metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-bi­pyridine)­nickel(II)]-μ-2,4′-oxydibenzoato]

aCollege of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China, bNational Oceanographic Center, Qingdao 266071, People's Republic of China, and cDepartment of Chemistry, Dezhou University, Shandong 253023, People's Republic of China
*Correspondence e-mail: guofeng1510@yeah.net

(Received 13 October 2010; accepted 9 November 2010; online 13 November 2010)

In the title compound, [Ni(C14H8O5)(C10H8N2)]n, the NiII atom is six-coordinated in a slightly distorted octa­hedral geometry by four O atoms from two chelating carboxyl­ate groups of symmetry-related 2,4′-oxydibenzoate anions and by two N atoms from a 2,2′-bipyridine ligand. The NiII atoms are bridged by the 2,4′-oxydibenzoate anions, resulting in the formation of helical chains parallel to [010] with a repeating unit of 15.039 (2) Å.

Related literature

For background to multicarboxyl­ate ligands, see: Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Wen, G. L., Shi, Q. Z., Batten, S. R. & Proserpio, D. M. (2008). CrystEngComm, 10, 1123-1125.]); Yang et al. (2009[Yang, J., Ma, J. F., Liu, Y. Y. & Batten, S. R. (2009). CrystEngComm, 11, 151-159.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H8O5)(C10H8N2)]

  • Mr = 471.10

  • Monoclinic, P 21 /c

  • a = 8.061 (1) Å

  • b = 15.039 (2) Å

  • c = 17.847 (5) Å

  • β = 99.464 (3)°

  • V = 2134.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.833

  • 13096 measured reflections

  • 4938 independent reflections

  • 3475 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.04

  • 4938 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.0260 (17)
Ni1—N2 2.0412 (18)
Ni1—O5i 2.0459 (19)
Ni1—O1 2.0694 (16)
Ni1—O2 2.1331 (18)
Ni1—O4i 2.1673 (15)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Semi-rigid V-shaped multicarboxylate moieties with two benzene rings containing a central nonmetallic fragment (C, O, or S atom) are excellent ligands since they can freely twist around the nonmetallic atom to meet the requirements of the coordination geometries of metal atoms in the assembly process (Liu et al., 2008; Yang et al., 2009). In view of the above point, we chose 2,4'-oxydibenzoate along with nitrogen-containing auxiliary ligands to construct new metal coordination polymers. The title compound, (I), was synthesized by the hydrothermal reaction of 2,4'-oxybis(benzoic acid) with 2,2-bipyridine and nickel chloride hexahydrate.

The asymmetric unit of (I) consists of one NiII ion, one 2,2'-bipyridine ligand and one 2,4'-oxydibenzoate anion. The central NiII ion exhibits an octahedral NiN2O4 environment defined by two chelating carboxylate groups of symmetry-related 2,4'-oxydibenzoate ligands and by one 2,2-bipyridine molecule (Fig. 1). The Ni—O distances range from 2.0459 (19) to 2.1673 (15) Å and the Ni—N distances from 2.0260 (17) and 2.0412 (18) Å. The 2,4'-oxydibenzoate anions acts as a µ2-ligand with its two carboxylate groups bridging two NiII ions to form an infinite one-dimensional helical chain running parallel to [010] (Fig. 2). The repeating unit of 15.039 (2) Å of the chains corresponds to the lattice parameter b.

Related literature top

For background to multicarboxylate ligands, see: Liu et al. (2008); Yang et al. (2009).

Experimental top

A mixture of NiCl2.6H2O (0.238 g, 1 mmol), 2,4'-oxybis(benzoic acid) (0.258 g, 1 mmol), NaOH (0.08 g, 2 mmol), 2,2'-bipyridine (0.156 g,1 mmol) and distilled water (15 ml) was heated to 433 K for 96 h in a 25 ml stainless steel reactor with a Teflon liner. Green block-like crystals were obtained with 42% yield based on Ni.

Refinement top

Hydrogen atoms were included in calculated positions and refined on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Semi-rigid V-shaped multicarboxylate moieties with two benzene rings containing a central nonmetallic fragment (C, O, or S atom) are excellent ligands since they can freely twist around the nonmetallic atom to meet the requirements of the coordination geometries of metal atoms in the assembly process (Liu et al., 2008; Yang et al., 2009). In view of the above point, we chose 2,4'-oxydibenzoate along with nitrogen-containing auxiliary ligands to construct new metal coordination polymers. The title compound, (I), was synthesized by the hydrothermal reaction of 2,4'-oxybis(benzoic acid) with 2,2-bipyridine and nickel chloride hexahydrate.

The asymmetric unit of (I) consists of one NiII ion, one 2,2'-bipyridine ligand and one 2,4'-oxydibenzoate anion. The central NiII ion exhibits an octahedral NiN2O4 environment defined by two chelating carboxylate groups of symmetry-related 2,4'-oxydibenzoate ligands and by one 2,2-bipyridine molecule (Fig. 1). The Ni—O distances range from 2.0459 (19) to 2.1673 (15) Å and the Ni—N distances from 2.0260 (17) and 2.0412 (18) Å. The 2,4'-oxydibenzoate anions acts as a µ2-ligand with its two carboxylate groups bridging two NiII ions to form an infinite one-dimensional helical chain running parallel to [010] (Fig. 2). The repeating unit of 15.039 (2) Å of the chains corresponds to the lattice parameter b.

For background to multicarboxylate ligands, see: Liu et al. (2008); Yang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the NiII atom with displacement parameters drawn at the 40% probability level. All hydrogen atoms have been omitted for clarity. [Symmetry code A: (i) -x+1, y+1/2, -z+3/2].
[Figure 2] Fig. 2. The helical chain (space-filling representation) in (I) extending parallel to [010].
catena-Poly[[(2,2'-bipyridine)nickel(II)]-µ-2,4'-oxydibenzoato] top
Crystal data top
[Ni(C14H8O5)(C10H8N2)]F(000) = 968
Mr = 471.10Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3464 reflections
a = 8.061 (1) Åθ = 2.3–24.4°
b = 15.039 (2) ŵ = 0.95 mm1
c = 17.847 (5) ÅT = 293 K
β = 99.464 (3)°Block, green
V = 2134.1 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4938 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 105
Tmin = 0.764, Tmax = 0.833k = 1819
13096 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1348P]
where P = (Fo2 + 2Fc2)/3
4938 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C14H8O5)(C10H8N2)]V = 2134.1 (6) Å3
Mr = 471.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.061 (1) ŵ = 0.95 mm1
b = 15.039 (2) ÅT = 293 K
c = 17.847 (5) Å0.30 × 0.25 × 0.20 mm
β = 99.464 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3475 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.833Rint = 0.027
13096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
4938 reflectionsΔρmin = 0.22 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.68282 (3)0.376038 (17)0.855723 (14)0.04554 (11)
O30.26452 (19)0.09960 (9)0.91468 (8)0.0506 (4)
O40.31673 (18)0.13651 (9)0.76522 (8)0.0506 (4)
O20.45649 (19)0.30889 (9)0.86917 (8)0.0537 (4)
C10.5405 (3)0.23738 (14)0.87422 (11)0.0477 (5)
O50.09217 (19)0.11077 (10)0.68204 (8)0.0556 (4)
C130.1600 (3)0.12592 (12)0.74953 (12)0.0428 (5)
O10.69556 (18)0.23953 (9)0.87013 (9)0.0552 (4)
C50.3211 (3)0.01512 (13)0.90085 (10)0.0441 (5)
C120.0473 (3)0.13366 (12)0.80753 (11)0.0419 (5)
C70.4606 (3)0.14996 (13)0.88414 (11)0.0459 (5)
N20.6059 (2)0.50501 (11)0.85985 (10)0.0496 (4)
C60.2878 (3)0.13983 (14)0.87544 (13)0.0525 (5)
H60.21850.18910.86410.063*
C190.6367 (3)0.54269 (13)0.92942 (12)0.0475 (5)
C110.1211 (3)0.15605 (15)0.78357 (13)0.0538 (5)
H110.16070.16260.73190.065*
C200.5772 (3)0.62678 (14)0.94207 (14)0.0585 (6)
H200.59920.65200.99030.070*
C30.4924 (3)0.00607 (14)0.90999 (12)0.0511 (5)
H30.56140.05530.92220.061*
C80.0992 (3)0.12165 (12)0.88548 (11)0.0428 (5)
C40.2171 (3)0.05733 (14)0.88340 (13)0.0528 (5)
H40.10090.05080.87710.063*
C20.5622 (3)0.07580 (14)0.90102 (11)0.0491 (5)
H20.67840.08150.90630.059*
C90.0083 (3)0.13424 (14)0.93671 (13)0.0546 (6)
H90.02900.12560.98830.066*
C180.7357 (3)0.48691 (13)0.98899 (11)0.0469 (5)
C170.7938 (3)0.51503 (15)1.06268 (13)0.0629 (7)
H170.76990.57201.07810.075*
N10.7676 (2)0.40440 (11)0.96637 (9)0.0468 (4)
C230.5176 (3)0.55082 (16)0.80230 (13)0.0628 (6)
H230.49680.52500.75430.075*
C220.4567 (4)0.63476 (16)0.81178 (16)0.0698 (7)
H220.39700.66550.77080.084*
C210.4857 (3)0.67254 (16)0.88283 (16)0.0669 (7)
H210.44340.72870.89070.080*
C280.2301 (3)0.16874 (17)0.83440 (15)0.0661 (7)
H280.34190.18330.81710.079*
C100.1728 (3)0.15981 (17)0.91097 (15)0.0665 (7)
H100.24480.17100.94560.080*
C140.8592 (3)0.34967 (16)1.01506 (13)0.0585 (6)
H140.88190.29290.99870.070*
C150.9221 (3)0.37365 (17)1.08905 (14)0.0673 (7)
H150.98620.33411.12190.081*
C160.8876 (3)0.45709 (18)1.11271 (14)0.0707 (7)
H160.92710.47481.16240.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.05637 (19)0.04095 (16)0.04131 (16)0.00815 (12)0.01396 (12)0.00735 (11)
O30.0553 (9)0.0445 (8)0.0490 (8)0.0074 (7)0.0002 (7)0.0088 (6)
O40.0466 (9)0.0593 (9)0.0471 (8)0.0024 (7)0.0111 (7)0.0057 (7)
O20.0630 (10)0.0426 (8)0.0575 (9)0.0063 (7)0.0160 (8)0.0051 (7)
C10.0598 (14)0.0461 (12)0.0383 (11)0.0088 (11)0.0116 (10)0.0080 (9)
O50.0581 (9)0.0679 (10)0.0424 (8)0.0184 (8)0.0125 (7)0.0156 (7)
C130.0500 (13)0.0337 (10)0.0452 (11)0.0051 (9)0.0095 (9)0.0031 (9)
O10.0592 (10)0.0444 (8)0.0648 (10)0.0096 (7)0.0185 (8)0.0105 (7)
C50.0549 (13)0.0409 (11)0.0359 (10)0.0065 (9)0.0057 (9)0.0005 (8)
C120.0463 (12)0.0368 (10)0.0434 (11)0.0003 (9)0.0092 (9)0.0044 (8)
C70.0558 (13)0.0436 (11)0.0394 (11)0.0088 (10)0.0109 (10)0.0056 (9)
N20.0651 (12)0.0432 (10)0.0446 (10)0.0053 (9)0.0206 (9)0.0007 (8)
C60.0554 (14)0.0424 (12)0.0609 (14)0.0011 (10)0.0129 (11)0.0002 (10)
C190.0591 (13)0.0380 (11)0.0510 (12)0.0134 (10)0.0255 (10)0.0060 (9)
C110.0521 (13)0.0535 (13)0.0550 (13)0.0055 (11)0.0060 (11)0.0034 (11)
C200.0708 (16)0.0427 (12)0.0689 (15)0.0146 (11)0.0322 (13)0.0088 (11)
C30.0533 (13)0.0472 (12)0.0513 (12)0.0007 (10)0.0042 (11)0.0039 (10)
C80.0481 (12)0.0340 (10)0.0464 (11)0.0018 (9)0.0082 (9)0.0056 (8)
C40.0484 (13)0.0482 (12)0.0622 (13)0.0048 (10)0.0106 (11)0.0001 (10)
C20.0462 (12)0.0532 (13)0.0468 (12)0.0051 (10)0.0048 (10)0.0022 (10)
C90.0691 (16)0.0515 (13)0.0458 (12)0.0029 (11)0.0174 (11)0.0056 (10)
C180.0570 (13)0.0422 (11)0.0452 (11)0.0183 (10)0.0194 (10)0.0066 (9)
C170.0842 (18)0.0508 (13)0.0553 (14)0.0278 (13)0.0166 (13)0.0153 (11)
N10.0578 (11)0.0419 (9)0.0431 (9)0.0083 (8)0.0152 (8)0.0044 (8)
C230.0838 (18)0.0583 (14)0.0496 (13)0.0027 (13)0.0204 (12)0.0066 (11)
C220.0818 (18)0.0579 (15)0.0749 (18)0.0059 (13)0.0287 (15)0.0217 (13)
C210.0783 (18)0.0431 (13)0.0880 (19)0.0015 (12)0.0398 (15)0.0053 (13)
C280.0503 (14)0.0683 (16)0.0805 (18)0.0098 (12)0.0136 (13)0.0153 (14)
C100.0590 (16)0.0743 (16)0.0727 (17)0.0038 (13)0.0303 (13)0.0192 (14)
C140.0684 (16)0.0548 (13)0.0527 (13)0.0021 (12)0.0109 (12)0.0020 (11)
C150.0689 (17)0.0711 (17)0.0571 (14)0.0144 (14)0.0036 (13)0.0055 (12)
C160.0867 (19)0.0711 (17)0.0506 (14)0.0345 (15)0.0008 (13)0.0056 (13)
Geometric parameters (Å, º) top
Ni1—N12.0260 (17)C11—C281.376 (3)
Ni1—N22.0412 (18)C11—H110.9300
Ni1—O5i2.0459 (19)C20—C211.371 (3)
Ni1—O12.0694 (16)C20—H200.9300
Ni1—O22.1331 (18)C3—C21.374 (3)
Ni1—O4i2.1673 (15)C3—H30.9300
O3—C51.386 (2)C8—C91.373 (3)
O3—C81.389 (3)C4—H40.9300
O4—C131.258 (3)C2—H20.9300
O4—Ni1ii2.1673 (15)C9—C101.384 (3)
O2—C11.266 (2)C9—H90.9300
C1—O11.264 (3)C18—N11.343 (3)
C1—C71.487 (3)C18—C171.388 (3)
O5—C131.259 (2)C17—C161.381 (3)
O5—Ni1ii2.0459 (19)C17—H170.9300
C13—C121.490 (3)N1—C141.329 (3)
C13—Ni1ii2.433 (2)C23—C221.375 (3)
C5—C31.370 (3)C23—H230.9300
C5—C41.379 (3)C22—C211.374 (4)
C12—C111.396 (3)C22—H220.9300
C12—C81.397 (3)C21—H210.9300
C7—C61.384 (3)C28—C101.375 (3)
C7—C21.387 (3)C28—H280.9300
N2—C231.340 (3)C10—H100.9300
N2—C191.350 (2)C14—C151.382 (3)
C6—C41.383 (3)C14—H140.9300
C6—H60.9300C15—C161.367 (3)
C19—C201.384 (3)C15—H150.9300
C19—C181.480 (3)C16—H160.9300
N1—Ni1—N279.66 (7)C7—C6—H6119.6
N1—Ni1—O5i97.20 (7)N2—C19—C20121.2 (2)
N2—Ni1—O5i102.16 (7)N2—C19—C18114.72 (17)
N1—Ni1—O194.92 (6)C20—C19—C18124.1 (2)
N2—Ni1—O1161.32 (7)C28—C11—C12121.7 (2)
O5i—Ni1—O196.24 (6)C28—C11—H11119.1
N1—Ni1—O298.50 (6)C12—C11—H11119.1
N2—Ni1—O2100.10 (7)C21—C20—C19119.3 (2)
O5i—Ni1—O2154.69 (6)C21—C20—H20120.3
O1—Ni1—O262.76 (6)C19—C20—H20120.3
N1—Ni1—O4i158.99 (7)C5—C3—C2119.9 (2)
N2—Ni1—O4i99.73 (6)C5—C3—H3120.0
O5i—Ni1—O4i62.20 (6)C2—C3—H3120.0
O1—Ni1—O4i91.67 (6)C9—C8—O3117.07 (19)
O2—Ni1—O4i102.26 (6)C9—C8—C12121.8 (2)
N1—Ni1—C198.02 (7)O3—C8—C12121.12 (19)
N2—Ni1—C1131.15 (8)C5—C4—C6119.1 (2)
O5i—Ni1—C1126.32 (7)C5—C4—H4120.4
O1—Ni1—C131.37 (7)C6—C4—H4120.4
O2—Ni1—C131.38 (6)C3—C2—C7120.5 (2)
O4i—Ni1—C197.98 (6)C3—C2—H2119.8
N1—Ni1—C13i128.32 (8)C7—C2—H2119.8
N2—Ni1—C13i103.84 (7)C8—C9—C10119.5 (2)
O5i—Ni1—C13i31.15 (6)C8—C9—H9120.2
O1—Ni1—C13i93.58 (6)C10—C9—H9120.2
O2—Ni1—C13i130.16 (6)N1—C18—C17121.0 (2)
O4i—Ni1—C13i31.08 (6)N1—C18—C19114.53 (17)
C1—Ni1—C13i114.35 (7)C17—C18—C19124.5 (2)
C5—O3—C8118.40 (15)C16—C17—C18119.0 (2)
C13—O4—Ni1ii86.18 (12)C16—C17—H17120.5
C1—O2—Ni187.30 (13)C18—C17—H17120.5
O1—C1—O2119.76 (19)C14—N1—C18119.28 (19)
O1—C1—C7118.8 (2)C14—N1—Ni1124.68 (15)
O2—C1—C7121.5 (2)C18—N1—Ni1115.90 (14)
O1—C1—Ni158.44 (11)N2—C23—C22122.2 (2)
O2—C1—Ni161.32 (11)N2—C23—H23118.9
C7—C1—Ni1177.03 (17)C22—C23—H23118.9
C13—O5—Ni1ii91.63 (13)C21—C22—C23118.9 (2)
O4—C13—O5119.9 (2)C21—C22—H22120.5
O4—C13—C12122.70 (18)C23—C22—H22120.5
O5—C13—C12117.40 (18)C20—C21—C22119.5 (2)
O4—C13—Ni1ii62.74 (11)C20—C21—H21120.3
O5—C13—Ni1ii57.21 (11)C22—C21—H21120.3
C12—C13—Ni1ii172.74 (15)C10—C28—C11119.7 (2)
C1—O1—Ni190.19 (13)C10—C28—H28120.2
C3—C5—C4120.79 (19)C11—C28—H28120.2
C3—C5—O3115.13 (18)C28—C10—C9120.2 (2)
C4—C5—O3123.98 (19)C28—C10—H10119.9
C11—C12—C8116.98 (19)C9—C10—H10119.9
C11—C12—C13118.66 (19)N1—C14—C15122.7 (2)
C8—C12—C13124.35 (18)N1—C14—H14118.7
C6—C7—C2118.89 (19)C15—C14—H14118.7
C6—C7—C1122.1 (2)C16—C15—C14118.2 (2)
C2—C7—C1119.0 (2)C16—C15—H15120.9
C23—N2—C19118.88 (19)C14—C15—H15120.9
C23—N2—Ni1125.94 (15)C15—C16—C17119.8 (2)
C19—N2—Ni1114.91 (14)C15—C16—H16120.1
C4—C6—C7120.8 (2)C17—C16—H16120.1
C4—C6—H6119.6
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C14H8O5)(C10H8N2)]
Mr471.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.061 (1), 15.039 (2), 17.847 (5)
β (°) 99.464 (3)
V3)2134.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.764, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
13096, 4938, 3475
Rint0.027
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.04
No. of reflections4938
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N12.0260 (17)Ni1—O12.0694 (16)
Ni1—N22.0412 (18)Ni1—O22.1331 (18)
Ni1—O5i2.0459 (19)Ni1—O4i2.1673 (15)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to Dr Li Bin and Tian Lei for their help during the experiments.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Wen, G. L., Shi, Q. Z., Batten, S. R. & Proserpio, D. M. (2008). CrystEngComm, 10, 1123–1125.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J. F., Liu, Y. Y. & Batten, S. R. (2009). CrystEngComm, 11, 151–159.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds