organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[c]thio­phene-4,8-dione

aCollege of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: lirj@whu.edu.cn,

(Received 8 November 2010; accepted 15 November 2010; online 20 November 2010)

In the title compound, C11H12O2S, the C and S atoms of the central thio­phene and the methyl groups, and the two carbonyl groups of the cyclo­hepta­nedione are almost coplanar [maximum deviation from the mean plane = 0.221 (2) Å]. The packing is stabilized by ππ inter­actions between the conjugated thio­phenes, the shortest centroid–centroid distance between thio­phene rings being 3.9759 (10) Å.

Related literature

The title compound was obtained as the product of our ongoing research of conjugated thio­phenes for electronic devices and dye-sensitized solar cells (DSSCs). For applications of conjugated thio­phenes, see: Amaresh et al. (2002[Amaresh, R. R., Lakshmikantham, M. V., Baldwin, J. W., Cava, M. P., Metzger, R. M. & Rogers, R. D. (2002). J. Org. Chem. 67, 2453-2458.]); Nielsen & Bjonholm (2004[Nielsen, C. B. & Bjonholm, T. (2004). Org. Lett. 6, 3381-3384.]). For related structures, see: Dufresne et al. (2007[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166-1177.]); Kuroda et al. (2005[Kuroda, S., Oda, M., Oda, M., Nagai, M., Wada, Y., Miyatake, R., Fukuda, T., Takamatsu, H., Thanh, N. C., Mouri, M., Zhang, Y. & Kyogoku, M. (2005). Tetrahedron Lett. 46, 7311-7314.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O2S

  • Mr = 208.27

  • Orthorhombic, P b c a

  • a = 15.9875 (6) Å

  • b = 7.6354 (3) Å

  • c = 16.9963 (6) Å

  • V = 2074.75 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.951

  • 15732 measured reflections

  • 1822 independent reflections

  • 1430 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.02

  • 1822 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the sulfur atom can contribute to the peripheral conjugation either by two p-electron moieties with its lone pair electrons or by p-sulfurane type conjugation, conjugated thiophenes have received much attention because of many new possibilities for constructing devices displaying unique optical, electrical, and mechanical properties (Nielsen et al., 2004). Certain applications of conjugated thiophenes involve organic light emitting diodes and molecular wires, to be used in flexible light displays and/or low power consumption products (Amaresh et al., 2002). Here, we report the structure of a novel conjugated thiophenes.

The crystal structure of the title compound is given in Fig.1. The crystallographic analysis confirms that the title compound consists of a central thiophene capped by two methyl groups. The molecular symmetry can be described by point group C2. The cycloheptane ring shows a twisted boat conformation. The C—C bond lengths with each methyl are almost equal, with an average value of 1.506 (3) Å. Futhermore, π-π interactions stabilize the packing (Fig. 2). The closest centroid distance of approximate paraller thiophene rings is 3.9759 (10) Å.

Related literature top

The title compound, C11H12O2S, was obtained as the product of our ongoing research of conjugated thiophenes for electronic devices and dye-sensitized solar cells (DSSCs) For applications of conjugated thiophenes, see: Amaresh et al. (2002); Nielsen et al. (2004). For related structures, see: Dufresne et al. (2007); Kuroda et al. (2005).

Experimental top

The title compound was prepared according to the literature (Kuroda et al., 2005), using diffusion of hexane into a toluene solution of the title compound at room temperature. 1H NMR (CDCl3, δ, p.p.m.): 2.45 (m, 4H), 2.32 (s, 6H), 1.93 (m, 2H). Analysis calculated (%): C 63.43, H 5.81; found (%): C 63.20, H 6.05.

Refinement top

All H-atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.96 and 0.97 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Since the sulfur atom can contribute to the peripheral conjugation either by two p-electron moieties with its lone pair electrons or by p-sulfurane type conjugation, conjugated thiophenes have received much attention because of many new possibilities for constructing devices displaying unique optical, electrical, and mechanical properties (Nielsen et al., 2004). Certain applications of conjugated thiophenes involve organic light emitting diodes and molecular wires, to be used in flexible light displays and/or low power consumption products (Amaresh et al., 2002). Here, we report the structure of a novel conjugated thiophenes.

The crystal structure of the title compound is given in Fig.1. The crystallographic analysis confirms that the title compound consists of a central thiophene capped by two methyl groups. The molecular symmetry can be described by point group C2. The cycloheptane ring shows a twisted boat conformation. The C—C bond lengths with each methyl are almost equal, with an average value of 1.506 (3) Å. Futhermore, π-π interactions stabilize the packing (Fig. 2). The closest centroid distance of approximate paraller thiophene rings is 3.9759 (10) Å.

The title compound, C11H12O2S, was obtained as the product of our ongoing research of conjugated thiophenes for electronic devices and dye-sensitized solar cells (DSSCs) For applications of conjugated thiophenes, see: Amaresh et al. (2002); Nielsen et al. (2004). For related structures, see: Dufresne et al. (2007); Kuroda et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I) viewed along the b-direction.
1,3-Dimethyl-5,6,7,8-tetrahydro-4H-cyclohepta[c]thiophene- 4,8-dione top
Crystal data top
C11H12O2SF(000) = 880
Mr = 208.27Dx = 1.333 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4563 reflections
a = 15.9875 (6) Åθ = 2.4–22.2°
b = 7.6354 (3) ŵ = 0.28 mm1
c = 16.9963 (6) ÅT = 298 K
V = 2074.75 (13) Å3Block, yellow
Z = 80.30 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1822 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1619
Tmin = 0.920, Tmax = 0.951k = 98
15732 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5349P]
where P = (Fo2 + 2Fc2)/3
1822 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H12O2SV = 2074.75 (13) Å3
Mr = 208.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.9875 (6) ŵ = 0.28 mm1
b = 7.6354 (3) ÅT = 298 K
c = 16.9963 (6) Å0.30 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1430 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.951Rint = 0.034
15732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
1822 reflectionsΔρmin = 0.29 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20027 (4)0.11743 (8)0.72032 (3)0.0670 (2)
C20.35875 (12)0.1124 (2)0.70942 (10)0.0496 (5)
C30.32681 (12)0.1405 (2)0.63092 (10)0.0493 (5)
C10.29639 (14)0.0980 (3)0.76406 (11)0.0575 (5)
C90.37901 (14)0.1832 (3)0.56162 (11)0.0614 (5)
O20.35621 (12)0.1474 (2)0.49522 (8)0.0898 (6)
C40.24140 (14)0.1457 (2)0.62814 (11)0.0557 (5)
O10.47614 (12)0.0907 (2)0.79362 (10)0.0882 (5)
C50.44794 (14)0.0756 (3)0.72741 (12)0.0593 (5)
C60.50182 (13)0.0112 (3)0.66046 (14)0.0688 (6)
H6A0.47060.07460.63030.083*
H6B0.55080.04670.68190.083*
C110.18386 (16)0.1778 (3)0.55955 (15)0.0779 (7)
H11A0.20300.27780.53050.117*
H11B0.12820.19910.57850.117*
H11C0.18360.07680.52590.117*
C100.30152 (17)0.0610 (4)0.85104 (12)0.0842 (7)
H10A0.34110.03120.86020.126*
H10B0.24750.02580.87000.126*
H10C0.31920.16480.87820.126*
C80.45990 (15)0.2776 (3)0.57771 (14)0.0766 (7)
H8A0.45010.36670.61740.092*
H8B0.47780.33640.53000.092*
C70.53003 (16)0.1575 (3)0.60577 (16)0.0838 (7)
H7A0.55680.10560.56010.101*
H7B0.57160.22770.63280.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0548 (4)0.0684 (4)0.0779 (4)0.0012 (3)0.0116 (3)0.0081 (3)
C20.0545 (12)0.0435 (10)0.0509 (10)0.0014 (8)0.0025 (8)0.0017 (8)
C30.0536 (12)0.0423 (10)0.0520 (10)0.0016 (8)0.0011 (8)0.0048 (8)
C10.0666 (14)0.0511 (12)0.0549 (11)0.0028 (9)0.0053 (9)0.0034 (8)
C90.0753 (15)0.0547 (12)0.0542 (12)0.0090 (11)0.0068 (10)0.0051 (9)
O20.1081 (14)0.1103 (15)0.0510 (9)0.0094 (11)0.0021 (8)0.0020 (8)
C40.0569 (13)0.0482 (11)0.0620 (11)0.0026 (9)0.0061 (9)0.0085 (8)
O10.0824 (12)0.1029 (13)0.0792 (11)0.0074 (10)0.0269 (9)0.0002 (9)
C50.0603 (13)0.0496 (11)0.0679 (12)0.0008 (10)0.0089 (10)0.0025 (9)
C60.0524 (13)0.0577 (13)0.0962 (16)0.0081 (10)0.0042 (11)0.0077 (11)
C110.0685 (15)0.0810 (16)0.0841 (16)0.0095 (12)0.0247 (12)0.0115 (13)
C100.105 (2)0.0922 (17)0.0554 (13)0.0103 (15)0.0135 (12)0.0038 (12)
C80.0785 (16)0.0637 (14)0.0875 (16)0.0077 (13)0.0204 (13)0.0109 (12)
C70.0628 (15)0.0810 (17)0.1076 (18)0.0070 (13)0.0210 (14)0.0048 (14)
Geometric parameters (Å, º) top
S1—C41.713 (2)C6—H6A0.9700
S1—C11.714 (2)C6—H6B0.9700
C2—C11.367 (3)C11—H11A0.9600
C2—C31.445 (2)C11—H11B0.9600
C2—C51.485 (3)C11—H11C0.9600
C3—C41.367 (3)C10—H10A0.9600
C3—C91.480 (3)C10—H10B0.9600
C1—C101.507 (3)C10—H10C0.9600
C9—O21.217 (2)C8—C71.525 (4)
C9—C81.506 (3)C8—H8A0.9700
C4—C111.505 (3)C8—H8B0.9700
O1—C51.218 (2)C7—H7A0.9700
C5—C61.509 (3)C7—H7B0.9700
C6—C71.521 (3)
C4—S1—C193.64 (10)C4—C11—H11A109.5
C1—C2—C3112.43 (18)C4—C11—H11B109.5
C1—C2—C5123.04 (18)H11A—C11—H11B109.5
C3—C2—C5123.89 (17)C4—C11—H11C109.5
C4—C3—C2112.91 (17)H11A—C11—H11C109.5
C4—C3—C9121.98 (17)H11B—C11—H11C109.5
C2—C3—C9124.64 (18)C1—C10—H10A109.5
C2—C1—C10129.9 (2)C1—C10—H10B109.5
C2—C1—S1110.63 (15)H10A—C10—H10B109.5
C10—C1—S1119.38 (16)C1—C10—H10C109.5
O2—C9—C3121.3 (2)H10A—C10—H10C109.5
O2—C9—C8122.2 (2)H10B—C10—H10C109.5
C3—C9—C8116.45 (18)C9—C8—C7113.58 (19)
C3—C4—C11129.9 (2)C9—C8—H8A108.8
C3—C4—S1110.39 (14)C7—C8—H8A108.8
C11—C4—S1119.62 (18)C9—C8—H8B108.8
O1—C5—C2121.9 (2)C7—C8—H8B108.8
O1—C5—C6121.1 (2)H8A—C8—H8B107.7
C2—C5—C6117.02 (17)C6—C7—C8114.50 (19)
C5—C6—C7113.00 (18)C6—C7—H7A108.6
C5—C6—H6A109.0C8—C7—H7A108.6
C7—C6—H6A109.0C6—C7—H7B108.6
C5—C6—H6B109.0C8—C7—H7B108.6
C7—C6—H6B109.0H7A—C7—H7B107.6
H6A—C6—H6B107.8
C1—C2—C3—C40.3 (2)C9—C3—C4—C115.3 (3)
C5—C2—C3—C4170.75 (18)C2—C3—C4—S10.23 (19)
C1—C2—C3—C9171.89 (18)C9—C3—C4—S1172.24 (14)
C5—C2—C3—C917.0 (3)C1—S1—C4—C30.06 (15)
C3—C2—C1—C10177.1 (2)C1—S1—C4—C11177.88 (17)
C5—C2—C1—C105.9 (3)C1—C2—C5—O126.3 (3)
C3—C2—C1—S10.3 (2)C3—C2—C5—O1163.48 (19)
C5—C2—C1—S1170.90 (15)C1—C2—C5—C6151.22 (19)
C4—S1—C1—C20.14 (16)C3—C2—C5—C619.0 (3)
C4—S1—C1—C10177.35 (18)O1—C5—C6—C7103.5 (2)
C4—C3—C9—O234.1 (3)C2—C5—C6—C778.9 (2)
C2—C3—C9—O2154.3 (2)O2—C9—C8—C7102.1 (3)
C4—C3—C9—C8144.01 (19)C3—C9—C8—C779.8 (2)
C2—C3—C9—C827.6 (3)C5—C6—C7—C849.7 (3)
C2—C3—C4—C11177.76 (19)C9—C8—C7—C637.6 (3)

Experimental details

Crystal data
Chemical formulaC11H12O2S
Mr208.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.9875 (6), 7.6354 (3), 16.9963 (6)
V3)2074.75 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.920, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
15732, 1822, 1430
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.02
No. of reflections1822
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the NSFC, the SRFDP (20090141120052) and the Fundamental Research Funds for Central Universities (2082001).

References

First citationAmaresh, R. R., Lakshmikantham, M. V., Baldwin, J. W., Cava, M. P., Metzger, R. M. & Rogers, R. D. (2002). J. Org. Chem. 67, 2453–2458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuroda, S., Oda, M., Oda, M., Nagai, M., Wada, Y., Miyatake, R., Fukuda, T., Takamatsu, H., Thanh, N. C., Mouri, M., Zhang, Y. & Kyogoku, M. (2005). Tetrahedron Lett. 46, 7311–7314.  Web of Science CSD CrossRef CAS Google Scholar
First citationNielsen, C. B. & Bjonholm, T. (2004). Org. Lett. 6, 3381–3384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds