (14)0.0675 (16)0.0038 (15)0.0133 (16)0.0008 (13)
C30.0709 (17)0.0412 (13)0.0882 (19)0.0067 (13)0.0089 (17)0.0106 (14)
C40.0668 (16)0.0459 (13)0.0706 (15)0.0026 (13)0.0056 (14)0.0141 (13)
C50.0588 (15)0.0404 (12)0.0529 (13)0.0011 (11)0.0032 (12)0.0103 (10)
C60.0600 (15)0.0458 (13)0.0627 (14)0.0027 (13)0.0049 (13)0.0089 (12)
C70.0746 (18)0.0525 (14)0.0566 (13)0.0028 (15)0.0018 (14)0.0057 (12)
C80.082 (2)0.0539 (15)0.0518 (13)0.0015 (15)0.0025 (15)0.0097 (12)
C90.0549 (15)0.0481 (13)0.0515 (13)0.0006 (12)0.0029 (12)0.0006 (11)
C100.0597 (16)0.0637 (15)0.0556 (14)0.0069 (14)0.0048 (13)0.0089 (13)
C110.0647 (17)0.0523 (15)0.0824 (18)0.0020 (14)0.0066 (16)0.0188 (14)
C120.0675 (18)0.0423 (13)0.0912 (19)0.0034 (13)0.0102 (16)0.0006 (14)
C130.0690 (17)0.0505 (14)0.0700 (16)0.0059 (14)0.0022 (15)0.0095 (13)
C140.0588 (15)0.0487 (12)0.0570 (15)0.0003 (12)0.0055 (12)0.0020 (12)
Geometric parameters (Å, º) top
O1—C81.223 (3)C10—C111.401 (4)
N1—C101.363 (4)C11—C121.359 (4)
N1—H0B0.82 (3)C12—C131.382 (4)
N1—H0A0.87 (3)C13—C141.368 (4)
C1—C21.504 (4)C1—H1A0.9600
C2—C31.379 (4)C1—H1B0.9600
C2—C71.389 (4)C1—H1C0.9600
C3—C41.381 (4)C3—H3A0.9300
C4—C51.386 (3)C4—H4A0.9300
C5—C61.387 (3)C6—H6A0.9300
C5—C81.491 (3)C7—H7A0.9300
C6—C71.374 (3)C11—H11A0.9300
C8—C91.471 (3)C12—H12A0.9300
C9—C141.397 (3)C13—H13A0.9300
C9—C101.415 (4)C14—H14A0.9300
H0B—N1—H0A120 (3)C12—C13—C14118.7 (2)
C10—N1—H0B118 (2)C9—C14—C13122.5 (2)
C10—N1—H0A118 (2)C2—C1—H1A109.00
C1—C2—C3122.1 (2)C2—C1—H1B110.00
C1—C2—C7120.8 (3)C2—C1—H1C109.00
C3—C2—C7117.1 (2)H1A—C1—H1B109.00
C2—C3—C4122.1 (2)H1A—C1—H1C109.00
C3—C4—C5120.1 (3)H1B—C1—H1C109.00
C4—C5—C6118.3 (2)C2—C3—H3A119.00
C4—C5—C8118.7 (2)C4—C3—H3A119.00
C6—C5—C8122.9 (2)C3—C4—H4A120.00
C5—C6—C7120.8 (2)C5—C4—H4A120.00
C2—C7—C6121.6 (2)C5—C6—H6A120.00
C5—C8—C9120.3 (2)C7—C6—H6A120.00
O1—C8—C9121.8 (2)C2—C7—H7A119.00
O1—C8—C5117.9 (2)C6—C7—H7A119.00
C8—C9—C10122.0 (2)C10—C11—H11A119.00
C8—C9—C14119.9 (2)C12—C11—H11A119.00
C10—C9—C14118.1 (2)C11—C12—H12A120.00
C9—C10—C11118.2 (2)C13—C12—H12A120.00
N1—C10—C9122.7 (3)C12—C13—H13A121.00
N1—C10—C11119.1 (3)C14—C13—H13A121.00
C10—C11—C12121.5 (3)C9—C14—H14A119.00
C11—C12—C13120.9 (2)C13—C14—H14A119.00
C1—C2—C3—C4178.7 (3)O1—C8—C9—C14160.0 (3)
C7—C2—C3—C40.4 (4)C5—C8—C9—C10160.6 (3)
C1—C2—C7—C6179.2 (3)C5—C8—C9—C1421.2 (4)
C3—C2—C7—C61.7 (4)C8—C9—C10—N11.8 (4)
C2—C3—C4—C52.6 (4)C8—C9—C10—C11178.4 (3)
C3—C4—C5—C62.6 (4)C14—C9—C10—N1180.0 (3)
C3—C4—C5—C8179.4 (2)C14—C9—C10—C113.5 (4)
C4—C5—C6—C70.5 (4)C8—C9—C14—C13179.6 (3)
C8—C5—C6—C7177.2 (2)C10—C9—C14—C132.2 (4)
C4—C5—C8—O139.1 (4)N1—C10—C11—C12179.3 (3)
C4—C5—C8—C9142.1 (3)C9—C10—C11—C122.7 (5)
C6—C5—C8—O1137.6 (3)C10—C11—C12—C130.4 (5)
C6—C5—C8—C941.2 (4)C11—C12—C13—C141.0 (5)
C5—C6—C7—C21.7 (4)C12—C13—C14—C90.1 (4)
O1—C8—C9—C1018.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H0A···O10.87 (3)2.08 (3)2.723 (4)131 (3)
N1—H0B···O1i0.82 (3)2.45 (3)3.220 (4)158 (3)
C11—H11A···O1i0.932.533.319 (4)143
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7720 (16), 10.490 (2), 14.114 (3)
V3)1150.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2387, 1241, 984
Rint0.023
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.01
No. of reflections1241
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H0A···O10.87 (3)2.08 (3)2.723 (4)131 (3)
N1—H0B···O1i0.82 (3)2.45 (3)3.220 (4)158 (3)
C11—H11A···O1i0.932.533.319 (4)143
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, A. S., Liu, E. B., Lachicotte, R. J. & Jenekhe, S. A. (1999). Chem. Mater. 11, 2292–2295.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H.-J., Wang, D.-D., Song, G.-L., Wang, J.-T. & Wang, K.-L. (2005). Acta Cryst. E61, o2209–o2210.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds