organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′,7′,7′-Tri­methyl-1′-phenyl-5′,6′,7′,8′-tetra­hydro­spiro­[indoline-3,4′-(1H,4H-pyrazolo­[3,4-b]chromene)]-2,5′-dione

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tlyq@jnu.edu.cn

(Received 8 October 2010; accepted 4 November 2010; online 10 November 2010)

The title spiro­oxindole compound, C26H23N3O3, was prepared by the reaction of isatin, 3-methyl-1-phenyl-2-pyrazolin-5-one and 5,5-dimethyl­cyclo­hexane-1,3-dione in an ethanol solution. The fused cyclo­hexene ring adopts an envelope conformation. The dihedral angle between the aromatic and pyrazoline rings is 23.70 (8)°. An intra­molecular C—H⋯O inter­action occurs. The crystal structure is stabilized by N—H⋯N hydrogen-bonding inter­actions, leading to a zigzag chain along the b axis.

Related literature

For general background to spiro compounds and their bio­logical activity, see: Li et al. (2010[Li, Y.-L., Chen, H., Shi, C.-L., Shi, D.-Q. & Ji, S.-J. (2010). J. Comb. Chem. 12, 231-237.]); Shemchuk et al. (2008[Shemchuk, L. A., Chernykh, V. P. & Red'kin, R. G. (2008). Russ. J. Org. Chem. 44, 1816-1821.]); Zhang & Panek (2009[Zhang, Y. & Panek, J. S. (2009). Org. Lett. 11, 3366-3369.]); Zhu et al. (2007[Zhu, S.-L., Ji, S.-J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23N3O3

  • Mr = 425.47

  • Monoclinic, P 21 /n

  • a = 11.8778 (19) Å

  • b = 12.891 (2) Å

  • c = 14.039 (2) Å

  • β = 100.280 (3)°

  • V = 2115.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.46 × 0.40 × 0.39 mm

Data collection
  • Bruker SMART CCD 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.966

  • 9755 measured reflections

  • 4085 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.05

  • 4085 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.88 2.05 2.9185 (18) 172
C12—H12⋯O2 0.95 2.39 2.9780 (19) 119
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spirocyclic systems are probably the most well known heterocycles (Shemchuk et al., 2008). Spiro compounds are characterized by their highly biological activities (Zhu et al., 2007; Li et al., 2010). The spirooxindoles which form the central skeleton of many pharmacologically active compounds and natural products have gained much prominence in recent days (Zhang et al., 2009). Herein, we report the crystal structure of the title compound.

The title compound is a formed from the reaciton of isatin, 3-methyl-1-phenyl-2-pyrazolin-5-one and 5,5-dimethylcyclohexane-1,3-dione. The molecular structure is shown in Fig. 1.

The ring C5—C10 adopts an envelope conformation. The dihedral angle between the aromatic ring C11—C16 and pyrazolin ring (C1—C2—C3—N1—N2) is 23.70 (8) °. The crystal structure is stabilized by N—H···N hydrogen bonding interactions, leading to a zigzag chain along the b axis (Fig. 2 and Table 1).

In addition, there is an intramolecular hydrogen bonding interaction between C12 and O2 (Table 1).

Related literature top

For general background to spiro compounds and their biological activity, see: Li et al. (2010); Shemchuk et al. (2008); Zhang et al.(2009); Zhu et al. (2007).

Experimental top

The title compound was prepared by the reaction of isatin (0.147 g, 1 mmol), 3-methyl-1-phenyl-2-pyrazolin-5-one (0.174 g, 1 mmol) with 5,5-dimethylcyclohexane-1,3-dione (0.140 g, 1 mmol) in the presence of p-TSA (p-toluenesulfonic acid) (0.1 g) in water (5.0 ml) under reflux for 24 h. After cooling, the reaction mixture was filtered to collect the solid. The crude product was recrystallized from anhydrous ethanol and then dried to give pure compound (I) in 71% yield (m.p. > 573 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I) at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.98 (CH3), 0.99 (CH2) and 0.95 Å (aromatic); Uiso(H) = 1.2Ueq(C) for H atoms on secondary and tertiary C atoms, and Uiso = 1.5Ueq(C) for methyl H atoms. The NH hydrogen atoms were located in a difference Fourier map and then refined as riding on the N atoms with Uiso(H) = 1.2Ueq(N).

Structure description top

Spirocyclic systems are probably the most well known heterocycles (Shemchuk et al., 2008). Spiro compounds are characterized by their highly biological activities (Zhu et al., 2007; Li et al., 2010). The spirooxindoles which form the central skeleton of many pharmacologically active compounds and natural products have gained much prominence in recent days (Zhang et al., 2009). Herein, we report the crystal structure of the title compound.

The title compound is a formed from the reaciton of isatin, 3-methyl-1-phenyl-2-pyrazolin-5-one and 5,5-dimethylcyclohexane-1,3-dione. The molecular structure is shown in Fig. 1.

The ring C5—C10 adopts an envelope conformation. The dihedral angle between the aromatic ring C11—C16 and pyrazolin ring (C1—C2—C3—N1—N2) is 23.70 (8) °. The crystal structure is stabilized by N—H···N hydrogen bonding interactions, leading to a zigzag chain along the b axis (Fig. 2 and Table 1).

In addition, there is an intramolecular hydrogen bonding interaction between C12 and O2 (Table 1).

For general background to spiro compounds and their biological activity, see: Li et al. (2010); Shemchuk et al. (2008); Zhang et al.(2009); Zhu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A zigzag hydrogen bonding chain along the b axis is shown in the crystal packing of the title compound. Dashed lines indicate hydrogen bonds. Symmetry operations: A = -x - 1/2, y + 1/2, -z + 1/2; B = -x - 1/2, y - 1/2, -z + 1/2.
3',7',7'-Trimethyl-1'-phenyl-5',6',7',8'-tetrahydrospiro[indoline- 3,4'-(1H,4H-pyrazolo[3,4-b]chromene)]-2,5'-dione top
Crystal data top
C26H23N3O3F(000) = 896
Mr = 425.47Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4524 reflections
a = 11.8778 (19) Åθ = 2.2–27.0°
b = 12.891 (2) ŵ = 0.09 mm1
c = 14.039 (2) ÅT = 110 K
β = 100.280 (3)°Block, colorless
V = 2115.1 (6) Å30.46 × 0.40 × 0.39 mm
Z = 4
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
4085 independent reflections
Radiation source: fine-focus sealed tube3097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.960, Tmax = 0.966k = 1513
9755 measured reflectionsl = 1710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4259P]
where P = (Fo2 + 2Fc2)/3
4085 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H23N3O3V = 2115.1 (6) Å3
Mr = 425.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8778 (19) ŵ = 0.09 mm1
b = 12.891 (2) ÅT = 110 K
c = 14.039 (2) Å0.46 × 0.40 × 0.39 mm
β = 100.280 (3)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
4085 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3097 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.966Rint = 0.026
9755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4085 reflectionsΔρmin = 0.21 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13468 (13)0.10606 (12)0.24814 (11)0.0200 (3)
C20.04964 (12)0.17757 (12)0.23366 (10)0.0168 (3)
C30.02151 (12)0.12204 (11)0.18767 (10)0.0170 (3)
C40.02884 (13)0.28932 (11)0.26016 (10)0.0172 (3)
C50.07068 (13)0.32491 (12)0.21352 (10)0.0178 (3)
C60.13557 (13)0.26188 (11)0.16884 (10)0.0179 (3)
C70.09785 (13)0.43675 (12)0.21781 (10)0.0193 (3)
C80.20736 (13)0.47098 (12)0.18694 (11)0.0212 (3)
H8A0.27140.46270.24220.025*
H8B0.20140.54560.17000.025*
C90.23482 (13)0.41005 (12)0.10033 (11)0.0193 (3)
C100.23633 (13)0.29460 (12)0.12630 (11)0.0207 (3)
H10A0.23830.25330.06720.025*
H10B0.30710.27930.17310.025*
C110.03029 (13)0.06572 (11)0.13607 (11)0.0185 (3)
C120.10268 (13)0.05500 (12)0.06905 (11)0.0205 (3)
H120.12370.01200.05010.025*
C130.14373 (13)0.14305 (12)0.03029 (11)0.0233 (4)
H130.19270.13640.01600.028*
C140.11399 (14)0.24068 (13)0.05836 (12)0.0275 (4)
H140.14160.30080.03080.033*
C150.04423 (15)0.25055 (13)0.12654 (12)0.0267 (4)
H150.02540.31760.14690.032*
C160.00131 (14)0.16334 (12)0.16572 (11)0.0224 (4)
H160.04730.17040.21220.027*
C170.14039 (13)0.35270 (11)0.22569 (11)0.0192 (3)
C180.10051 (13)0.36495 (11)0.39106 (11)0.0204 (3)
C190.01059 (13)0.30626 (11)0.36897 (10)0.0180 (3)
C200.10638 (15)0.39146 (13)0.48573 (12)0.0259 (4)
H200.16730.43270.50050.031*
C210.01995 (15)0.35545 (13)0.55838 (12)0.0287 (4)
H210.02140.37310.62380.034*
C220.06789 (15)0.29442 (13)0.53702 (12)0.0282 (4)
H220.12500.26940.58790.034*
C230.07337 (13)0.26930 (12)0.44129 (11)0.0226 (4)
H230.13380.22760.42640.027*
C240.23692 (14)0.12431 (13)0.29448 (12)0.0267 (4)
H24A0.29720.15810.24800.040*
H24B0.21550.16900.35130.040*
H24C0.26510.05780.31450.040*
C250.14278 (14)0.43141 (13)0.01188 (11)0.0247 (4)
H25A0.15570.38710.04180.037*
H25B0.14630.50440.00690.037*
H25C0.06730.41650.02760.037*
C260.35231 (14)0.44152 (13)0.07888 (12)0.0252 (4)
H26A0.41050.43180.13710.038*
H26B0.35050.51460.05940.038*
H26C0.37100.39830.02640.038*
N10.01647 (11)0.02305 (10)0.17519 (9)0.0180 (3)
N20.11516 (11)0.01329 (10)0.21348 (9)0.0205 (3)
N30.17731 (11)0.38803 (10)0.30610 (9)0.0227 (3)
H30.24210.42160.30480.027*
O10.03312 (10)0.49811 (8)0.24678 (8)0.0264 (3)
O20.11714 (9)0.15614 (8)0.15647 (7)0.0199 (2)
O30.18860 (9)0.36251 (9)0.14228 (8)0.0260 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0206 (8)0.0224 (8)0.0170 (7)0.0002 (7)0.0031 (6)0.0006 (6)
C20.0164 (8)0.0186 (8)0.0155 (7)0.0007 (6)0.0030 (6)0.0011 (6)
C30.0156 (7)0.0172 (8)0.0181 (7)0.0002 (6)0.0030 (6)0.0016 (6)
C40.0166 (8)0.0167 (8)0.0188 (8)0.0004 (6)0.0048 (6)0.0001 (6)
C50.0171 (8)0.0196 (8)0.0166 (7)0.0000 (6)0.0025 (6)0.0013 (6)
C60.0189 (8)0.0148 (8)0.0195 (8)0.0007 (6)0.0020 (6)0.0009 (6)
C70.0233 (8)0.0206 (8)0.0136 (7)0.0000 (7)0.0020 (6)0.0005 (6)
C80.0224 (8)0.0192 (8)0.0221 (8)0.0031 (6)0.0040 (7)0.0023 (6)
C90.0195 (8)0.0183 (8)0.0213 (8)0.0028 (6)0.0067 (6)0.0003 (6)
C100.0178 (8)0.0205 (8)0.0251 (8)0.0006 (6)0.0074 (7)0.0012 (6)
C110.0170 (7)0.0175 (8)0.0190 (8)0.0021 (6)0.0018 (6)0.0031 (6)
C120.0200 (8)0.0215 (8)0.0189 (8)0.0002 (6)0.0002 (6)0.0006 (6)
C130.0190 (8)0.0273 (9)0.0229 (8)0.0028 (7)0.0018 (7)0.0044 (7)
C140.0248 (9)0.0239 (9)0.0318 (9)0.0049 (7)0.0002 (7)0.0088 (7)
C150.0281 (9)0.0173 (8)0.0327 (9)0.0021 (7)0.0002 (7)0.0021 (7)
C160.0216 (8)0.0215 (8)0.0230 (8)0.0017 (7)0.0013 (7)0.0001 (6)
C170.0188 (8)0.0153 (8)0.0246 (8)0.0004 (6)0.0070 (7)0.0024 (6)
C180.0227 (8)0.0156 (8)0.0243 (8)0.0018 (6)0.0079 (7)0.0001 (6)
C190.0196 (8)0.0159 (8)0.0198 (8)0.0045 (6)0.0075 (6)0.0021 (6)
C200.0320 (10)0.0197 (8)0.0304 (9)0.0023 (7)0.0171 (8)0.0052 (7)
C210.0369 (10)0.0311 (10)0.0200 (8)0.0106 (8)0.0100 (7)0.0073 (7)
C220.0299 (10)0.0317 (10)0.0218 (8)0.0067 (8)0.0014 (7)0.0010 (7)
C230.0195 (8)0.0234 (9)0.0250 (8)0.0017 (7)0.0045 (7)0.0005 (6)
C240.0255 (9)0.0275 (9)0.0302 (9)0.0040 (7)0.0129 (7)0.0043 (7)
C250.0233 (8)0.0303 (9)0.0213 (8)0.0005 (7)0.0061 (7)0.0018 (7)
C260.0226 (9)0.0253 (9)0.0292 (9)0.0033 (7)0.0086 (7)0.0011 (7)
N10.0176 (7)0.0170 (7)0.0206 (7)0.0008 (5)0.0063 (5)0.0005 (5)
N20.0193 (7)0.0216 (7)0.0219 (7)0.0026 (5)0.0075 (5)0.0016 (5)
N30.0204 (7)0.0217 (7)0.0280 (7)0.0065 (6)0.0095 (6)0.0025 (6)
O10.0321 (7)0.0195 (6)0.0309 (6)0.0012 (5)0.0145 (5)0.0034 (5)
O20.0178 (6)0.0154 (5)0.0284 (6)0.0006 (4)0.0095 (5)0.0013 (4)
O30.0247 (6)0.0285 (7)0.0237 (6)0.0039 (5)0.0017 (5)0.0043 (5)
Geometric parameters (Å, º) top
C1—N21.327 (2)C13—H130.9500
C1—C21.409 (2)C14—C151.379 (2)
C1—C241.495 (2)C14—H140.9500
C2—C31.356 (2)C15—C161.388 (2)
C2—C41.497 (2)C15—H150.9500
C3—N11.3543 (19)C16—H160.9500
C3—O21.3612 (17)C17—O31.2148 (18)
C4—C191.520 (2)C17—N31.3606 (19)
C4—C51.521 (2)C18—C201.386 (2)
C4—C171.558 (2)C18—C191.388 (2)
C5—C61.349 (2)C18—N31.398 (2)
C5—C71.476 (2)C19—C231.375 (2)
C6—O21.3866 (18)C20—C211.391 (2)
C6—C101.491 (2)C20—H200.9500
C7—O11.2223 (18)C21—C221.382 (2)
C7—C81.509 (2)C21—H210.9500
C8—C91.531 (2)C22—C231.395 (2)
C8—H8A0.9900C22—H220.9500
C8—H8B0.9900C23—H230.9500
C9—C251.526 (2)C24—H24A0.9800
C9—C101.532 (2)C24—H24B0.9800
C9—C261.534 (2)C24—H24C0.9800
C10—H10A0.9900C25—H25A0.9800
C10—H10B0.9900C25—H25B0.9800
C11—C161.388 (2)C25—H25C0.9800
C11—C121.390 (2)C26—H26A0.9800
C11—N11.4243 (19)C26—H26B0.9800
C12—C131.385 (2)C26—H26C0.9800
C12—H120.9500N1—N21.3798 (17)
C13—C141.383 (2)N3—H30.8800
N2—C1—C2111.11 (13)C14—C15—C16120.59 (15)
N2—C1—C24120.66 (14)C14—C15—H15119.7
C2—C1—C24128.23 (14)C16—C15—H15119.7
C3—C2—C1104.30 (13)C11—C16—C15119.16 (15)
C3—C2—C4122.48 (13)C11—C16—H16120.4
C1—C2—C4133.20 (13)C15—C16—H16120.4
N1—C3—C2109.73 (13)O3—C17—N3126.78 (14)
N1—C3—O2122.72 (13)O3—C17—C4125.62 (13)
C2—C3—O2127.55 (14)N3—C17—C4107.45 (12)
C2—C4—C19112.06 (12)C20—C18—C19121.39 (15)
C2—C4—C5106.84 (12)C20—C18—N3128.96 (15)
C19—C4—C5114.02 (12)C19—C18—N3109.64 (13)
C2—C4—C17109.50 (12)C23—C19—C18120.61 (14)
C19—C4—C17101.41 (12)C23—C19—C4130.31 (14)
C5—C4—C17113.03 (12)C18—C19—C4108.99 (13)
C6—C5—C7117.92 (14)C18—C20—C21117.64 (15)
C6—C5—C4124.82 (14)C18—C20—H20121.2
C7—C5—C4117.27 (13)C21—C20—H20121.2
C5—C6—O2124.03 (13)C22—C21—C20121.19 (15)
C5—C6—C10125.59 (14)C22—C21—H21119.4
O2—C6—C10110.37 (12)C20—C21—H21119.4
O1—C7—C5119.98 (14)C21—C22—C23120.53 (16)
O1—C7—C8122.15 (14)C21—C22—H22119.7
C5—C7—C8117.87 (13)C23—C22—H22119.7
C7—C8—C9113.26 (12)C19—C23—C22118.59 (15)
C7—C8—H8A108.9C19—C23—H23120.7
C9—C8—H8A108.9C22—C23—H23120.7
C7—C8—H8B108.9C1—C24—H24A109.5
C9—C8—H8B108.9C1—C24—H24B109.5
H8A—C8—H8B107.7H24A—C24—H24B109.5
C25—C9—C8109.30 (13)C1—C24—H24C109.5
C25—C9—C10110.20 (13)H24A—C24—H24C109.5
C8—C9—C10107.73 (12)H24B—C24—H24C109.5
C25—C9—C26109.71 (13)C9—C25—H25A109.5
C8—C9—C26110.52 (13)C9—C25—H25B109.5
C10—C9—C26109.35 (13)H25A—C25—H25B109.5
C6—C10—C9113.21 (13)C9—C25—H25C109.5
C6—C10—H10A108.9H25A—C25—H25C109.5
C9—C10—H10A108.9H25B—C25—H25C109.5
C6—C10—H10B108.9C9—C26—H26A109.5
C9—C10—H10B108.9C9—C26—H26B109.5
H10A—C10—H10B107.7H26A—C26—H26B109.5
C16—C11—C12120.63 (14)C9—C26—H26C109.5
C16—C11—N1118.57 (14)H26A—C26—H26C109.5
C12—C11—N1120.79 (14)H26B—C26—H26C109.5
C13—C12—C11119.23 (15)C3—N1—N2108.79 (12)
C13—C12—H12120.4C3—N1—C11131.54 (13)
C11—C12—H12120.4N2—N1—C11119.59 (12)
C14—C13—C12120.54 (15)C1—N2—N1106.07 (12)
C14—C13—H13119.7C17—N3—C18112.26 (13)
C12—C13—H13119.7C17—N3—H3123.9
C15—C14—C13119.82 (15)C18—N3—H3123.9
C15—C14—H14120.1C3—O2—C6113.54 (11)
C13—C14—H14120.1
N2—C1—C2—C30.37 (17)C14—C15—C16—C110.6 (2)
C24—C1—C2—C3179.09 (15)C2—C4—C17—O361.79 (19)
N2—C1—C2—C4178.23 (15)C19—C4—C17—O3179.66 (14)
C24—C1—C2—C42.3 (3)C5—C4—C17—O357.2 (2)
C1—C2—C3—N10.38 (16)C2—C4—C17—N3113.94 (13)
C4—C2—C3—N1178.42 (13)C19—C4—C17—N34.61 (15)
C1—C2—C3—O2179.22 (14)C5—C4—C17—N3127.08 (13)
C4—C2—C3—O22.0 (2)C20—C18—C19—C232.5 (2)
C3—C2—C4—C19117.71 (15)N3—C18—C19—C23176.67 (13)
C1—C2—C4—C1960.7 (2)C20—C18—C19—C4179.44 (14)
C3—C2—C4—C57.85 (19)N3—C18—C19—C40.28 (17)
C1—C2—C4—C5173.75 (15)C2—C4—C19—C2362.4 (2)
C3—C2—C4—C17130.58 (15)C5—C4—C19—C2359.1 (2)
C1—C2—C4—C1751.0 (2)C17—C4—C19—C23179.12 (15)
C2—C4—C5—C68.21 (19)C2—C4—C19—C18114.12 (14)
C19—C4—C5—C6116.16 (16)C5—C4—C19—C18124.35 (14)
C17—C4—C5—C6128.71 (15)C17—C4—C19—C182.56 (15)
C2—C4—C5—C7171.85 (12)C19—C18—C20—C211.2 (2)
C19—C4—C5—C763.78 (17)N3—C18—C20—C21177.76 (15)
C17—C4—C5—C751.35 (17)C18—C20—C21—C220.7 (2)
C7—C5—C6—O2177.59 (13)C20—C21—C22—C231.5 (3)
C4—C5—C6—O22.5 (2)C18—C19—C23—C221.7 (2)
C7—C5—C6—C102.6 (2)C4—C19—C23—C22177.94 (15)
C4—C5—C6—C10177.33 (14)C21—C22—C23—C190.2 (2)
C6—C5—C7—O1171.01 (14)C2—C3—N1—N20.26 (16)
C4—C5—C7—O19.1 (2)O2—C3—N1—N2179.36 (13)
C6—C5—C7—C89.8 (2)C2—C3—N1—C11176.30 (14)
C4—C5—C7—C8170.11 (13)O2—C3—N1—C114.1 (2)
O1—C7—C8—C9143.11 (15)C16—C11—N1—C3154.44 (15)
C5—C7—C8—C937.76 (19)C12—C11—N1—C326.1 (2)
C7—C8—C9—C2564.51 (17)C16—C11—N1—N221.8 (2)
C7—C8—C9—C1055.24 (17)C12—C11—N1—N2157.68 (13)
C7—C8—C9—C26174.65 (13)C2—C1—N2—N10.22 (16)
C5—C6—C10—C923.1 (2)C24—C1—N2—N1179.28 (13)
O2—C6—C10—C9157.05 (12)C3—N1—N2—C10.02 (16)
C25—C9—C10—C671.83 (16)C11—N1—N2—C1177.02 (12)
C8—C9—C10—C647.34 (17)O3—C17—N3—C18179.12 (15)
C26—C9—C10—C6167.49 (13)C4—C17—N3—C185.21 (16)
C16—C11—C12—C131.5 (2)C20—C18—N3—C17177.31 (15)
N1—C11—C12—C13178.02 (13)C19—C18—N3—C173.61 (18)
C11—C12—C13—C140.5 (2)N1—C3—O2—C6174.73 (13)
C12—C13—C14—C150.9 (2)C2—C3—O2—C64.8 (2)
C13—C14—C15—C161.5 (2)C5—C6—O2—C34.5 (2)
C12—C11—C16—C150.9 (2)C10—C6—O2—C3175.68 (12)
N1—C11—C16—C15178.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.882.052.9185 (18)172
C12—H12···O20.952.392.9780 (19)119
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H23N3O3
Mr425.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)11.8778 (19), 12.891 (2), 14.039 (2)
β (°) 100.280 (3)
V3)2115.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.40 × 0.39
Data collection
DiffractometerBruker SMART CCD 1K area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
9755, 4085, 3097
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.05
No. of reflections4085
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.882.052.9185 (18)171.5
C12—H12···O20.952.392.9780 (19)119.4
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 21072077 and 20672046) and the Guangdong Natural Science Foundation (Nos. 10151063201000051 and 8151063201000016) for financial support.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-L., Chen, H., Shi, C.-L., Shi, D.-Q. & Ji, S.-J. (2010). J. Comb. Chem. 12, 231–237.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShemchuk, L. A., Chernykh, V. P. & Red'kin, R. G. (2008). Russ. J. Org. Chem. 44, 1816–1821.  Google Scholar
First citationZhang, Y. & Panek, J. S. (2009). Org. Lett. 11, 3366–3369.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, S.-L., Ji, S.-J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds