metal-organic compounds
Poly[di-μ2-chlorido-μ2-(1,4-dioxane-κ2O:O′)-cadmium(II)]
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn
In the title complex, [CdCl2(C4H8O2)]n, two different CdII ions are present, one in a general position and one with 2. The CdII ions are coordinated by two O atoms from two 1,4-dioxane ligands and four chloride anions in a slightly distorted octahedral geometry and is connected to neighboring CdII ions by two bridging chloride anions, generating infinite linear chains along the a axis. These chains are further interconnected by bridging 1,4-dioxane ligands, affording a three-dimensional network.
Related literature
For background to CdII complexes, see: Liu et al. (2009); Melnik et al. (2009); Paul et al. (2010); Tatsuya et al. (2008); Xu et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810048634/vm2060sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048634/vm2060Isup2.hkl
A mixture of 1,4-bis(triazol-1-yl-methyl)benzene (48.0 mg, 0.2 mmol) and CdCl2.2.5H2O (45.7 mg, 0.2 mmol) was dissolved in the dioxane/H2O (10 ml, 1:1) solvent media with stirring for ca 30 min, and then the resultant colorless solution was filtered. Upon slow evaporation of the filtrate under ambient conditions, block colorless single crystals suitable for X-ray analysis were obtained over a period of two weeks in a yield of 63%. Elemental analysis (%) calcd for C12H24Cd3Cl6O6: C, 17.70; H, 2.97; Found: C, 17.75; H, 2.97.
All H atoms bound to C atoms were assigned to calculated positions, with C—H = 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).
In the past decade, the design and synthesis of novel cadmium(II) complexes have aroused worldwide interest in the fields of crystal engineering and material chemistry (Melnik et al., 2009). This is due to their intriguing structural features and tailor-made applications as functional materials in chemical catalysis (Paul et al., 2010), gas separation and storage (Liu et al., 2009), luminescence (Tatsuya et al., 2008), and ion-exchange (Xu et al., 2009). During our efforts to investigate the assembly of cadmium(II)-organic coordination frameworks, a new polymer, namely [Cd3Cl6(dioxane)3]n, (I), was generated accidentally under normal conditions, and the
of (I) is described here.The fundamental building unit of (I) is composed of three CdII centers, six chlorine anions, and three dioxane ligands. Each CdII ion adopts a six-coordinated octahedral geometry by coordination to two oxygen donors from two dioxane molecules with Cd—O distances of 2.366 (3) Å and 2.395 (3) Å, and four chlorine atoms with Cd—Cl distances in the range of 2.5628 (10)–2.6252 (11) Å (Fig. 1). Each dioxane ring possesses a chair configuration and bridges two CdII ions to form an infinite zigzag chain along the [100] direction. Within the zigzag chain, the distance between successive CdII ions is 7.6093 (8) Å, and the closest Cd—Cd separation between the neighboring strands is 3.7460 (5) Å. Notably, each CdII ion is also connected with the neighboring CdII ions by two chlorine anions, thus generating a one-dimensional linear network. These infinite linear chains are further interconnected by bridging dioxane ligands to afford the resulting three-dimensional network (Fig. 2).
For background to CdII complexes, see: Liu et al. (2009); Melnik et al. (2009); Paul et al. (2010); Tatsuya et al. (2008); Xu et al. (2009).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CdCl2(C4H8O2)] | F(000) = 1560 |
Mr = 271.40 | Dx = 2.275 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5312 reflections |
a = 15.145 (2) Å | θ = 2.8–30.3° |
b = 13.8871 (18) Å | µ = 3.36 mm−1 |
c = 11.5943 (16) Å | T = 295 K |
β = 102.865 (2)° | Block, colorless |
V = 2377.3 (5) Å3 | 0.21 × 0.21 × 0.16 mm |
Z = 12 |
Bruker APEXII CCD diffractometer | 2336 independent reflections |
Radiation source: fine-focus sealed tube | 2172 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
φ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −18→15 |
Tmin = 0.500, Tmax = 0.584 | k = −17→17 |
7087 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.085P)2 + 0.3305P] where P = (Fo2 + 2Fc2)/3 |
2336 reflections | (Δ/σ)max = 0.001 |
123 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.91 e Å−3 |
[CdCl2(C4H8O2)] | V = 2377.3 (5) Å3 |
Mr = 271.40 | Z = 12 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.145 (2) Å | µ = 3.36 mm−1 |
b = 13.8871 (18) Å | T = 295 K |
c = 11.5943 (16) Å | 0.21 × 0.21 × 0.16 mm |
β = 102.865 (2)° |
Bruker APEXII CCD diffractometer | 2336 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2172 reflections with I > 2σ(I) |
Tmin = 0.500, Tmax = 0.584 | Rint = 0.018 |
7087 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.69 e Å−3 |
2336 reflections | Δρmin = −0.91 e Å−3 |
123 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.330474 (14) | 0.189847 (18) | 0.421324 (19) | 0.02267 (15) | |
Cd2 | 0.5000 | 0.27411 (3) | 0.2500 | 0.02297 (16) | |
C1 | 0.3234 (2) | 0.4003 (3) | 0.0979 (3) | 0.0326 (8) | |
H1A | 0.2736 | 0.3744 | 0.1282 | 0.039* | |
H1B | 0.3363 | 0.3559 | 0.0391 | 0.039* | |
C2 | 0.3835 (3) | 0.4763 (3) | 0.2794 (3) | 0.0301 (8) | |
H2A | 0.4365 | 0.4832 | 0.3435 | 0.036* | |
H2B | 0.3344 | 0.4514 | 0.3121 | 0.036* | |
C3 | 0.4236 (2) | −0.0363 (3) | 0.4210 (3) | 0.0285 (8) | |
H3A | 0.3812 | −0.0333 | 0.3449 | 0.034* | |
H3B | 0.4074 | −0.0909 | 0.4642 | 0.034* | |
C4 | 0.4829 (2) | 0.0496 (3) | 0.5972 (3) | 0.0299 (8) | |
H4A | 0.4685 | −0.0025 | 0.6457 | 0.036* | |
H4B | 0.4795 | 0.1096 | 0.6387 | 0.036* | |
C5 | 0.2025 (3) | −0.0029 (3) | 0.4581 (3) | 0.0311 (8) | |
H5A | 0.1532 | 0.0221 | 0.4904 | 0.037* | |
H5B | 0.2554 | −0.0097 | 0.5225 | 0.037* | |
C6 | 0.1427 (3) | 0.0732 (3) | 0.2772 (3) | 0.0339 (9) | |
H6A | 0.1552 | 0.1178 | 0.2186 | 0.041* | |
H6B | 0.0930 | 0.0989 | 0.3081 | 0.041* | |
Cl1 | 0.35989 (6) | 0.16305 (8) | 0.20972 (8) | 0.0297 (2) | |
Cl2 | 0.47678 (7) | 0.29108 (8) | 0.46654 (8) | 0.0297 (2) | |
Cl3 | 0.30007 (7) | 0.18952 (6) | 0.63572 (8) | 0.0278 (2) | |
O1 | 0.40258 (16) | 0.41052 (19) | 0.1933 (2) | 0.0291 (6) | |
O2 | 0.41779 (16) | 0.05092 (19) | 0.4859 (2) | 0.0307 (6) | |
O3 | 0.22192 (17) | 0.06271 (19) | 0.3719 (2) | 0.0314 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0198 (2) | 0.0212 (2) | 0.0288 (2) | 0.00012 (9) | 0.00928 (14) | −0.00097 (9) |
Cd2 | 0.0207 (2) | 0.0212 (3) | 0.0288 (2) | 0.000 | 0.00941 (16) | 0.000 |
C1 | 0.0313 (19) | 0.032 (2) | 0.0322 (18) | 0.0103 (16) | 0.0017 (15) | −0.0036 (16) |
C2 | 0.0341 (19) | 0.029 (2) | 0.0252 (16) | 0.0101 (16) | 0.0032 (15) | −0.0018 (15) |
C3 | 0.0250 (18) | 0.0258 (18) | 0.0333 (18) | 0.0023 (15) | 0.0035 (15) | −0.0029 (15) |
C4 | 0.0287 (18) | 0.033 (2) | 0.0264 (16) | 0.0106 (16) | 0.0029 (14) | −0.0025 (15) |
C5 | 0.0317 (19) | 0.036 (2) | 0.0258 (16) | −0.0106 (17) | 0.0077 (15) | 0.0006 (15) |
C6 | 0.036 (2) | 0.028 (2) | 0.0342 (19) | −0.0066 (17) | −0.0002 (16) | 0.0032 (16) |
Cl1 | 0.0298 (5) | 0.0317 (5) | 0.0299 (4) | −0.0078 (4) | 0.0115 (4) | −0.0060 (4) |
Cl2 | 0.0284 (5) | 0.0333 (5) | 0.0285 (5) | −0.0085 (4) | 0.0083 (4) | −0.0019 (4) |
Cl3 | 0.0282 (5) | 0.0283 (5) | 0.0291 (5) | 0.0062 (3) | 0.0113 (4) | 0.0015 (3) |
O1 | 0.0286 (13) | 0.0291 (15) | 0.0285 (12) | 0.0113 (11) | 0.0043 (10) | −0.0019 (11) |
O2 | 0.0263 (13) | 0.0311 (15) | 0.0313 (13) | 0.0114 (11) | −0.0012 (10) | −0.0072 (11) |
O3 | 0.0309 (14) | 0.0279 (14) | 0.0319 (13) | −0.0110 (12) | 0.0000 (11) | 0.0023 (11) |
Cd1—O2 | 2.364 (2) | C2—H2B | 0.9700 |
Cd1—O3 | 2.393 (2) | C3—O2 | 1.439 (4) |
Cd1—Cl3i | 2.5634 (10) | C3—C4iv | 1.489 (5) |
Cd1—Cl2 | 2.5775 (10) | C3—H3A | 0.9700 |
Cd1—Cl1 | 2.6158 (10) | C3—H3B | 0.9700 |
Cd1—Cl3 | 2.6269 (10) | C4—O2 | 1.438 (4) |
Cd2—O1 | 2.401 (2) | C4—C3iv | 1.489 (5) |
Cd2—O1ii | 2.401 (2) | C4—H4A | 0.9700 |
Cd2—Cl1 | 2.5804 (10) | C4—H4B | 0.9700 |
Cd2—Cl1ii | 2.5804 (10) | C5—O3 | 1.431 (4) |
Cd2—Cl2ii | 2.6222 (10) | C5—C1v | 1.506 (5) |
Cd2—Cl2 | 2.6222 (10) | C5—H5A | 0.9700 |
C1—O1 | 1.446 (4) | C5—H5B | 0.9700 |
C1—C5iii | 1.506 (5) | C6—O3 | 1.442 (4) |
C1—H1A | 0.9700 | C6—C2v | 1.511 (5) |
C1—H1B | 0.9700 | C6—H6A | 0.9700 |
C2—O1 | 1.429 (4) | C6—H6B | 0.9700 |
C2—C6iii | 1.511 (5) | Cl3—Cd1i | 2.5634 (10) |
C2—H2A | 0.9700 | ||
O2—Cd1—O3 | 77.28 (9) | O1—C2—H2B | 109.7 |
O2—Cd1—Cl3i | 163.70 (7) | C6iii—C2—H2B | 109.7 |
O3—Cd1—Cl3i | 88.35 (7) | H2A—C2—H2B | 108.2 |
O2—Cd1—Cl2 | 89.19 (7) | O2—C3—C4iv | 110.4 (3) |
O3—Cd1—Cl2 | 164.70 (7) | O2—C3—H3A | 109.6 |
Cl3i—Cd1—Cl2 | 105.95 (4) | C4iv—C3—H3A | 109.6 |
O2—Cd1—Cl1 | 88.92 (6) | O2—C3—H3B | 109.6 |
O3—Cd1—Cl1 | 85.52 (6) | C4iv—C3—H3B | 109.6 |
Cl3i—Cd1—Cl1 | 97.68 (3) | H3A—C3—H3B | 108.1 |
Cl2—Cd1—Cl1 | 87.14 (3) | O2—C4—C3iv | 111.0 (3) |
O2—Cd1—Cl3 | 84.39 (6) | O2—C4—H4A | 109.4 |
O3—Cd1—Cl3 | 88.25 (6) | C3iv—C4—H4A | 109.4 |
Cl3i—Cd1—Cl3 | 87.58 (3) | O2—C4—H4B | 109.4 |
Cl2—Cd1—Cl3 | 97.60 (3) | C3iv—C4—H4B | 109.4 |
Cl1—Cd1—Cl3 | 171.72 (3) | H4A—C4—H4B | 108.0 |
O1—Cd2—O1ii | 75.83 (12) | O3—C5—C1v | 110.0 (3) |
O1—Cd2—Cl1 | 89.52 (7) | O3—C5—H5A | 109.7 |
O1ii—Cd2—Cl1 | 162.08 (7) | C1v—C5—H5A | 109.7 |
O1—Cd2—Cl1ii | 162.08 (7) | O3—C5—H5B | 109.7 |
O1ii—Cd2—Cl1ii | 89.52 (7) | C1v—C5—H5B | 109.7 |
Cl1—Cd2—Cl1ii | 106.59 (5) | H5A—C5—H5B | 108.2 |
O1—Cd2—Cl2ii | 82.66 (6) | O3—C6—C2v | 109.5 (3) |
O1ii—Cd2—Cl2ii | 89.20 (6) | O3—C6—H6A | 109.8 |
Cl1—Cd2—Cl2ii | 99.24 (3) | C2v—C6—H6A | 109.8 |
Cl1ii—Cd2—Cl2ii | 86.95 (3) | O3—C6—H6B | 109.8 |
O1—Cd2—Cl2 | 89.20 (6) | C2v—C6—H6B | 109.8 |
O1ii—Cd2—Cl2 | 82.66 (6) | H6A—C6—H6B | 108.2 |
Cl1—Cd2—Cl2 | 86.95 (3) | Cd2—Cl1—Cd1 | 92.87 (3) |
Cl1ii—Cd2—Cl2 | 99.24 (3) | Cd1—Cl2—Cd2 | 92.79 (3) |
Cl2ii—Cd2—Cl2 | 169.69 (5) | Cd1i—Cl3—Cd1 | 92.42 (3) |
O1—C1—C5iii | 109.5 (3) | C2—O1—C1 | 109.6 (3) |
O1—C1—H1A | 109.8 | C2—O1—Cd2 | 121.4 (2) |
C5iii—C1—H1A | 109.8 | C1—O1—Cd2 | 119.1 (2) |
O1—C1—H1B | 109.8 | C4—O2—C3 | 110.4 (3) |
C5iii—C1—H1B | 109.8 | C4—O2—Cd1 | 121.2 (2) |
H1A—C1—H1B | 108.2 | C3—O2—Cd1 | 128.02 (19) |
O1—C2—C6iii | 109.9 (3) | C5—O3—C6 | 109.3 (3) |
O1—C2—H2A | 109.7 | C5—O3—Cd1 | 122.7 (2) |
C6iii—C2—H2A | 109.7 | C6—O3—Cd1 | 121.3 (2) |
O1—Cd2—Cl1—Cd1 | −85.54 (6) | Cl1—Cd2—O1—C1 | −36.6 (2) |
O1ii—Cd2—Cl1—Cd1 | −50.8 (2) | Cl1ii—Cd2—O1—C1 | 117.8 (3) |
Cl1ii—Cd2—Cl1—Cd1 | 102.42 (3) | Cl2ii—Cd2—O1—C1 | 62.8 (2) |
Cl2ii—Cd2—Cl1—Cd1 | −168.02 (3) | Cl2—Cd2—O1—C1 | −123.6 (2) |
Cl2—Cd2—Cl1—Cd1 | 3.68 (3) | C3iv—C4—O2—C3 | 57.2 (4) |
O2—Cd1—Cl1—Cd2 | −92.98 (7) | C3iv—C4—O2—Cd1 | −116.2 (3) |
O3—Cd1—Cl1—Cd2 | −170.31 (7) | C4iv—C3—O2—C4 | −56.9 (4) |
Cl3i—Cd1—Cl1—Cd2 | 101.97 (4) | C4iv—C3—O2—Cd1 | 116.0 (3) |
Cl2—Cd1—Cl1—Cd2 | −3.74 (3) | O3—Cd1—O2—C4 | −137.6 (3) |
O2—Cd1—Cl2—Cd2 | 92.64 (6) | Cl3i—Cd1—O2—C4 | −108.9 (3) |
O3—Cd1—Cl2—Cd2 | 65.1 (2) | Cl2—Cd1—O2—C4 | 49.6 (2) |
Cl3i—Cd1—Cl2—Cd2 | −93.49 (4) | Cl1—Cd1—O2—C4 | 136.8 (2) |
Cl1—Cd1—Cl2—Cd2 | 3.68 (3) | Cl3—Cd1—O2—C4 | −48.1 (2) |
Cl3—Cd1—Cl2—Cd2 | 176.87 (3) | O3—Cd1—O2—C3 | 50.2 (3) |
O1—Cd2—Cl2—Cd1 | 85.83 (7) | Cl3i—Cd1—O2—C3 | 78.9 (3) |
O1ii—Cd2—Cl2—Cd1 | 161.64 (7) | Cl2—Cd1—O2—C3 | −122.6 (3) |
Cl1—Cd2—Cl2—Cd1 | −3.73 (3) | Cl1—Cd1—O2—C3 | −35.4 (3) |
Cl1ii—Cd2—Cl2—Cd1 | −110.05 (4) | Cl3—Cd1—O2—C3 | 139.7 (3) |
O2—Cd1—Cl3—Cd1i | −165.80 (7) | C1v—C5—O3—C6 | 60.0 (4) |
O3—Cd1—Cl3—Cd1i | −88.42 (7) | C1v—C5—O3—Cd1 | −148.7 (2) |
Cl3i—Cd1—Cl3—Cd1i | 0.0 | C2v—C6—O3—C5 | −59.7 (4) |
Cl2—Cd1—Cl3—Cd1i | 105.77 (4) | C2v—C6—O3—Cd1 | 148.5 (2) |
C6iii—C2—O1—C1 | −59.4 (4) | O2—Cd1—O3—C5 | 58.0 (3) |
C6iii—C2—O1—Cd2 | 155.4 (2) | Cl3i—Cd1—O3—C5 | −114.2 (3) |
C5iii—C1—O1—C2 | 59.2 (4) | Cl2—Cd1—O3—C5 | 86.3 (3) |
C5iii—C1—O1—Cd2 | −154.7 (2) | Cl1—Cd1—O3—C5 | 147.9 (3) |
O1ii—Cd2—O1—C2 | −64.2 (2) | Cl3—Cd1—O3—C5 | −26.6 (3) |
Cl1—Cd2—O1—C2 | 105.4 (3) | O2—Cd1—O3—C6 | −154.0 (3) |
Cl1ii—Cd2—O1—C2 | −100.2 (3) | Cl3i—Cd1—O3—C6 | 33.8 (3) |
Cl2ii—Cd2—O1—C2 | −155.2 (3) | Cl2—Cd1—O3—C6 | −125.7 (3) |
Cl2—Cd2—O1—C2 | 18.4 (3) | Cl1—Cd1—O3—C6 | −64.1 (2) |
O1ii—Cd2—O1—C1 | 153.8 (3) | Cl3—Cd1—O3—C6 | 121.4 (3) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CdCl2(C4H8O2)] |
Mr | 271.40 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 15.145 (2), 13.8871 (18), 11.5943 (16) |
β (°) | 102.865 (2) |
V (Å3) | 2377.3 (5) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 3.36 |
Crystal size (mm) | 0.21 × 0.21 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.500, 0.584 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7087, 2336, 2172 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.105, 1.06 |
No. of reflections | 2336 |
No. of parameters | 123 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.91 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).
Acknowledgements
We gratefully acknowledge financial support by the Youth Foundation of Nanjing University of Technology (39704011) and the Analysis Center of Nanjing University.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Liu, Q. K., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. pp. 10364–10368. Web of Science CSD CrossRef Google Scholar
Melnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. pp. 269–295. Google Scholar
Paul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. pp. 2263–2279. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tatsuya, K., Masato, N., Yasutaka, T., Koichi, N. & Takumi, K. (2008). Inorg. Chem. pp. 3095–3104. Google Scholar
Xu, G. C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). CrystEngComm, 12, 261–270. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decade, the design and synthesis of novel cadmium(II) complexes have aroused worldwide interest in the fields of crystal engineering and material chemistry (Melnik et al., 2009). This is due to their intriguing structural features and tailor-made applications as functional materials in chemical catalysis (Paul et al., 2010), gas separation and storage (Liu et al., 2009), luminescence (Tatsuya et al., 2008), and ion-exchange (Xu et al., 2009). During our efforts to investigate the assembly of cadmium(II)-organic coordination frameworks, a new polymer, namely [Cd3Cl6(dioxane)3]n, (I), was generated accidentally under normal conditions, and the crystal structure of (I) is described here.
The fundamental building unit of (I) is composed of three CdII centers, six chlorine anions, and three dioxane ligands. Each CdII ion adopts a six-coordinated octahedral geometry by coordination to two oxygen donors from two dioxane molecules with Cd—O distances of 2.366 (3) Å and 2.395 (3) Å, and four chlorine atoms with Cd—Cl distances in the range of 2.5628 (10)–2.6252 (11) Å (Fig. 1). Each dioxane ring possesses a chair configuration and bridges two CdII ions to form an infinite zigzag chain along the [100] direction. Within the zigzag chain, the distance between successive CdII ions is 7.6093 (8) Å, and the closest Cd—Cd separation between the neighboring strands is 3.7460 (5) Å. Notably, each CdII ion is also connected with the neighboring CdII ions by two chlorine anions, thus generating a one-dimensional linear network. These infinite linear chains are further interconnected by bridging dioxane ligands to afford the resulting three-dimensional network (Fig. 2).