metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Peroxido-bis­­[aceto­nitrile­bis­­(ethyl­enedi­amine)­cobalt(III)] tetra­kis­(per­chlorate)

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bBohomolets National Medical University, Department of General Chemistry, Shevchenko Blvd 13, 01004 Kiev, Ukraine, and cDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: khrystynaregeta@gmail.com

(Received 19 October 2010; accepted 16 November 2010; online 24 November 2010)

The title compound, [Co2(O2)(CH3CN)2(C2H8N2)4](ClO4)4, consists of centrosymmetric binuclear cations and perchlorate anions. Two CoIII atoms, which have a slightly distorted octa­hedral coordination, are connected through a peroxido bridge; the O—O distance is 1.476 (3) Å. Both acetonitrile ligands are situated in a trans position with respect to the O—O bridge. In the crystal, the complex cations are connected by N—H⋯O hydrogen bonds between ethyl­endiamine NH groups and O atoms from the perchlorate anions and peroxide O atoms.

Related literature

For related structures, see: Shibahara et al. (1973[Shibahara, T., Koda, S. & Mori, M. (1973). Bull. Chem. Soc. Jpn, 46, 2070-2076.]); Dexter et al. (1984[Dexter, D. D., Sutherby, C. N., Grieb, M. W. & Beaumont, R. C. (1984). Inorg. Chim. Acta, 86, 19-25.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); McMullen & Hagen (2002[McMullen, S. E. & Hagen, K. S. (2002). Acta Cryst. E58, m141-m143.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Wörl et al. (2005[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759-765.]). For of applications di­oxy­gen cobalt complexes, see: Busch & Alcock (1994[Busch, D. H. & Alcock, N. W. (1994). Chem. Rev. 94, 585-623.]), Jain & Sain (2003[Jain, S. L. & Sain, B. (2003). Angew. Chem. Int. Ed. 42, 1265-1267.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4

  • Mr = 870.18

  • Monoclinic, P 21 /n

  • a = 11.9747 (7) Å

  • b = 8.3348 (6) Å

  • c = 16.4921 (10) Å

  • β = 109.702 (5)°

  • V = 1549.66 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.40 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). COLLECT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.584, Tmax = 0.838

  • 29196 measured reflections

  • 3550 independent reflections

  • 2868 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.04

  • 3550 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.8640 (13)
Co1—N5 1.9289 (16)
Co1—N2 1.9382 (17)
Co1—N3 1.9430 (17)
Co1—N4 1.9533 (17)
Co1—N1 1.9565 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4ii 0.82 2.18 2.989 (2) 168
N1—H1M⋯O6 0.95 2.12 2.945 (2) 145
N2—H2N⋯O5iii 0.87 2.26 3.084 (2) 158
N2—H2M⋯O1i 0.77 2.31 2.860 (2) 129
N3—H3N⋯O8iv 0.86 2.29 3.094 (2) 156
N3—H3M⋯O1i 0.89 2.17 2.735 (2) 120
N3—H3M⋯O7i 0.89 2.26 3.042 (2) 146
N4—H4N⋯O2 0.80 2.23 3.000 (2) 160
N4—H4M⋯O9v 0.83 2.57 3.266 (2) 142
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bradenburg, 2006[Bradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dioxygen complexes have been investigated in order to understand the mechanisms of oxygen metabolism such as O2 transport, storage and activation, which are essential events for life. The dioxygen cobalt complexes attract a lot of attention because of their potential use as artificial oxygen carriers (Busch et al., 1994) and industrial oxidation catalysts (Jain et al., 2003), for example: the p-xylene oxidation giving terephtalic acid and the adipic acid synthesis from cyclohexane. In many cases, reactions of cobalt (II) complexes with dioxygen proceeds, however, irreversibly resulting in formation of cobalt (III) complexes, and very often the intermediate products of such reactions appear to be binuclear cobalt (III) peroxo species. The title compound (I) was obtained as a result of reaction of cobalt (II) perchlorate in acetonitrile and ethylendiamine. The crystal structure of (I) consists of cationic dicobalt(III) µ2-peroxo complexes and perchlorate anions. The molecules are centrosymmetric. The Co (III) ions are six-coordinated, the axial positions are occupied by acetonitrile and peroxo bridge, the ethylendiamine ligands lie in the equatorial plane. The acetonitriles ligands are trans with respect to the O—O bridge. The analysis of the bond lengths and angles of (I) indicates that the coordination environment of the cobalt is slightly distorted octahedral. The bond distances Co1—N (CH3CN), Co1—O and O—O are 1.9289 (16), 1.8640 (13) and 1.476 (3) Å, respectively. The average of Co—N(en) distances is 1.9478 Å and average of O1—Co—N(en) angles is 89.80°. The bond angle O—Co—N (MeCN) is equal 177.26 (7)°. The C—N, CN and C—C bond lengths in the ethylenediamine and acetonitrile ligands are normal and close to the values observed in the related structures (Sliva et al., 1997; Petrusenko et al., 1997; Mokhir et al., 2002; Wörl et al., 2005).

Perchlorate anions do not form direct bonds with cobalt but they are connected to NH groups of ethylendiamine through hydrogen bonds. All of the NH groups of ethylenediamine form hydrogen bonds with either the oxygen atoms of perchlorate anions or the peroxide oxygen atoms (Table 2). A hydrogen-bonding network links the cations and anions into stacks stretching along the b axis (Fig. 2).

Related literature top

For related structures, see: Shibahara et al. (1973); Dexter et al. (1984); Sliva et al. (1997); Petrusenko et al. (1997); McMullen & Hagen (2002); Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005). For applications dioxygen cobalt complexes, see: Busch et al. (1994), Jain et al. (2003).

Experimental top

The title compound was obtained by slow diffusion of ethylendiamine vapours to the air-exposured solution, containing Co(ClO4)2 (0,1 mmol/L) in acetonitrile. The yellow-brown crystals were formed in ten days.

Refinement top

The NH2 hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.98–0.99 Å, and Uiso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.84 Å from atom Co1 and the deepest hole is located 0.57 Å from atom Cl1.

Structure description top

Dioxygen complexes have been investigated in order to understand the mechanisms of oxygen metabolism such as O2 transport, storage and activation, which are essential events for life. The dioxygen cobalt complexes attract a lot of attention because of their potential use as artificial oxygen carriers (Busch et al., 1994) and industrial oxidation catalysts (Jain et al., 2003), for example: the p-xylene oxidation giving terephtalic acid and the adipic acid synthesis from cyclohexane. In many cases, reactions of cobalt (II) complexes with dioxygen proceeds, however, irreversibly resulting in formation of cobalt (III) complexes, and very often the intermediate products of such reactions appear to be binuclear cobalt (III) peroxo species. The title compound (I) was obtained as a result of reaction of cobalt (II) perchlorate in acetonitrile and ethylendiamine. The crystal structure of (I) consists of cationic dicobalt(III) µ2-peroxo complexes and perchlorate anions. The molecules are centrosymmetric. The Co (III) ions are six-coordinated, the axial positions are occupied by acetonitrile and peroxo bridge, the ethylendiamine ligands lie in the equatorial plane. The acetonitriles ligands are trans with respect to the O—O bridge. The analysis of the bond lengths and angles of (I) indicates that the coordination environment of the cobalt is slightly distorted octahedral. The bond distances Co1—N (CH3CN), Co1—O and O—O are 1.9289 (16), 1.8640 (13) and 1.476 (3) Å, respectively. The average of Co—N(en) distances is 1.9478 Å and average of O1—Co—N(en) angles is 89.80°. The bond angle O—Co—N (MeCN) is equal 177.26 (7)°. The C—N, CN and C—C bond lengths in the ethylenediamine and acetonitrile ligands are normal and close to the values observed in the related structures (Sliva et al., 1997; Petrusenko et al., 1997; Mokhir et al., 2002; Wörl et al., 2005).

Perchlorate anions do not form direct bonds with cobalt but they are connected to NH groups of ethylendiamine through hydrogen bonds. All of the NH groups of ethylenediamine form hydrogen bonds with either the oxygen atoms of perchlorate anions or the peroxide oxygen atoms (Table 2). A hydrogen-bonding network links the cations and anions into stacks stretching along the b axis (Fig. 2).

For related structures, see: Shibahara et al. (1973); Dexter et al. (1984); Sliva et al. (1997); Petrusenko et al. (1997); McMullen & Hagen (2002); Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005). For applications dioxygen cobalt complexes, see: Busch et al. (1994), Jain et al. (2003).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids showing the atom-numbering scheme employed. As molecule is centrosymmetric, two perchlorate groups are omitted. [Symmetry code: (a) 1 - x, -y, -z].
[Figure 2] Fig. 2. A packing diagram for compound (I). Hydrogen bonds are indicated by dashed lines.
µ-Peroxido-bis[acetonitrilebis(ethylenediamine)cobalt(III)] tetrakis(perchlorate) top
Crystal data top
[Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4F(000) = 892
Mr = 870.18Dx = 1.865 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6337 reflections
a = 11.9747 (7) Åθ = 1.0–27.5°
b = 8.3348 (6) ŵ = 1.51 mm1
c = 16.4921 (10) ÅT = 100 K
β = 109.702 (5)°Plate, yellow-brown
V = 1549.66 (17) Å30.40 × 0.14 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3550 independent reflections
Radiation source: fine-focus sealed tube2868 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ scans and ω scans with κ offseth = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1010
Tmin = 0.584, Tmax = 0.838l = 2121
29196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.566P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3550 reflectionsΔρmax = 0.45 e Å3
209 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
[Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4V = 1549.66 (17) Å3
Mr = 870.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.9747 (7) ŵ = 1.51 mm1
b = 8.3348 (6) ÅT = 100 K
c = 16.4921 (10) Å0.40 × 0.14 × 0.12 mm
β = 109.702 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2868 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.838Rint = 0.044
29196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
3550 reflectionsΔρmin = 0.38 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.44371 (2)0.03919 (3)0.114097 (16)0.01180 (8)
Cl10.43255 (5)0.54025 (6)0.29786 (3)0.02212 (12)
Cl20.26746 (4)0.44096 (6)0.07578 (3)0.01802 (11)
O10.45899 (12)0.06143 (16)0.00586 (8)0.0144 (3)
O20.34823 (15)0.4558 (2)0.22821 (13)0.0433 (5)
O30.49202 (19)0.4287 (2)0.36324 (12)0.0454 (5)
O40.37142 (19)0.6573 (2)0.33071 (14)0.0467 (5)
O50.51665 (15)0.6197 (2)0.26689 (11)0.0317 (4)
O60.21587 (15)0.3920 (2)0.01269 (10)0.0301 (4)
O70.29139 (18)0.3044 (2)0.11896 (12)0.0459 (5)
O80.18693 (13)0.54567 (18)0.13697 (9)0.0207 (3)
O90.37603 (14)0.5250 (2)0.03261 (10)0.0304 (4)
N10.27241 (15)0.0668 (2)0.05928 (11)0.0178 (4)
H1N0.24290.09400.09540.027*
H1M0.25990.14810.01680.027*
N20.41301 (15)0.1890 (2)0.09797 (11)0.0173 (4)
H2N0.45910.24540.14040.026*
H2M0.43200.21030.05910.026*
N30.61375 (15)0.0074 (2)0.16628 (11)0.0149 (3)
H3N0.62680.03630.21570.022*
H3M0.63530.06000.13200.022*
N40.47635 (15)0.2686 (2)0.13121 (10)0.0154 (4)
H4N0.42750.31120.14730.023*
H4M0.48310.30580.08630.023*
N50.42619 (15)0.0270 (2)0.22599 (11)0.0153 (3)
C10.21715 (19)0.0890 (3)0.02411 (14)0.0223 (5)
H1A0.22000.10550.03460.027*
H1B0.13320.09100.02110.027*
C20.2860 (2)0.2181 (3)0.08353 (14)0.0221 (5)
H2A0.27070.21420.13890.026*
H2B0.26230.32500.05730.026*
C30.67342 (18)0.1652 (2)0.17222 (13)0.0175 (4)
H3A0.68260.19280.11640.021*
H3B0.75300.16200.21700.021*
C40.59672 (18)0.2872 (2)0.19526 (13)0.0172 (4)
H4A0.59550.26770.25420.021*
H4B0.62710.39690.19270.021*
C50.42665 (17)0.0207 (2)0.29474 (13)0.0160 (4)
C60.4315 (2)0.0148 (3)0.38351 (13)0.0220 (5)
H6A0.48930.06630.41460.033*
H6B0.35310.01330.38570.033*
H6C0.45530.11990.41040.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01439 (14)0.01312 (14)0.00968 (13)0.00057 (11)0.00640 (10)0.00060 (10)
Cl10.0281 (3)0.0222 (3)0.0219 (3)0.0016 (2)0.0162 (2)0.0029 (2)
Cl20.0178 (2)0.0204 (2)0.0144 (2)0.00197 (19)0.00348 (19)0.00035 (19)
O10.0189 (7)0.0159 (7)0.0114 (6)0.0061 (6)0.0088 (6)0.0020 (5)
O20.0229 (9)0.0592 (13)0.0456 (11)0.0001 (9)0.0090 (8)0.0269 (10)
O30.0617 (14)0.0395 (11)0.0338 (10)0.0038 (10)0.0146 (10)0.0120 (8)
O40.0672 (14)0.0256 (9)0.0752 (14)0.0083 (9)0.0606 (12)0.0138 (9)
O50.0295 (9)0.0359 (10)0.0388 (10)0.0040 (8)0.0234 (8)0.0101 (8)
O60.0323 (9)0.0324 (9)0.0278 (9)0.0016 (7)0.0130 (7)0.0113 (7)
O70.0592 (13)0.0373 (10)0.0327 (10)0.0242 (10)0.0044 (9)0.0101 (8)
O80.0179 (7)0.0237 (8)0.0187 (7)0.0035 (6)0.0036 (6)0.0061 (6)
O90.0185 (8)0.0451 (10)0.0232 (8)0.0069 (7)0.0014 (7)0.0031 (8)
N10.0173 (9)0.0234 (9)0.0152 (8)0.0012 (7)0.0087 (7)0.0020 (7)
N20.0225 (9)0.0181 (9)0.0143 (8)0.0000 (7)0.0102 (7)0.0000 (7)
N30.0176 (9)0.0173 (8)0.0108 (8)0.0028 (7)0.0059 (7)0.0011 (6)
N40.0174 (9)0.0162 (8)0.0154 (8)0.0027 (7)0.0090 (7)0.0001 (7)
N50.0156 (8)0.0165 (8)0.0152 (9)0.0008 (7)0.0072 (7)0.0011 (7)
C10.0189 (11)0.0298 (12)0.0207 (11)0.0058 (9)0.0099 (9)0.0057 (9)
C20.0267 (12)0.0206 (11)0.0244 (11)0.0080 (9)0.0157 (10)0.0038 (9)
C30.0169 (10)0.0200 (10)0.0169 (10)0.0024 (8)0.0073 (8)0.0039 (8)
C40.0190 (10)0.0180 (10)0.0155 (10)0.0012 (8)0.0070 (8)0.0028 (8)
C50.0146 (10)0.0162 (10)0.0183 (10)0.0009 (8)0.0071 (8)0.0009 (8)
C60.0234 (11)0.0306 (12)0.0153 (10)0.0010 (9)0.0107 (9)0.0012 (9)
Geometric parameters (Å, º) top
Co1—O11.8640 (13)N3—C31.484 (3)
Co1—N51.9289 (16)N3—H3N0.8574
Co1—N21.9382 (17)N3—H3M0.8943
Co1—N31.9430 (17)N4—C41.480 (3)
Co1—N41.9533 (17)N4—H4N0.8014
Co1—N11.9565 (17)N4—H4M0.8322
Cl1—O31.4198 (19)N5—C51.133 (3)
Cl1—O41.4313 (17)C1—C21.501 (3)
Cl1—O21.4328 (18)C1—H1A0.9900
Cl1—O51.4353 (16)C1—H1B0.9900
Cl2—O71.4219 (18)C2—H2A0.9900
Cl2—O81.4331 (15)C2—H2B0.9900
Cl2—O91.4364 (16)C3—C41.502 (3)
Cl2—O61.4366 (16)C3—H3A0.9900
O1—O1i1.476 (3)C3—H3B0.9900
N1—C11.484 (3)C4—H4A0.9900
N1—H1N0.8204C4—H4B0.9900
N1—H1M0.9493C5—C61.446 (3)
N2—C21.478 (3)C6—H6A0.9800
N2—H2N0.8691C6—H6B0.9800
N2—H2M0.7698C6—H6C0.9800
O1—Co1—N5177.26 (7)Co1—N3—H3N107.9
O1—Co1—N292.38 (6)C3—N3—H3M111.3
N5—Co1—N290.16 (7)Co1—N3—H3M106.7
O1—Co1—N390.64 (6)H3N—N3—H3M109.5
N5—Co1—N390.28 (7)C4—N4—Co1107.74 (12)
N2—Co1—N392.81 (7)C4—N4—H4N111.2
O1—Co1—N487.80 (6)Co1—N4—H4N110.4
N5—Co1—N489.68 (7)C4—N4—H4M103.5
N2—Co1—N4179.39 (8)Co1—N4—H4M108.1
N3—Co1—N486.60 (7)H4N—N4—H4M115.5
O1—Co1—N188.39 (7)C5—N5—Co1173.85 (17)
N5—Co1—N190.75 (7)N1—C1—C2107.31 (17)
N2—Co1—N186.05 (7)N1—C1—H1A110.3
N3—Co1—N1178.47 (7)C2—C1—H1A110.3
N4—Co1—N194.54 (7)N1—C1—H1B110.3
O3—Cl1—O4110.39 (13)C2—C1—H1B110.3
O3—Cl1—O2108.94 (13)H1A—C1—H1B108.5
O4—Cl1—O2109.05 (12)N2—C2—C1107.26 (17)
O3—Cl1—O5109.85 (11)N2—C2—H2A110.3
O4—Cl1—O5109.27 (10)C1—C2—H2A110.3
O2—Cl1—O5109.31 (11)N2—C2—H2B110.3
O7—Cl2—O8109.63 (10)C1—C2—H2B110.3
O7—Cl2—O9109.68 (12)H2A—C2—H2B108.5
O8—Cl2—O9109.51 (10)N3—C3—C4107.14 (16)
O7—Cl2—O6110.11 (12)N3—C3—H3A110.3
O8—Cl2—O6109.36 (9)C4—C3—H3A110.3
O9—Cl2—O6108.53 (10)N3—C3—H3B110.3
O1i—O1—Co1109.93 (12)C4—C3—H3B110.3
C1—N1—Co1109.73 (13)H3A—C3—H3B108.5
C1—N1—H1N106.3N4—C4—C3106.26 (16)
Co1—N1—H1N109.7N4—C4—H4A110.5
C1—N1—H1M113.4C3—C4—H4A110.5
Co1—N1—H1M107.7N4—C4—H4B110.5
H1N—N1—H1M109.9C3—C4—H4B110.5
C2—N2—Co1108.69 (13)H4A—C4—H4B108.7
C2—N2—H2N112.4N5—C5—C6178.0 (2)
Co1—N2—H2N112.4C5—C6—H6A109.5
C2—N2—H2M113.9C5—C6—H6B109.5
Co1—N2—H2M104.2H6A—C6—H6B109.5
H2N—N2—H2M105.0C5—C6—H6C109.5
C3—N3—Co1108.53 (12)H6A—C6—H6C109.5
C3—N3—H3N112.6H6B—C6—H6C109.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4ii0.822.182.989 (2)168
N1—H1M···O60.952.122.945 (2)145
N2—H2N···O5iii0.872.263.084 (2)158
N2—H2M···O1i0.772.312.860 (2)129
N3—H3N···O8iv0.862.293.094 (2)156
N3—H3M···O1i0.892.172.735 (2)120
N3—H3M···O7i0.892.263.042 (2)146
N4—H4N···O20.802.233.000 (2)160
N4—H4M···O9v0.832.573.266 (2)142
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4
Mr870.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.9747 (7), 8.3348 (6), 16.4921 (10)
β (°) 109.702 (5)
V3)1549.66 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.40 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.584, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
29196, 3550, 2868
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.04
No. of reflections3550
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: COLLECT (Bruker, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bradenburg, 2006).

Selected geometric parameters (Å, º) top
Co1—O11.8640 (13)Co1—N11.9565 (17)
Co1—N51.9289 (16)O1—O1i1.476 (3)
Co1—N21.9382 (17)N5—C51.133 (3)
Co1—N31.9430 (17)C5—C61.446 (3)
Co1—N41.9533 (17)
O1—Co1—N5177.26 (7)O1i—O1—Co1109.93 (12)
N3—Co1—N486.60 (7)C5—N5—Co1173.85 (17)
N2—Co1—N186.05 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4ii0.822.182.989 (2)168
N1—H1M···O60.952.122.945 (2)145
N2—H2N···O5iii0.872.263.084 (2)158
N2—H2M···O1i0.772.312.860 (2)129
N3—H3N···O8iv0.862.293.094 (2)156
N3—H3M···O1i0.892.172.735 (2)120
N3—H3M···O7i0.892.263.042 (2)146
N4—H4N···O20.802.233.000 (2)160
N4—H4M···O9v0.832.573.266 (2)142
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

References

First citationBradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). COLLECT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusch, D. H. & Alcock, N. W. (1994). Chem. Rev. 94, 585–623.  CrossRef CAS Web of Science Google Scholar
First citationDexter, D. D., Sutherby, C. N., Grieb, M. W. & Beaumont, R. C. (1984). Inorg. Chim. Acta, 86, 19–25.  CSD CrossRef CAS Web of Science Google Scholar
First citationJain, S. L. & Sain, B. (2003). Angew. Chem. Int. Ed. 42, 1265–1267.  Web of Science CrossRef CAS Google Scholar
First citationMcMullen, S. E. & Hagen, K. S. (2002). Acta Cryst. E58, m141–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, T., Koda, S. & Mori, M. (1973). Bull. Chem. Soc. Jpn, 46, 2070–2076.  CrossRef CAS Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds