metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ2-chlorido-μ2-(1,4-dioxane-κ2O:O′)-cadmium(II)]

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 10 November 2010; accepted 22 November 2010; online 27 November 2010)

In the title complex, [CdCl2(C4H8O2)]n, two different CdII ions are present, one in a general position and one with site symmetry 2. The CdII ions are coordinated by two O atoms from two 1,4-dioxane ligands and four chloride anions in a slightly distorted octa­hedral geometry and is connected to neighboring CdII ions by two bridging chloride anions, generating infinite linear chains along the a axis. These chains are further inter­connected by bridging 1,4-dioxane ligands, affording a three-dimensional network.

Related literature

For background to CdII complexes, see: Liu et al. (2009[Liu, Q. K., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. pp. 10364-10368.]); Melnik et al. (2009[Melnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. pp. 269-295.]); Paul et al. (2010[Paul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. pp. 2263-2279.]); Tatsuya et al. (2008[Tatsuya, K., Masato, N., Yasutaka, T., Koichi, N. & Takumi, K. (2008). Inorg. Chem. pp. 3095-3104.]); Xu et al. (2009[Xu, G. C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). CrystEngComm, 12, 261-270.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C4H8O2)]

  • Mr = 271.40

  • Monoclinic, C 2/c

  • a = 15.145 (2) Å

  • b = 13.8871 (18) Å

  • c = 11.5943 (16) Å

  • β = 102.865 (2)°

  • V = 2377.3 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 295 K

  • 0.21 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.500, Tmax = 0.584

  • 7087 measured reflections

  • 2336 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.105

  • S = 1.06

  • 2336 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, the design and synthesis of novel cadmium(II) complexes have aroused worldwide interest in the fields of crystal engineering and material chemistry (Melnik et al., 2009). This is due to their intriguing structural features and tailor-made applications as functional materials in chemical catalysis (Paul et al., 2010), gas separation and storage (Liu et al., 2009), luminescence (Tatsuya et al., 2008), and ion-exchange (Xu et al., 2009). During our efforts to investigate the assembly of cadmium(II)-organic coordination frameworks, a new polymer, namely [Cd3Cl6(dioxane)3]n, (I), was generated accidentally under normal conditions, and the crystal structure of (I) is described here.

The fundamental building unit of (I) is composed of three CdII centers, six chlorine anions, and three dioxane ligands. Each CdII ion adopts a six-coordinated octahedral geometry by coordination to two oxygen donors from two dioxane molecules with Cd—O distances of 2.366 (3) Å and 2.395 (3) Å, and four chlorine atoms with Cd—Cl distances in the range of 2.5628 (10)–2.6252 (11) Å (Fig. 1). Each dioxane ring possesses a chair configuration and bridges two CdII ions to form an infinite zigzag chain along the [100] direction. Within the zigzag chain, the distance between successive CdII ions is 7.6093 (8) Å, and the closest Cd—Cd separation between the neighboring strands is 3.7460 (5) Å. Notably, each CdII ion is also connected with the neighboring CdII ions by two chlorine anions, thus generating a one-dimensional linear network. These infinite linear chains are further interconnected by bridging dioxane ligands to afford the resulting three-dimensional network (Fig. 2).

Related literature top

For background to CdII complexes, see: Liu et al. (2009); Melnik et al. (2009); Paul et al. (2010); Tatsuya et al. (2008); Xu et al. (2009).

Experimental top

A mixture of 1,4-bis(triazol-1-yl-methyl)benzene (48.0 mg, 0.2 mmol) and CdCl2.2.5H2O (45.7 mg, 0.2 mmol) was dissolved in the dioxane/H2O (10 ml, 1:1) solvent media with stirring for ca 30 min, and then the resultant colorless solution was filtered. Upon slow evaporation of the filtrate under ambient conditions, block colorless single crystals suitable for X-ray analysis were obtained over a period of two weeks in a yield of 63%. Elemental analysis (%) calcd for C12H24Cd3Cl6O6: C, 17.70; H, 2.97; Found: C, 17.75; H, 2.97.

Refinement top

All H atoms bound to C atoms were assigned to calculated positions, with C—H = 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the past decade, the design and synthesis of novel cadmium(II) complexes have aroused worldwide interest in the fields of crystal engineering and material chemistry (Melnik et al., 2009). This is due to their intriguing structural features and tailor-made applications as functional materials in chemical catalysis (Paul et al., 2010), gas separation and storage (Liu et al., 2009), luminescence (Tatsuya et al., 2008), and ion-exchange (Xu et al., 2009). During our efforts to investigate the assembly of cadmium(II)-organic coordination frameworks, a new polymer, namely [Cd3Cl6(dioxane)3]n, (I), was generated accidentally under normal conditions, and the crystal structure of (I) is described here.

The fundamental building unit of (I) is composed of three CdII centers, six chlorine anions, and three dioxane ligands. Each CdII ion adopts a six-coordinated octahedral geometry by coordination to two oxygen donors from two dioxane molecules with Cd—O distances of 2.366 (3) Å and 2.395 (3) Å, and four chlorine atoms with Cd—Cl distances in the range of 2.5628 (10)–2.6252 (11) Å (Fig. 1). Each dioxane ring possesses a chair configuration and bridges two CdII ions to form an infinite zigzag chain along the [100] direction. Within the zigzag chain, the distance between successive CdII ions is 7.6093 (8) Å, and the closest Cd—Cd separation between the neighboring strands is 3.7460 (5) Å. Notably, each CdII ion is also connected with the neighboring CdII ions by two chlorine anions, thus generating a one-dimensional linear network. These infinite linear chains are further interconnected by bridging dioxane ligands to afford the resulting three-dimensional network (Fig. 2).

For background to CdII complexes, see: Liu et al. (2009); Melnik et al. (2009); Paul et al. (2010); Tatsuya et al. (2008); Xu et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) -x + 1/2, -y + 1/2, -z + 1.
[Figure 2] Fig. 2. A diagram of the unit cell packing showing the three-dimensional network structure.
Poly[di-µ2-chlorido-µ2-(1,4-dioxane-κ2O:O')-cadmium(II)] top
Crystal data top
[CdCl2(C4H8O2)]F(000) = 1560
Mr = 271.40Dx = 2.275 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5312 reflections
a = 15.145 (2) Åθ = 2.8–30.3°
b = 13.8871 (18) ŵ = 3.36 mm1
c = 11.5943 (16) ÅT = 295 K
β = 102.865 (2)°Block, colorless
V = 2377.3 (5) Å30.21 × 0.21 × 0.16 mm
Z = 12
Data collection top
Bruker APEXII CCD
diffractometer
2336 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1815
Tmin = 0.500, Tmax = 0.584k = 1717
7087 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.085P)2 + 0.3305P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[CdCl2(C4H8O2)]V = 2377.3 (5) Å3
Mr = 271.40Z = 12
Monoclinic, C2/cMo Kα radiation
a = 15.145 (2) ŵ = 3.36 mm1
b = 13.8871 (18) ÅT = 295 K
c = 11.5943 (16) Å0.21 × 0.21 × 0.16 mm
β = 102.865 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2172 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.584Rint = 0.018
7087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.69 e Å3
2336 reflectionsΔρmin = 0.91 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.330474 (14)0.189847 (18)0.421324 (19)0.02267 (15)
Cd20.50000.27411 (3)0.25000.02297 (16)
C10.3234 (2)0.4003 (3)0.0979 (3)0.0326 (8)
H1A0.27360.37440.12820.039*
H1B0.33630.35590.03910.039*
C20.3835 (3)0.4763 (3)0.2794 (3)0.0301 (8)
H2A0.43650.48320.34350.036*
H2B0.33440.45140.31210.036*
C30.4236 (2)0.0363 (3)0.4210 (3)0.0285 (8)
H3A0.38120.03330.34490.034*
H3B0.40740.09090.46420.034*
C40.4829 (2)0.0496 (3)0.5972 (3)0.0299 (8)
H4A0.46850.00250.64570.036*
H4B0.47950.10960.63870.036*
C50.2025 (3)0.0029 (3)0.4581 (3)0.0311 (8)
H5A0.15320.02210.49040.037*
H5B0.25540.00970.52250.037*
C60.1427 (3)0.0732 (3)0.2772 (3)0.0339 (9)
H6A0.15520.11780.21860.041*
H6B0.09300.09890.30810.041*
Cl10.35989 (6)0.16305 (8)0.20972 (8)0.0297 (2)
Cl20.47678 (7)0.29108 (8)0.46654 (8)0.0297 (2)
Cl30.30007 (7)0.18952 (6)0.63572 (8)0.0278 (2)
O10.40258 (16)0.41052 (19)0.1933 (2)0.0291 (6)
O20.41779 (16)0.05092 (19)0.4859 (2)0.0307 (6)
O30.22192 (17)0.06271 (19)0.3719 (2)0.0314 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0198 (2)0.0212 (2)0.0288 (2)0.00012 (9)0.00928 (14)0.00097 (9)
Cd20.0207 (2)0.0212 (3)0.0288 (2)0.0000.00941 (16)0.000
C10.0313 (19)0.032 (2)0.0322 (18)0.0103 (16)0.0017 (15)0.0036 (16)
C20.0341 (19)0.029 (2)0.0252 (16)0.0101 (16)0.0032 (15)0.0018 (15)
C30.0250 (18)0.0258 (18)0.0333 (18)0.0023 (15)0.0035 (15)0.0029 (15)
C40.0287 (18)0.033 (2)0.0264 (16)0.0106 (16)0.0029 (14)0.0025 (15)
C50.0317 (19)0.036 (2)0.0258 (16)0.0106 (17)0.0077 (15)0.0006 (15)
C60.036 (2)0.028 (2)0.0342 (19)0.0066 (17)0.0002 (16)0.0032 (16)
Cl10.0298 (5)0.0317 (5)0.0299 (4)0.0078 (4)0.0115 (4)0.0060 (4)
Cl20.0284 (5)0.0333 (5)0.0285 (5)0.0085 (4)0.0083 (4)0.0019 (4)
Cl30.0282 (5)0.0283 (5)0.0291 (5)0.0062 (3)0.0113 (4)0.0015 (3)
O10.0286 (13)0.0291 (15)0.0285 (12)0.0113 (11)0.0043 (10)0.0019 (11)
O20.0263 (13)0.0311 (15)0.0313 (13)0.0114 (11)0.0012 (10)0.0072 (11)
O30.0309 (14)0.0279 (14)0.0319 (13)0.0110 (12)0.0000 (11)0.0023 (11)
Geometric parameters (Å, º) top
Cd1—O22.364 (2)C2—H2B0.9700
Cd1—O32.393 (2)C3—O21.439 (4)
Cd1—Cl3i2.5634 (10)C3—C4iv1.489 (5)
Cd1—Cl22.5775 (10)C3—H3A0.9700
Cd1—Cl12.6158 (10)C3—H3B0.9700
Cd1—Cl32.6269 (10)C4—O21.438 (4)
Cd2—O12.401 (2)C4—C3iv1.489 (5)
Cd2—O1ii2.401 (2)C4—H4A0.9700
Cd2—Cl12.5804 (10)C4—H4B0.9700
Cd2—Cl1ii2.5804 (10)C5—O31.431 (4)
Cd2—Cl2ii2.6222 (10)C5—C1v1.506 (5)
Cd2—Cl22.6222 (10)C5—H5A0.9700
C1—O11.446 (4)C5—H5B0.9700
C1—C5iii1.506 (5)C6—O31.442 (4)
C1—H1A0.9700C6—C2v1.511 (5)
C1—H1B0.9700C6—H6A0.9700
C2—O11.429 (4)C6—H6B0.9700
C2—C6iii1.511 (5)Cl3—Cd1i2.5634 (10)
C2—H2A0.9700
O2—Cd1—O377.28 (9)O1—C2—H2B109.7
O2—Cd1—Cl3i163.70 (7)C6iii—C2—H2B109.7
O3—Cd1—Cl3i88.35 (7)H2A—C2—H2B108.2
O2—Cd1—Cl289.19 (7)O2—C3—C4iv110.4 (3)
O3—Cd1—Cl2164.70 (7)O2—C3—H3A109.6
Cl3i—Cd1—Cl2105.95 (4)C4iv—C3—H3A109.6
O2—Cd1—Cl188.92 (6)O2—C3—H3B109.6
O3—Cd1—Cl185.52 (6)C4iv—C3—H3B109.6
Cl3i—Cd1—Cl197.68 (3)H3A—C3—H3B108.1
Cl2—Cd1—Cl187.14 (3)O2—C4—C3iv111.0 (3)
O2—Cd1—Cl384.39 (6)O2—C4—H4A109.4
O3—Cd1—Cl388.25 (6)C3iv—C4—H4A109.4
Cl3i—Cd1—Cl387.58 (3)O2—C4—H4B109.4
Cl2—Cd1—Cl397.60 (3)C3iv—C4—H4B109.4
Cl1—Cd1—Cl3171.72 (3)H4A—C4—H4B108.0
O1—Cd2—O1ii75.83 (12)O3—C5—C1v110.0 (3)
O1—Cd2—Cl189.52 (7)O3—C5—H5A109.7
O1ii—Cd2—Cl1162.08 (7)C1v—C5—H5A109.7
O1—Cd2—Cl1ii162.08 (7)O3—C5—H5B109.7
O1ii—Cd2—Cl1ii89.52 (7)C1v—C5—H5B109.7
Cl1—Cd2—Cl1ii106.59 (5)H5A—C5—H5B108.2
O1—Cd2—Cl2ii82.66 (6)O3—C6—C2v109.5 (3)
O1ii—Cd2—Cl2ii89.20 (6)O3—C6—H6A109.8
Cl1—Cd2—Cl2ii99.24 (3)C2v—C6—H6A109.8
Cl1ii—Cd2—Cl2ii86.95 (3)O3—C6—H6B109.8
O1—Cd2—Cl289.20 (6)C2v—C6—H6B109.8
O1ii—Cd2—Cl282.66 (6)H6A—C6—H6B108.2
Cl1—Cd2—Cl286.95 (3)Cd2—Cl1—Cd192.87 (3)
Cl1ii—Cd2—Cl299.24 (3)Cd1—Cl2—Cd292.79 (3)
Cl2ii—Cd2—Cl2169.69 (5)Cd1i—Cl3—Cd192.42 (3)
O1—C1—C5iii109.5 (3)C2—O1—C1109.6 (3)
O1—C1—H1A109.8C2—O1—Cd2121.4 (2)
C5iii—C1—H1A109.8C1—O1—Cd2119.1 (2)
O1—C1—H1B109.8C4—O2—C3110.4 (3)
C5iii—C1—H1B109.8C4—O2—Cd1121.2 (2)
H1A—C1—H1B108.2C3—O2—Cd1128.02 (19)
O1—C2—C6iii109.9 (3)C5—O3—C6109.3 (3)
O1—C2—H2A109.7C5—O3—Cd1122.7 (2)
C6iii—C2—H2A109.7C6—O3—Cd1121.3 (2)
O1—Cd2—Cl1—Cd185.54 (6)Cl1—Cd2—O1—C136.6 (2)
O1ii—Cd2—Cl1—Cd150.8 (2)Cl1ii—Cd2—O1—C1117.8 (3)
Cl1ii—Cd2—Cl1—Cd1102.42 (3)Cl2ii—Cd2—O1—C162.8 (2)
Cl2ii—Cd2—Cl1—Cd1168.02 (3)Cl2—Cd2—O1—C1123.6 (2)
Cl2—Cd2—Cl1—Cd13.68 (3)C3iv—C4—O2—C357.2 (4)
O2—Cd1—Cl1—Cd292.98 (7)C3iv—C4—O2—Cd1116.2 (3)
O3—Cd1—Cl1—Cd2170.31 (7)C4iv—C3—O2—C456.9 (4)
Cl3i—Cd1—Cl1—Cd2101.97 (4)C4iv—C3—O2—Cd1116.0 (3)
Cl2—Cd1—Cl1—Cd23.74 (3)O3—Cd1—O2—C4137.6 (3)
O2—Cd1—Cl2—Cd292.64 (6)Cl3i—Cd1—O2—C4108.9 (3)
O3—Cd1—Cl2—Cd265.1 (2)Cl2—Cd1—O2—C449.6 (2)
Cl3i—Cd1—Cl2—Cd293.49 (4)Cl1—Cd1—O2—C4136.8 (2)
Cl1—Cd1—Cl2—Cd23.68 (3)Cl3—Cd1—O2—C448.1 (2)
Cl3—Cd1—Cl2—Cd2176.87 (3)O3—Cd1—O2—C350.2 (3)
O1—Cd2—Cl2—Cd185.83 (7)Cl3i—Cd1—O2—C378.9 (3)
O1ii—Cd2—Cl2—Cd1161.64 (7)Cl2—Cd1—O2—C3122.6 (3)
Cl1—Cd2—Cl2—Cd13.73 (3)Cl1—Cd1—O2—C335.4 (3)
Cl1ii—Cd2—Cl2—Cd1110.05 (4)Cl3—Cd1—O2—C3139.7 (3)
O2—Cd1—Cl3—Cd1i165.80 (7)C1v—C5—O3—C660.0 (4)
O3—Cd1—Cl3—Cd1i88.42 (7)C1v—C5—O3—Cd1148.7 (2)
Cl3i—Cd1—Cl3—Cd1i0.0C2v—C6—O3—C559.7 (4)
Cl2—Cd1—Cl3—Cd1i105.77 (4)C2v—C6—O3—Cd1148.5 (2)
C6iii—C2—O1—C159.4 (4)O2—Cd1—O3—C558.0 (3)
C6iii—C2—O1—Cd2155.4 (2)Cl3i—Cd1—O3—C5114.2 (3)
C5iii—C1—O1—C259.2 (4)Cl2—Cd1—O3—C586.3 (3)
C5iii—C1—O1—Cd2154.7 (2)Cl1—Cd1—O3—C5147.9 (3)
O1ii—Cd2—O1—C264.2 (2)Cl3—Cd1—O3—C526.6 (3)
Cl1—Cd2—O1—C2105.4 (3)O2—Cd1—O3—C6154.0 (3)
Cl1ii—Cd2—O1—C2100.2 (3)Cl3i—Cd1—O3—C633.8 (3)
Cl2ii—Cd2—O1—C2155.2 (3)Cl2—Cd1—O3—C6125.7 (3)
Cl2—Cd2—O1—C218.4 (3)Cl1—Cd1—O3—C664.1 (2)
O1ii—Cd2—O1—C1153.8 (3)Cl3—Cd1—O3—C6121.4 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C4H8O2)]
Mr271.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.145 (2), 13.8871 (18), 11.5943 (16)
β (°) 102.865 (2)
V3)2377.3 (5)
Z12
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.21 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.500, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
7087, 2336, 2172
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.105, 1.06
No. of reflections2336
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the Youth Foundation of Nanjing University of Technology (39704011) and the Analysis Center of Nanjing University.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. K., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. pp. 10364–10368.  Web of Science CSD CrossRef Google Scholar
First citationMelnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. pp. 269–295.  Google Scholar
First citationPaul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. pp. 2263–2279.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatsuya, K., Masato, N., Yasutaka, T., Koichi, N. & Takumi, K. (2008). Inorg. Chem. pp. 3095–3104.  Google Scholar
First citationXu, G. C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). CrystEngComm, 12, 261–270.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds