organic compounds
4-[(9-Ethyl-9H-carbazol-3-yl)iminomethyl]phenol
aNortheast China Electric Power University Personnel, Jilin 132012, People's Republic of China
*Correspondence e-mail: songzhulin@hotmail.com
In the title compound, C21H18N2O, the dihedral angle between the phenol ring and the carbazole system is 39.34 (2)°. Intermolecular O—H⋯N hydrogen bonds and C—H⋯π and π–π interactions [centroid–centroid distances = 3.426 (2) and 3.768 (2) Å] stabilize the
Related literature
For polar organic molecules as components of non-linear optical, electro-optical, photorefractive and optical-limiting materials, see: Nalwa & Miyata (1997); Kuzyk & Dirk (1998); Nesterov et al. (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810046167/vm2053sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046167/vm2053Isup2.hkl
The title compound was synthesized by reaction of 9-ethyl-carbazol-3-amine (0.420 g, 0.002 mol) and 4-hydroxybenzaldehyde (0.244 g, 0.002 mol) in ethanol (50 ml) under stirring for 5 h at room temperature. Single crystals suitable for x-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93–0.96 Å, O—H distance=0.82 Å and with Uiso=1.2–1.5Ueq.
Polar organic molecules as components of NLO, electro-optical, photorefractive and optical-limiting materials have been under intensive investigation (Nalwa & Miyata, 1997; Kuzyk & Dirk, 1998; Nesterov et al., 2002). Many N-ethylcarbazole derivatives have been studied for this purpose. In this paper, we describe the synthesis and
of the title compound.In the title compound, atoms O1, C15, N2 lie in the plane of phenyl ring C16—C21 (p1) with the largest deviation of 0.002 (3) Å for C16. The atoms of the carbazole ring together with C2 and N2 form a plane (p2) for which the largest deviation is 0.068 (1) Å for C5. The fragment C11,N2, C15,C16,C17 is coplanar (p3). The dihedral angles formed by p1 with p2 and p3 are 39.34 (2) and 6.01 (2)°, respectively. The dihedral angle between p2 and p3 is 42.21 (3)°.
In the lattice, π–π and C—H···π interactions occur [Cg1···Cg1i = 3.426 (2), Cg2···Cg3i = 3.768 (2) Å, C1···Cg2ii = 3.698 (2) Å, H1A···Cg2ii = 2.77 Å, symmetry codes: i 1 - x, -y, 1 - z; ii 3/2 - x, -1/2 + y, z. Cg1, Cg2, Cg3 refer to ring N1—C3—C8—C9—C14 and phenyl rings C3—C8 and C9—C14, respectively]. In addition, an intermolecular hydrogen bond (Table 1) along with the C—H···π and π–π interactions stabilizes the The H-bond results in infinite chains along [010].
For polar organic molecules as components of non-linear optical, electro-optical, photorefractive and optical-limiting materials, see: Nalwa & Miyata (1997); Kuzyk & Dirk (1998); Nesterov et al. (2002).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
C21H18N2O | F(000) = 1328 |
Mr = 314.37 | Dx = 1.276 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 13.386 (6) Å | θ = 4–14° |
b = 9.247 (4) Å | µ = 0.08 mm−1 |
c = 26.443 (10) Å | T = 295 K |
V = 3273 (2) Å3 | Block, brown |
Z = 8 | 0.25 × 0.20 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.081 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 1.5° |
Graphite monochromator | h = −15→15 |
ω scans | k = −10→10 |
21605 measured reflections | l = −31→28 |
2878 independent reflections | 3 standard reflections every 100 reflections |
1615 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0568P)2 + 0.6129P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2878 reflections | Δρmax = 0.18 e Å−3 |
218 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0037 (8) |
C21H18N2O | V = 3273 (2) Å3 |
Mr = 314.37 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.386 (6) Å | µ = 0.08 mm−1 |
b = 9.247 (4) Å | T = 295 K |
c = 26.443 (10) Å | 0.25 × 0.20 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.081 |
21605 measured reflections | 3 standard reflections every 100 reflections |
2878 independent reflections | intensity decay: none |
1615 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.18 e Å−3 |
2878 reflections | Δρmin = −0.18 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.61757 (15) | 0.7932 (2) | 0.83217 (7) | 0.0802 (7) | |
H1 | 0.5624 | 0.8316 | 0.8314 | 0.096* | |
N1 | 0.64140 (15) | 0.0252 (2) | 0.47293 (8) | 0.0538 (6) | |
N2 | 0.58786 (17) | 0.3455 (2) | 0.64785 (8) | 0.0580 (6) | |
C1 | 0.7978 (2) | −0.0332 (4) | 0.42951 (13) | 0.0866 (10) | |
H1A | 0.8397 | −0.1123 | 0.4193 | 0.130* | |
H1B | 0.8343 | 0.0292 | 0.4519 | 0.130* | |
H1C | 0.7772 | 0.0202 | 0.4002 | 0.130* | |
C2 | 0.7074 (2) | −0.0908 (3) | 0.45633 (11) | 0.0639 (8) | |
H2B | 0.6711 | −0.1547 | 0.4338 | 0.077* | |
H2C | 0.7285 | −0.1468 | 0.4855 | 0.077* | |
C3 | 0.57518 (18) | 0.0966 (3) | 0.44114 (10) | 0.0509 (7) | |
C4 | 0.5568 (2) | 0.0753 (3) | 0.39037 (11) | 0.0635 (8) | |
H4A | 0.5892 | 0.0024 | 0.3725 | 0.076* | |
C5 | 0.4897 (2) | 0.1644 (3) | 0.36707 (12) | 0.0710 (9) | |
H5A | 0.4767 | 0.1523 | 0.3328 | 0.085* | |
C6 | 0.4407 (2) | 0.2721 (3) | 0.39335 (12) | 0.0692 (8) | |
H6A | 0.3953 | 0.3310 | 0.3765 | 0.083* | |
C7 | 0.45795 (19) | 0.2937 (3) | 0.44390 (11) | 0.0605 (7) | |
H7A | 0.4241 | 0.3658 | 0.4614 | 0.073* | |
C8 | 0.52679 (18) | 0.2060 (3) | 0.46856 (10) | 0.0473 (6) | |
C9 | 0.56752 (17) | 0.2025 (3) | 0.51875 (9) | 0.0462 (6) | |
C10 | 0.55122 (17) | 0.2834 (3) | 0.56227 (10) | 0.0509 (7) | |
H10A | 0.5030 | 0.3558 | 0.5624 | 0.061* | |
C11 | 0.60673 (19) | 0.2563 (3) | 0.60528 (10) | 0.0518 (7) | |
C12 | 0.6761 (2) | 0.1429 (3) | 0.60559 (10) | 0.0576 (7) | |
H12A | 0.7122 | 0.1242 | 0.6349 | 0.069* | |
C13 | 0.69205 (19) | 0.0585 (3) | 0.56350 (11) | 0.0579 (7) | |
H13A | 0.7376 | −0.0174 | 0.5642 | 0.069* | |
C14 | 0.63826 (18) | 0.0899 (3) | 0.51982 (10) | 0.0492 (7) | |
C15 | 0.6605 (2) | 0.3883 (3) | 0.67601 (11) | 0.0613 (8) | |
H15A | 0.7244 | 0.3539 | 0.6692 | 0.074* | |
C16 | 0.6471 (2) | 0.4883 (3) | 0.71814 (10) | 0.0593 (7) | |
C17 | 0.7279 (2) | 0.5339 (3) | 0.74665 (11) | 0.0716 (9) | |
H17A | 0.7907 | 0.4947 | 0.7404 | 0.086* | |
C18 | 0.7171 (2) | 0.6370 (4) | 0.78447 (11) | 0.0741 (9) | |
H18A | 0.7724 | 0.6675 | 0.8029 | 0.089* | |
C19 | 0.6242 (2) | 0.6938 (3) | 0.79452 (10) | 0.0624 (8) | |
C20 | 0.5425 (2) | 0.6490 (3) | 0.76697 (11) | 0.0685 (8) | |
H20A | 0.4795 | 0.6866 | 0.7739 | 0.082* | |
C21 | 0.5548 (2) | 0.5481 (3) | 0.72916 (11) | 0.0684 (8) | |
H21A | 0.4994 | 0.5192 | 0.7105 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0871 (15) | 0.0854 (15) | 0.0680 (13) | −0.0061 (12) | 0.0009 (11) | −0.0171 (12) |
N1 | 0.0561 (13) | 0.0473 (13) | 0.0581 (15) | 0.0069 (11) | 0.0047 (11) | −0.0006 (11) |
N2 | 0.0668 (15) | 0.0555 (14) | 0.0516 (14) | 0.0026 (12) | 0.0064 (12) | 0.0043 (12) |
C1 | 0.0619 (19) | 0.094 (2) | 0.104 (3) | 0.0178 (18) | 0.0165 (18) | 0.007 (2) |
C2 | 0.0691 (18) | 0.0502 (17) | 0.072 (2) | 0.0120 (15) | 0.0020 (15) | −0.0050 (15) |
C3 | 0.0504 (15) | 0.0465 (15) | 0.0558 (18) | −0.0040 (13) | 0.0049 (14) | 0.0011 (14) |
C4 | 0.0670 (18) | 0.0630 (19) | 0.061 (2) | 0.0038 (16) | 0.0000 (15) | −0.0093 (16) |
C5 | 0.074 (2) | 0.080 (2) | 0.0587 (19) | 0.0030 (18) | −0.0070 (16) | −0.0039 (17) |
C6 | 0.0697 (19) | 0.073 (2) | 0.065 (2) | 0.0118 (16) | −0.0099 (16) | 0.0089 (17) |
C7 | 0.0571 (17) | 0.0580 (18) | 0.066 (2) | 0.0058 (14) | 0.0018 (15) | 0.0063 (16) |
C8 | 0.0452 (14) | 0.0447 (15) | 0.0521 (17) | −0.0003 (12) | 0.0060 (12) | 0.0034 (13) |
C9 | 0.0459 (14) | 0.0403 (14) | 0.0524 (17) | 0.0001 (12) | 0.0066 (12) | 0.0055 (13) |
C10 | 0.0479 (15) | 0.0446 (15) | 0.0601 (17) | 0.0040 (12) | 0.0078 (14) | 0.0049 (14) |
C11 | 0.0564 (16) | 0.0490 (16) | 0.0499 (17) | 0.0001 (13) | 0.0109 (14) | 0.0028 (14) |
C12 | 0.0619 (17) | 0.0568 (17) | 0.0540 (18) | 0.0030 (15) | −0.0014 (14) | 0.0062 (15) |
C13 | 0.0585 (17) | 0.0518 (16) | 0.0633 (19) | 0.0102 (13) | −0.0003 (15) | 0.0057 (15) |
C14 | 0.0484 (15) | 0.0434 (15) | 0.0557 (18) | −0.0011 (13) | 0.0075 (13) | 0.0001 (14) |
C15 | 0.0726 (19) | 0.0539 (17) | 0.0573 (18) | 0.0054 (16) | 0.0096 (16) | 0.0085 (15) |
C16 | 0.0678 (19) | 0.0598 (18) | 0.0502 (18) | 0.0014 (15) | 0.0049 (15) | 0.0060 (14) |
C17 | 0.063 (2) | 0.081 (2) | 0.071 (2) | 0.0010 (17) | 0.0020 (16) | 0.0031 (19) |
C18 | 0.072 (2) | 0.087 (2) | 0.063 (2) | −0.0078 (18) | −0.0039 (16) | −0.0078 (18) |
C19 | 0.075 (2) | 0.0636 (18) | 0.0484 (17) | −0.0049 (17) | 0.0060 (16) | 0.0014 (15) |
C20 | 0.069 (2) | 0.075 (2) | 0.0622 (19) | 0.0049 (16) | 0.0005 (16) | −0.0105 (17) |
C21 | 0.068 (2) | 0.078 (2) | 0.0593 (19) | 0.0006 (17) | 0.0005 (15) | −0.0099 (17) |
O1—C19 | 1.358 (3) | C8—C9 | 1.435 (3) |
O1—H1 | 0.8200 | C9—C10 | 1.390 (3) |
N1—C14 | 1.377 (3) | C9—C14 | 1.407 (3) |
N1—C3 | 1.389 (3) | C10—C11 | 1.382 (3) |
N1—C2 | 1.457 (3) | C10—H10A | 0.9300 |
N2—C15 | 1.288 (3) | C11—C12 | 1.401 (3) |
N2—C11 | 1.418 (3) | C12—C13 | 1.376 (3) |
C1—C2 | 1.500 (4) | C12—H12A | 0.9300 |
C1—H1A | 0.9600 | C13—C14 | 1.392 (3) |
C1—H1B | 0.9600 | C13—H13A | 0.9300 |
C1—H1C | 0.9600 | C15—C16 | 1.459 (4) |
C2—H2B | 0.9700 | C15—H15A | 0.9300 |
C2—H2C | 0.9700 | C16—C17 | 1.384 (4) |
C3—C4 | 1.379 (3) | C16—C21 | 1.385 (4) |
C3—C8 | 1.403 (3) | C17—C18 | 1.389 (4) |
C4—C5 | 1.366 (4) | C17—H17A | 0.9300 |
C4—H4A | 0.9300 | C18—C19 | 1.376 (4) |
C5—C6 | 1.380 (4) | C18—H18A | 0.9300 |
C5—H5A | 0.9300 | C19—C20 | 1.378 (4) |
C6—C7 | 1.371 (4) | C20—C21 | 1.377 (4) |
C6—H6A | 0.9300 | C20—H20A | 0.9300 |
C7—C8 | 1.390 (3) | C21—H21A | 0.9300 |
C7—H7A | 0.9300 | ||
C19—O1—H1 | 109.5 | C14—C9—C8 | 106.9 (2) |
C14—N1—C3 | 108.6 (2) | C11—C10—C9 | 120.0 (2) |
C14—N1—C2 | 127.6 (2) | C11—C10—H10A | 120.0 |
C3—N1—C2 | 123.7 (2) | C9—C10—H10A | 120.0 |
C15—N2—C11 | 120.2 (2) | C10—C11—C12 | 119.8 (2) |
C2—C1—H1A | 109.5 | C10—C11—N2 | 116.9 (2) |
C2—C1—H1B | 109.5 | C12—C11—N2 | 123.3 (2) |
H1A—C1—H1B | 109.5 | C13—C12—C11 | 121.5 (2) |
C2—C1—H1C | 109.5 | C13—C12—H12A | 119.2 |
H1A—C1—H1C | 109.5 | C11—C12—H12A | 119.2 |
H1B—C1—H1C | 109.5 | C12—C13—C14 | 118.2 (2) |
N1—C2—C1 | 111.7 (2) | C12—C13—H13A | 120.9 |
N1—C2—H2B | 109.3 | C14—C13—H13A | 120.9 |
C1—C2—H2B | 109.3 | N1—C14—C13 | 129.8 (2) |
N1—C2—H2C | 109.3 | N1—C14—C9 | 108.9 (2) |
C1—C2—H2C | 109.3 | C13—C14—C9 | 121.3 (2) |
H2B—C2—H2C | 107.9 | N2—C15—C16 | 122.9 (3) |
C4—C3—N1 | 129.4 (2) | N2—C15—H15A | 118.5 |
C4—C3—C8 | 121.6 (3) | C16—C15—H15A | 118.5 |
N1—C3—C8 | 109.0 (2) | C17—C16—C21 | 117.5 (3) |
C5—C4—C3 | 118.0 (3) | C17—C16—C15 | 120.8 (3) |
C5—C4—H4A | 121.0 | C21—C16—C15 | 121.6 (3) |
C3—C4—H4A | 121.0 | C16—C17—C18 | 121.3 (3) |
C4—C5—C6 | 121.4 (3) | C16—C17—H17A | 119.4 |
C4—C5—H5A | 119.3 | C18—C17—H17A | 119.4 |
C6—C5—H5A | 119.3 | C19—C18—C17 | 119.7 (3) |
C7—C6—C5 | 121.1 (3) | C19—C18—H18A | 120.2 |
C7—C6—H6A | 119.5 | C17—C18—H18A | 120.2 |
C5—C6—H6A | 119.5 | O1—C19—C18 | 117.3 (3) |
C6—C7—C8 | 118.9 (3) | O1—C19—C20 | 122.6 (3) |
C6—C7—H7A | 120.5 | C18—C19—C20 | 120.0 (3) |
C8—C7—H7A | 120.5 | C21—C20—C19 | 119.5 (3) |
C7—C8—C3 | 119.0 (3) | C21—C20—H20A | 120.2 |
C7—C8—C9 | 134.3 (2) | C19—C20—H20A | 120.2 |
C3—C8—C9 | 106.6 (2) | C20—C21—C16 | 122.0 (3) |
C10—C9—C14 | 119.2 (2) | C20—C21—H21A | 119.0 |
C10—C9—C8 | 133.9 (2) | C16—C21—H21A | 119.0 |
Cg2 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.82 | 2.09 | 2.842 (3) | 153 |
C1—H1A···Cg2ii | 0.96 | 2.77 | 3.698 (2) | 162 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C21H18N2O |
Mr | 314.37 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 13.386 (6), 9.247 (4), 26.443 (10) |
V (Å3) | 3273 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21605, 2878, 1615 |
Rint | 0.081 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.140, 1.02 |
No. of reflections | 2878 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
Cg2 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.82 | 2.09 | 2.842 (3) | 153 |
C1—H1A···Cg2ii | 0.96 | 2.77 | 3.698 (2) | 162 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, z. |
Acknowledgements
The authors would like to thank the Jilin Province Science and Technology Development Plan for support.
References
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kuzyk, M. C. & Dirk, C. W. (1998). Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, p. 894. New York: Marcel Dekker Inc. Google Scholar
Nalwa, H. S. & Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers, p. 885. Boca Raton: CRC Press. Google Scholar
Nesterov, V. N., Montoya, N. G., Antipin, M. Yu., Sanghadasa, M., Clark, R. D. & Timofeeva, T. V. (2002). Acta Cryst. C58, o72–o75. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polar organic molecules as components of NLO, electro-optical, photorefractive and optical-limiting materials have been under intensive investigation (Nalwa & Miyata, 1997; Kuzyk & Dirk, 1998; Nesterov et al., 2002). Many N-ethylcarbazole derivatives have been studied for this purpose. In this paper, we describe the synthesis and structure determination of the title compound.
In the title compound, atoms O1, C15, N2 lie in the plane of phenyl ring C16—C21 (p1) with the largest deviation of 0.002 (3) Å for C16. The atoms of the carbazole ring together with C2 and N2 form a plane (p2) for which the largest deviation is 0.068 (1) Å for C5. The fragment C11,N2, C15,C16,C17 is coplanar (p3). The dihedral angles formed by p1 with p2 and p3 are 39.34 (2) and 6.01 (2)°, respectively. The dihedral angle between p2 and p3 is 42.21 (3)°.
In the lattice, π–π and C—H···π interactions occur [Cg1···Cg1i = 3.426 (2), Cg2···Cg3i = 3.768 (2) Å, C1···Cg2ii = 3.698 (2) Å, H1A···Cg2ii = 2.77 Å, symmetry codes: i 1 - x, -y, 1 - z; ii 3/2 - x, -1/2 + y, z. Cg1, Cg2, Cg3 refer to ring N1—C3—C8—C9—C14 and phenyl rings C3—C8 and C9—C14, respectively]. In addition, an intermolecular hydrogen bond (Table 1) along with the C—H···π and π–π interactions stabilizes the crystal structure. The H-bond results in infinite chains along [010].