metal-organic compounds
μ-Peroxido-bis[acetonitrilebis(ethylenediamine)cobalt(III)] tetrakis(perchlorate)
aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bBohomolets National Medical University, Department of General Chemistry, Shevchenko Blvd 13, 01004 Kiev, Ukraine, and cDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: khrystynaregeta@gmail.com
The title compound, [Co2(O2)(CH3CN)2(C2H8N2)4](ClO4)4, consists of centrosymmetric binuclear cations and perchlorate anions. Two CoIII atoms, which have a slightly distorted octahedral coordination, are connected through a peroxido bridge; the O—O distance is 1.476 (3) Å. Both acetonitrile ligands are situated in a trans position with respect to the O—O bridge. In the crystal, the complex cations are connected by N—H⋯O hydrogen bonds between ethylendiamine NH groups and O atoms from the perchlorate anions and peroxide O atoms.
Related literature
For related structures, see: Shibahara et al. (1973); Dexter et al. (1984); Sliva et al. (1997); Petrusenko et al. (1997); McMullen & Hagen (2002); Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005). For of applications dioxygen cobalt complexes, see: Busch & Alcock (1994), Jain & Sain (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Bruker, 2004); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810047653/vm2054sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047653/vm2054Isup2.hkl
The title compound was obtained by slow diffusion of ethylendiamine vapours to the air-exposured solution, containing Co(ClO4)2 (0,1 mmol/L) in acetonitrile. The yellow-brown crystals were formed in ten days.
The NH2 hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.98–0.99 Å, and Uiso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.84 Å from atom Co1 and the deepest hole is located 0.57 Å from atom Cl1.
Dioxygen complexes have been investigated in order to understand the mechanisms of oxygen metabolism such as O2 transport, storage and activation, which are essential events for life. The dioxygen cobalt complexes attract a lot of attention because of their potential use as artificial oxygen carriers (Busch et al., 1994) and industrial oxidation catalysts (Jain et al., 2003), for example: the p-xylene oxidation giving terephtalic acid and the adipic acid synthesis from cyclohexane. In many cases, reactions of cobalt (II) complexes with dioxygen proceeds, however, irreversibly resulting in formation of cobalt (III) complexes, and very often the intermediate products of such reactions appear to be binuclear cobalt (III) peroxo species. The title compound (I) was obtained as a result of reaction of cobalt (II) perchlorate in acetonitrile and ethylendiamine. The ≡N and C—C bond lengths in the ethylenediamine and acetonitrile ligands are normal and close to the values observed in the related structures (Sliva et al., 1997; Petrusenko et al., 1997; Mokhir et al., 2002; Wörl et al., 2005).
of (I) consists of cationic dicobalt(III) µ2-peroxo complexes and perchlorate anions. The molecules are centrosymmetric. The Co (III) ions are six-coordinated, the axial positions are occupied by acetonitrile and peroxo bridge, the ethylendiamine ligands lie in the equatorial plane. The acetonitriles ligands are trans with respect to the O—O bridge. The analysis of the bond lengths and angles of (I) indicates that the coordination environment of the cobalt is slightly distorted octahedral. The bond distances Co1—N (CH3CN), Co1—O and O—O are 1.9289 (16), 1.8640 (13) and 1.476 (3) Å, respectively. The average of Co—N(en) distances is 1.9478 Å and average of O1—Co—N(en) angles is 89.80°. The bond angle O—Co—N (MeCN) is equal 177.26 (7)°. The C—N, CPerchlorate anions do not form direct bonds with cobalt but they are connected to NH groups of ethylendiamine through hydrogen bonds. All of the NH groups of ethylenediamine form hydrogen bonds with either the oxygen atoms of perchlorate anions or the peroxide oxygen atoms (Table 2). A hydrogen-bonding network links the cations and anions into stacks stretching along the b axis (Fig. 2).
For related structures, see: Shibahara et al. (1973); Dexter et al. (1984); Sliva et al. (1997); Petrusenko et al. (1997); McMullen & Hagen (2002); Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005). For applications dioxygen cobalt complexes, see: Busch et al. (1994), Jain et al. (2003).
Data collection: COLLECT (Bruker, 2004); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids showing the atom-numbering scheme employed. As molecule is centrosymmetric, two perchlorate groups are omitted. [Symmetry code: (a) 1 - x, -y, -z]. | |
Fig. 2. A packing diagram for compound (I). Hydrogen bonds are indicated by dashed lines. |
[Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4 | F(000) = 892 |
Mr = 870.18 | Dx = 1.865 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6337 reflections |
a = 11.9747 (7) Å | θ = 1.0–27.5° |
b = 8.3348 (6) Å | µ = 1.51 mm−1 |
c = 16.4921 (10) Å | T = 100 K |
β = 109.702 (5)° | Plate, yellow-brown |
V = 1549.66 (17) Å3 | 0.40 × 0.14 × 0.12 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3550 independent reflections |
Radiation source: fine-focus sealed tube | 2868 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.044 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
φ scans and ω scans with κ offset | h = −15→15 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −10→10 |
Tmin = 0.584, Tmax = 0.838 | l = −21→21 |
29196 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0258P)2 + 1.566P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3550 reflections | Δρmax = 0.45 e Å−3 |
209 parameters | Δρmin = −0.38 e Å−3 |
0 restraints |
[Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4 | V = 1549.66 (17) Å3 |
Mr = 870.18 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.9747 (7) Å | µ = 1.51 mm−1 |
b = 8.3348 (6) Å | T = 100 K |
c = 16.4921 (10) Å | 0.40 × 0.14 × 0.12 mm |
β = 109.702 (5)° |
Nonius KappaCCD diffractometer | 3550 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 2868 reflections with I > 2σ(I) |
Tmin = 0.584, Tmax = 0.838 | Rint = 0.044 |
29196 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.45 e Å−3 |
3550 reflections | Δρmin = −0.38 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.44371 (2) | 0.03919 (3) | 0.114097 (16) | 0.01180 (8) | |
Cl1 | 0.43255 (5) | 0.54025 (6) | 0.29786 (3) | 0.02212 (12) | |
Cl2 | 0.26746 (4) | 0.44096 (6) | −0.07578 (3) | 0.01802 (11) | |
O1 | 0.45899 (12) | 0.06143 (16) | 0.00586 (8) | 0.0144 (3) | |
O2 | 0.34823 (15) | 0.4558 (2) | 0.22821 (13) | 0.0433 (5) | |
O3 | 0.49202 (19) | 0.4287 (2) | 0.36324 (12) | 0.0454 (5) | |
O4 | 0.37142 (19) | 0.6573 (2) | 0.33071 (14) | 0.0467 (5) | |
O5 | 0.51665 (15) | 0.6197 (2) | 0.26689 (11) | 0.0317 (4) | |
O6 | 0.21587 (15) | 0.3920 (2) | −0.01269 (10) | 0.0301 (4) | |
O7 | 0.29139 (18) | 0.3044 (2) | −0.11896 (12) | 0.0459 (5) | |
O8 | 0.18693 (13) | 0.54567 (18) | −0.13697 (9) | 0.0207 (3) | |
O9 | 0.37603 (14) | 0.5250 (2) | −0.03261 (10) | 0.0304 (4) | |
N1 | 0.27241 (15) | 0.0668 (2) | 0.05928 (11) | 0.0178 (4) | |
H1N | 0.2429 | 0.0940 | 0.0954 | 0.027* | |
H1M | 0.2599 | 0.1481 | 0.0168 | 0.027* | |
N2 | 0.41301 (15) | −0.1890 (2) | 0.09797 (11) | 0.0173 (4) | |
H2N | 0.4591 | −0.2454 | 0.1404 | 0.026* | |
H2M | 0.4320 | −0.2103 | 0.0591 | 0.026* | |
N3 | 0.61375 (15) | 0.0074 (2) | 0.16628 (11) | 0.0149 (3) | |
H3N | 0.6268 | −0.0363 | 0.2157 | 0.022* | |
H3M | 0.6353 | −0.0600 | 0.1320 | 0.022* | |
N4 | 0.47635 (15) | 0.2686 (2) | 0.13121 (10) | 0.0154 (4) | |
H4N | 0.4275 | 0.3112 | 0.1473 | 0.023* | |
H4M | 0.4831 | 0.3058 | 0.0863 | 0.023* | |
N5 | 0.42619 (15) | 0.0270 (2) | 0.22599 (11) | 0.0153 (3) | |
C1 | 0.21715 (19) | −0.0890 (3) | 0.02411 (14) | 0.0223 (5) | |
H1A | 0.2200 | −0.1055 | −0.0346 | 0.027* | |
H1B | 0.1332 | −0.0910 | 0.0211 | 0.027* | |
C2 | 0.2860 (2) | −0.2181 (3) | 0.08353 (14) | 0.0221 (5) | |
H2A | 0.2707 | −0.2142 | 0.1389 | 0.026* | |
H2B | 0.2623 | −0.3250 | 0.0573 | 0.026* | |
C3 | 0.67342 (18) | 0.1652 (2) | 0.17222 (13) | 0.0175 (4) | |
H3A | 0.6826 | 0.1928 | 0.1164 | 0.021* | |
H3B | 0.7530 | 0.1620 | 0.2170 | 0.021* | |
C4 | 0.59672 (18) | 0.2872 (2) | 0.19526 (13) | 0.0172 (4) | |
H4A | 0.5955 | 0.2677 | 0.2542 | 0.021* | |
H4B | 0.6271 | 0.3969 | 0.1927 | 0.021* | |
C5 | 0.42665 (17) | 0.0207 (2) | 0.29474 (13) | 0.0160 (4) | |
C6 | 0.4315 (2) | 0.0148 (3) | 0.38351 (13) | 0.0220 (5) | |
H6A | 0.4893 | −0.0663 | 0.4146 | 0.033* | |
H6B | 0.3531 | −0.0133 | 0.3857 | 0.033* | |
H6C | 0.4553 | 0.1199 | 0.4104 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01439 (14) | 0.01312 (14) | 0.00968 (13) | 0.00057 (11) | 0.00640 (10) | 0.00060 (10) |
Cl1 | 0.0281 (3) | 0.0222 (3) | 0.0219 (3) | −0.0016 (2) | 0.0162 (2) | −0.0029 (2) |
Cl2 | 0.0178 (2) | 0.0204 (2) | 0.0144 (2) | 0.00197 (19) | 0.00348 (19) | 0.00035 (19) |
O1 | 0.0189 (7) | 0.0159 (7) | 0.0114 (6) | 0.0061 (6) | 0.0088 (6) | 0.0020 (5) |
O2 | 0.0229 (9) | 0.0592 (13) | 0.0456 (11) | −0.0001 (9) | 0.0090 (8) | −0.0269 (10) |
O3 | 0.0617 (14) | 0.0395 (11) | 0.0338 (10) | −0.0038 (10) | 0.0146 (10) | 0.0120 (8) |
O4 | 0.0672 (14) | 0.0256 (9) | 0.0752 (14) | −0.0083 (9) | 0.0606 (12) | −0.0138 (9) |
O5 | 0.0295 (9) | 0.0359 (10) | 0.0388 (10) | 0.0040 (8) | 0.0234 (8) | 0.0101 (8) |
O6 | 0.0323 (9) | 0.0324 (9) | 0.0278 (9) | −0.0016 (7) | 0.0130 (7) | 0.0113 (7) |
O7 | 0.0592 (13) | 0.0373 (10) | 0.0327 (10) | 0.0242 (10) | 0.0044 (9) | −0.0101 (8) |
O8 | 0.0179 (7) | 0.0237 (8) | 0.0187 (7) | 0.0035 (6) | 0.0036 (6) | 0.0061 (6) |
O9 | 0.0185 (8) | 0.0451 (10) | 0.0232 (8) | −0.0069 (7) | 0.0014 (7) | 0.0031 (8) |
N1 | 0.0173 (9) | 0.0234 (9) | 0.0152 (8) | 0.0012 (7) | 0.0087 (7) | 0.0020 (7) |
N2 | 0.0225 (9) | 0.0181 (9) | 0.0143 (8) | 0.0000 (7) | 0.0102 (7) | 0.0000 (7) |
N3 | 0.0176 (9) | 0.0173 (8) | 0.0108 (8) | 0.0028 (7) | 0.0059 (7) | 0.0011 (6) |
N4 | 0.0174 (9) | 0.0162 (8) | 0.0154 (8) | 0.0027 (7) | 0.0090 (7) | −0.0001 (7) |
N5 | 0.0156 (8) | 0.0165 (8) | 0.0152 (9) | 0.0008 (7) | 0.0072 (7) | 0.0011 (7) |
C1 | 0.0189 (11) | 0.0298 (12) | 0.0207 (11) | −0.0058 (9) | 0.0099 (9) | −0.0057 (9) |
C2 | 0.0267 (12) | 0.0206 (11) | 0.0244 (11) | −0.0080 (9) | 0.0157 (10) | −0.0038 (9) |
C3 | 0.0169 (10) | 0.0200 (10) | 0.0169 (10) | −0.0024 (8) | 0.0073 (8) | −0.0039 (8) |
C4 | 0.0190 (10) | 0.0180 (10) | 0.0155 (10) | −0.0012 (8) | 0.0070 (8) | −0.0028 (8) |
C5 | 0.0146 (10) | 0.0162 (10) | 0.0183 (10) | −0.0009 (8) | 0.0071 (8) | −0.0009 (8) |
C6 | 0.0234 (11) | 0.0306 (12) | 0.0153 (10) | −0.0010 (9) | 0.0107 (9) | −0.0012 (9) |
Co1—O1 | 1.8640 (13) | N3—C3 | 1.484 (3) |
Co1—N5 | 1.9289 (16) | N3—H3N | 0.8574 |
Co1—N2 | 1.9382 (17) | N3—H3M | 0.8943 |
Co1—N3 | 1.9430 (17) | N4—C4 | 1.480 (3) |
Co1—N4 | 1.9533 (17) | N4—H4N | 0.8014 |
Co1—N1 | 1.9565 (17) | N4—H4M | 0.8322 |
Cl1—O3 | 1.4198 (19) | N5—C5 | 1.133 (3) |
Cl1—O4 | 1.4313 (17) | C1—C2 | 1.501 (3) |
Cl1—O2 | 1.4328 (18) | C1—H1A | 0.9900 |
Cl1—O5 | 1.4353 (16) | C1—H1B | 0.9900 |
Cl2—O7 | 1.4219 (18) | C2—H2A | 0.9900 |
Cl2—O8 | 1.4331 (15) | C2—H2B | 0.9900 |
Cl2—O9 | 1.4364 (16) | C3—C4 | 1.502 (3) |
Cl2—O6 | 1.4366 (16) | C3—H3A | 0.9900 |
O1—O1i | 1.476 (3) | C3—H3B | 0.9900 |
N1—C1 | 1.484 (3) | C4—H4A | 0.9900 |
N1—H1N | 0.8204 | C4—H4B | 0.9900 |
N1—H1M | 0.9493 | C5—C6 | 1.446 (3) |
N2—C2 | 1.478 (3) | C6—H6A | 0.9800 |
N2—H2N | 0.8691 | C6—H6B | 0.9800 |
N2—H2M | 0.7698 | C6—H6C | 0.9800 |
O1—Co1—N5 | 177.26 (7) | Co1—N3—H3N | 107.9 |
O1—Co1—N2 | 92.38 (6) | C3—N3—H3M | 111.3 |
N5—Co1—N2 | 90.16 (7) | Co1—N3—H3M | 106.7 |
O1—Co1—N3 | 90.64 (6) | H3N—N3—H3M | 109.5 |
N5—Co1—N3 | 90.28 (7) | C4—N4—Co1 | 107.74 (12) |
N2—Co1—N3 | 92.81 (7) | C4—N4—H4N | 111.2 |
O1—Co1—N4 | 87.80 (6) | Co1—N4—H4N | 110.4 |
N5—Co1—N4 | 89.68 (7) | C4—N4—H4M | 103.5 |
N2—Co1—N4 | 179.39 (8) | Co1—N4—H4M | 108.1 |
N3—Co1—N4 | 86.60 (7) | H4N—N4—H4M | 115.5 |
O1—Co1—N1 | 88.39 (7) | C5—N5—Co1 | 173.85 (17) |
N5—Co1—N1 | 90.75 (7) | N1—C1—C2 | 107.31 (17) |
N2—Co1—N1 | 86.05 (7) | N1—C1—H1A | 110.3 |
N3—Co1—N1 | 178.47 (7) | C2—C1—H1A | 110.3 |
N4—Co1—N1 | 94.54 (7) | N1—C1—H1B | 110.3 |
O3—Cl1—O4 | 110.39 (13) | C2—C1—H1B | 110.3 |
O3—Cl1—O2 | 108.94 (13) | H1A—C1—H1B | 108.5 |
O4—Cl1—O2 | 109.05 (12) | N2—C2—C1 | 107.26 (17) |
O3—Cl1—O5 | 109.85 (11) | N2—C2—H2A | 110.3 |
O4—Cl1—O5 | 109.27 (10) | C1—C2—H2A | 110.3 |
O2—Cl1—O5 | 109.31 (11) | N2—C2—H2B | 110.3 |
O7—Cl2—O8 | 109.63 (10) | C1—C2—H2B | 110.3 |
O7—Cl2—O9 | 109.68 (12) | H2A—C2—H2B | 108.5 |
O8—Cl2—O9 | 109.51 (10) | N3—C3—C4 | 107.14 (16) |
O7—Cl2—O6 | 110.11 (12) | N3—C3—H3A | 110.3 |
O8—Cl2—O6 | 109.36 (9) | C4—C3—H3A | 110.3 |
O9—Cl2—O6 | 108.53 (10) | N3—C3—H3B | 110.3 |
O1i—O1—Co1 | 109.93 (12) | C4—C3—H3B | 110.3 |
C1—N1—Co1 | 109.73 (13) | H3A—C3—H3B | 108.5 |
C1—N1—H1N | 106.3 | N4—C4—C3 | 106.26 (16) |
Co1—N1—H1N | 109.7 | N4—C4—H4A | 110.5 |
C1—N1—H1M | 113.4 | C3—C4—H4A | 110.5 |
Co1—N1—H1M | 107.7 | N4—C4—H4B | 110.5 |
H1N—N1—H1M | 109.9 | C3—C4—H4B | 110.5 |
C2—N2—Co1 | 108.69 (13) | H4A—C4—H4B | 108.7 |
C2—N2—H2N | 112.4 | N5—C5—C6 | 178.0 (2) |
Co1—N2—H2N | 112.4 | C5—C6—H6A | 109.5 |
C2—N2—H2M | 113.9 | C5—C6—H6B | 109.5 |
Co1—N2—H2M | 104.2 | H6A—C6—H6B | 109.5 |
H2N—N2—H2M | 105.0 | C5—C6—H6C | 109.5 |
C3—N3—Co1 | 108.53 (12) | H6A—C6—H6C | 109.5 |
C3—N3—H3N | 112.6 | H6B—C6—H6C | 109.5 |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4ii | 0.82 | 2.18 | 2.989 (2) | 168 |
N1—H1M···O6 | 0.95 | 2.12 | 2.945 (2) | 145 |
N2—H2N···O5iii | 0.87 | 2.26 | 3.084 (2) | 158 |
N2—H2M···O1i | 0.77 | 2.31 | 2.860 (2) | 129 |
N3—H3N···O8iv | 0.86 | 2.29 | 3.094 (2) | 156 |
N3—H3M···O1i | 0.89 | 2.17 | 2.735 (2) | 120 |
N3—H3M···O7i | 0.89 | 2.26 | 3.042 (2) | 146 |
N4—H4N···O2 | 0.80 | 2.23 | 3.000 (2) | 160 |
N4—H4M···O9v | 0.83 | 2.57 | 3.266 (2) | 142 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co2(O2)(C2H3N)2(C2H8N2)4](ClO4)4 |
Mr | 870.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 11.9747 (7), 8.3348 (6), 16.4921 (10) |
β (°) | 109.702 (5) |
V (Å3) | 1549.66 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.51 |
Crystal size (mm) | 0.40 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.584, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29196, 3550, 2868 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.067, 1.04 |
No. of reflections | 3550 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.38 |
Computer programs: COLLECT (Bruker, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bradenburg, 2006).
Co1—O1 | 1.8640 (13) | Co1—N1 | 1.9565 (17) |
Co1—N5 | 1.9289 (16) | O1—O1i | 1.476 (3) |
Co1—N2 | 1.9382 (17) | N5—C5 | 1.133 (3) |
Co1—N3 | 1.9430 (17) | C5—C6 | 1.446 (3) |
Co1—N4 | 1.9533 (17) | ||
O1—Co1—N5 | 177.26 (7) | O1i—O1—Co1 | 109.93 (12) |
N3—Co1—N4 | 86.60 (7) | C5—N5—Co1 | 173.85 (17) |
N2—Co1—N1 | 86.05 (7) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4ii | 0.82 | 2.18 | 2.989 (2) | 168 |
N1—H1M···O6 | 0.95 | 2.12 | 2.945 (2) | 145 |
N2—H2N···O5iii | 0.87 | 2.26 | 3.084 (2) | 158 |
N2—H2M···O1i | 0.77 | 2.31 | 2.860 (2) | 129 |
N3—H3N···O8iv | 0.86 | 2.29 | 3.094 (2) | 156 |
N3—H3M···O1i | 0.89 | 2.17 | 2.735 (2) | 120 |
N3—H3M···O7i | 0.89 | 2.26 | 3.042 (2) | 146 |
N4—H4N···O2 | 0.80 | 2.23 | 3.000 (2) | 160 |
N4—H4M···O9v | 0.83 | 2.57 | 3.266 (2) | 142 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).
References
Bradenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). COLLECT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Busch, D. H. & Alcock, N. W. (1994). Chem. Rev. 94, 585–623. CrossRef CAS Web of Science Google Scholar
Dexter, D. D., Sutherby, C. N., Grieb, M. W. & Beaumont, R. C. (1984). Inorg. Chim. Acta, 86, 19–25. CSD CrossRef CAS Web of Science Google Scholar
Jain, S. L. & Sain, B. (2003). Angew. Chem. Int. Ed. 42, 1265–1267. Web of Science CrossRef CAS Google Scholar
McMullen, S. E. & Hagen, K. S. (2002). Acta Cryst. E58, m141–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shibahara, T., Koda, S. & Mori, M. (1973). Bull. Chem. Soc. Jpn, 46, 2070–2076. CrossRef CAS Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dioxygen complexes have been investigated in order to understand the mechanisms of oxygen metabolism such as O2 transport, storage and activation, which are essential events for life. The dioxygen cobalt complexes attract a lot of attention because of their potential use as artificial oxygen carriers (Busch et al., 1994) and industrial oxidation catalysts (Jain et al., 2003), for example: the p-xylene oxidation giving terephtalic acid and the adipic acid synthesis from cyclohexane. In many cases, reactions of cobalt (II) complexes with dioxygen proceeds, however, irreversibly resulting in formation of cobalt (III) complexes, and very often the intermediate products of such reactions appear to be binuclear cobalt (III) peroxo species. The title compound (I) was obtained as a result of reaction of cobalt (II) perchlorate in acetonitrile and ethylendiamine. The crystal structure of (I) consists of cationic dicobalt(III) µ2-peroxo complexes and perchlorate anions. The molecules are centrosymmetric. The Co (III) ions are six-coordinated, the axial positions are occupied by acetonitrile and peroxo bridge, the ethylendiamine ligands lie in the equatorial plane. The acetonitriles ligands are trans with respect to the O—O bridge. The analysis of the bond lengths and angles of (I) indicates that the coordination environment of the cobalt is slightly distorted octahedral. The bond distances Co1—N (CH3CN), Co1—O and O—O are 1.9289 (16), 1.8640 (13) and 1.476 (3) Å, respectively. The average of Co—N(en) distances is 1.9478 Å and average of O1—Co—N(en) angles is 89.80°. The bond angle O—Co—N (MeCN) is equal 177.26 (7)°. The C—N, C≡N and C—C bond lengths in the ethylenediamine and acetonitrile ligands are normal and close to the values observed in the related structures (Sliva et al., 1997; Petrusenko et al., 1997; Mokhir et al., 2002; Wörl et al., 2005).
Perchlorate anions do not form direct bonds with cobalt but they are connected to NH groups of ethylendiamine through hydrogen bonds. All of the NH groups of ethylenediamine form hydrogen bonds with either the oxygen atoms of perchlorate anions or the peroxide oxygen atoms (Table 2). A hydrogen-bonding network links the cations and anions into stacks stretching along the b axis (Fig. 2).